diff options
-rw-r--r-- | lib/CodeGen/LiveIntervalAnalysis.cpp | 90 | ||||
-rw-r--r-- | lib/CodeGen/RegAllocSimple.cpp | 6 | ||||
-rw-r--r-- | lib/CodeGen/TwoAddressInstructionPass.cpp | 5 | ||||
-rw-r--r-- | lib/CodeGen/VirtRegMap.cpp | 99 | ||||
-rw-r--r-- | lib/CodeGen/VirtRegMap.h | 8 | ||||
-rw-r--r-- | lib/Target/X86/X86InstrInfo.cpp | 2 | ||||
-rw-r--r-- | lib/Target/X86/X86RegisterInfo.cpp | 950 | ||||
-rw-r--r-- | lib/Target/X86/X86RegisterInfo.h | 8 | ||||
-rw-r--r-- | utils/TableGen/AsmWriterEmitter.cpp | 13 |
9 files changed, 577 insertions, 604 deletions
diff --git a/lib/CodeGen/LiveIntervalAnalysis.cpp b/lib/CodeGen/LiveIntervalAnalysis.cpp index 5bc03bc957..237dcd32c8 100644 --- a/lib/CodeGen/LiveIntervalAnalysis.cpp +++ b/lib/CodeGen/LiveIntervalAnalysis.cpp @@ -262,23 +262,11 @@ addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) { MachineInstr *MI = getInstructionFromIndex(index); - // NewRegLiveIn - This instruction might have multiple uses of the spilled - // register. In this case, for the first use, keep track of the new vreg - // that we reload it into. If we see a second use, reuse this vreg - // instead of creating live ranges for two reloads. - unsigned NewRegLiveIn = 0; - - for_operand: + RestartInstruction: for (unsigned i = 0; i != MI->getNumOperands(); ++i) { MachineOperand& mop = MI->getOperand(i); if (mop.isRegister() && mop.getReg() == li.reg) { - if (NewRegLiveIn && mop.isUse()) { - // We already emitted a reload of this value, reuse it for - // subsequent operands. - MI->getOperand(i).setReg(NewRegLiveIn); - DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn - << " for operand #" << i << '\n'); - } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) { + if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) { // Attempt to fold the memory reference into the instruction. If we // can do this, we don't need to insert spill code. if (lv_) @@ -292,47 +280,63 @@ addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) { ++numFolded; // Folding the load/store can completely change the instruction in // unpredictable ways, rescan it from the beginning. - goto for_operand; + goto RestartInstruction; } else { - // This is tricky. We need to add information in the interval about - // the spill code so we have to use our extra load/store slots. + // Create a new virtual register for the spill interval. + unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc); + + // Scan all of the operands of this instruction rewriting operands + // to use NewVReg instead of li.reg as appropriate. We do this for + // two reasons: // - // If we have a use we are going to have a load so we start the - // interval from the load slot onwards. Otherwise we start from the - // def slot. - unsigned start = (mop.isUse() ? - getLoadIndex(index) : - getDefIndex(index)); - // If we have a def we are going to have a store right after it so - // we end the interval after the use of the next - // instruction. Otherwise we end after the use of this instruction. - unsigned end = 1 + (mop.isDef() ? - getStoreIndex(index) : - getUseIndex(index)); + // 1. If the instr reads the same spilled vreg multiple times, we + // want to reuse the NewVReg. + // 2. If the instr is a two-addr instruction, we are required to + // keep the src/dst regs pinned. + // + // Keep track of whether we replace a use and/or def so that we can + // create the spill interval with the appropriate range. + mop.setReg(NewVReg); + + bool HasUse = mop.isUse(); + bool HasDef = mop.isDef(); + for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) { + if (MI->getOperand(j).isReg() && + MI->getOperand(j).getReg() == li.reg) { + MI->getOperand(j).setReg(NewVReg); + HasUse |= MI->getOperand(j).isUse(); + HasDef |= MI->getOperand(j).isDef(); + } + } // create a new register for this spill - NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc); - MI->getOperand(i).setReg(NewRegLiveIn); vrm.grow(); - vrm.assignVirt2StackSlot(NewRegLiveIn, slot); - LiveInterval& nI = getOrCreateInterval(NewRegLiveIn); + vrm.assignVirt2StackSlot(NewVReg, slot); + LiveInterval &nI = getOrCreateInterval(NewVReg); assert(nI.empty()); // the spill weight is now infinity as it // cannot be spilled again nI.weight = float(HUGE_VAL); - LiveRange LR(start, end, nI.getNextValue(~0U, 0)); - DEBUG(std::cerr << " +" << LR); - nI.addRange(LR); + + if (HasUse) { + LiveRange LR(getLoadIndex(index), getUseIndex(index), + nI.getNextValue(~0U, 0)); + DEBUG(std::cerr << " +" << LR); + nI.addRange(LR); + } + if (HasDef) { + LiveRange LR(getDefIndex(index), getStoreIndex(index), + nI.getNextValue(~0U, 0)); + DEBUG(std::cerr << " +" << LR); + nI.addRange(LR); + } + added.push_back(&nI); // update live variables if it is available if (lv_) - lv_->addVirtualRegisterKilled(NewRegLiveIn, MI); - - // If this is a live in, reuse it for subsequent live-ins. If it's - // a def, we can't do this. - if (!mop.isUse()) NewRegLiveIn = 0; + lv_->addVirtualRegisterKilled(NewVReg, MI); DEBUG(std::cerr << "\t\t\t\tadded new interval: "; nI.print(std::cerr, mri_); std::cerr << '\n'); @@ -445,7 +449,9 @@ void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, // operand, and is a def-and-use. if (mi->getOperand(0).isRegister() && mi->getOperand(0).getReg() == interval.reg && - mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) { + mi->getNumOperands() > 1 && mi->getOperand(1).isRegister() && + mi->getOperand(1).getReg() == interval.reg && + mi->getOperand(0).isDef() && mi->getOperand(1).isUse()) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we diff --git a/lib/CodeGen/RegAllocSimple.cpp b/lib/CodeGen/RegAllocSimple.cpp index b28e21aaf6..ad09f8220f 100644 --- a/lib/CodeGen/RegAllocSimple.cpp +++ b/lib/CodeGen/RegAllocSimple.cpp @@ -203,17 +203,13 @@ void RegAllocSimple::AllocateBasicBlock(MachineBasicBlock &MBB) { physReg = getFreeReg(virtualReg); } else { // must be same register number as the first operand - // This maps a = b + c into b += c, and saves b into a's spot + // This maps a = b + c into b = b + c, and saves b into a's spot. assert(MI->getOperand(1).isRegister() && MI->getOperand(1).getReg() && MI->getOperand(1).isUse() && "Two address instruction invalid!"); physReg = MI->getOperand(1).getReg(); - spillVirtReg(MBB, next(MI), virtualReg, physReg); - MI->getOperand(1).setDef(); - MI->RemoveOperand(0); - break; // This is the last operand to process } spillVirtReg(MBB, next(MI), virtualReg, physReg); } else { diff --git a/lib/CodeGen/TwoAddressInstructionPass.cpp b/lib/CodeGen/TwoAddressInstructionPass.cpp index f1e41d21de..7db9958bc0 100644 --- a/lib/CodeGen/TwoAddressInstructionPass.cpp +++ b/lib/CodeGen/TwoAddressInstructionPass.cpp @@ -206,9 +206,8 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { } } - assert(mi->getOperand(0).isDef()); - mi->getOperand(0).setUse(); - mi->RemoveOperand(1); + assert(mi->getOperand(0).isDef() && mi->getOperand(1).isUse()); + mi->getOperand(1).setReg(mi->getOperand(0).getReg()); MadeChange = true; DEBUG(std::cerr << "\t\trewrite to:\t"; mi->print(std::cerr, &TM)); diff --git a/lib/CodeGen/VirtRegMap.cpp b/lib/CodeGen/VirtRegMap.cpp index ce9a050788..ea1794caf5 100644 --- a/lib/CodeGen/VirtRegMap.cpp +++ b/lib/CodeGen/VirtRegMap.cpp @@ -57,6 +57,12 @@ namespace { // VirtRegMap implementation //===----------------------------------------------------------------------===// +VirtRegMap::VirtRegMap(MachineFunction &mf) + : TII(*mf.getTarget().getInstrInfo()), MF(mf), + Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT) { + grow(); +} + void VirtRegMap::grow() { Virt2PhysMap.grow(MF.getSSARegMap()->getLastVirtReg()); Virt2StackSlotMap.grow(MF.getSSARegMap()->getLastVirtReg()); @@ -92,11 +98,13 @@ void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI, } ModRef MRInfo; - if (!OldMI->getOperand(OpNo).isDef()) { - assert(OldMI->getOperand(OpNo).isUse() && "Operand is not use or def?"); - MRInfo = isRef; + if (OpNo < 2 && TII.isTwoAddrInstr(OldMI->getOpcode())) { + // Folded a two-address operand. + MRInfo = isModRef; + } else if (OldMI->getOperand(OpNo).isDef()) { + MRInfo = isMod; } else { - MRInfo = OldMI->getOperand(OpNo).isUse() ? isModRef : isMod; + MRInfo = isRef; } // add new memory reference @@ -492,11 +500,6 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) { // that we can choose to reuse the physregs instead of emitting reloads. AvailableSpills Spills(MRI, TII); - // DefAndUseVReg - When we see a def&use operand that is spilled, keep track - // of it. ".first" is the machine operand index (should always be 0 for now), - // and ".second" is the virtual register that is spilled. - std::vector<std::pair<unsigned, unsigned> > DefAndUseVReg; - // MaybeDeadStores - When we need to write a value back into a stack slot, // keep track of the inserted store. If the stack slot value is never read // (because the value was used from some available register, for example), and @@ -516,8 +519,6 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) { /// reuse. ReuseInfo ReusedOperands(MI); - DefAndUseVReg.clear(); - // Process all of the spilled uses and all non spilled reg references. for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); @@ -547,24 +548,27 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) { if (!MO.isUse()) continue; // Handle defs in the loop below (handle use&def here though) - // If this is both a def and a use, we need to emit a store to the - // stack slot after the instruction. Keep track of D&U operands - // because we are about to change it to a physreg here. - if (MO.isDef()) { - // Remember that this was a def-and-use operand, and that the - // stack slot is live after this instruction executes. - DefAndUseVReg.push_back(std::make_pair(i, VirtReg)); - } - int StackSlot = VRM.getStackSlot(VirtReg); unsigned PhysReg; // Check to see if this stack slot is available. if ((PhysReg = Spills.getSpillSlotPhysReg(StackSlot))) { - // Don't reuse it for a def&use operand if we aren't allowed to change - // the physreg! - if (!MO.isDef() || Spills.canClobberPhysReg(StackSlot)) { + // This spilled operand might be part of a two-address operand. If this + // is the case, then changing it will necessarily require changing the + // def part of the instruction as well. However, in some cases, we + // aren't allowed to modify the reused register. If none of these cases + // apply, reuse it. + bool CanReuse = true; + if (i == 1 && MI.getOperand(0).isReg() && + MI.getOperand(0).getReg() == VirtReg && + TII->isTwoAddrInstr(MI.getOpcode())) { + // Okay, we have a two address operand. We can reuse this physreg as + // long as we are allowed to clobber the value. + CanReuse = Spills.canClobberPhysReg(StackSlot); + } + + if (CanReuse) { // If this stack slot value is already available, reuse it! DEBUG(std::cerr << "Reusing SS#" << StackSlot << " from physreg " << MRI->getName(PhysReg) << " for vreg" @@ -777,47 +781,32 @@ void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) { unsigned VirtReg = MO.getReg(); if (!MRegisterInfo::isVirtualRegister(VirtReg)) { - // Check to see if this is a def-and-use vreg operand that we do need - // to insert a store for. - bool OpTakenCareOf = false; - if (MO.isUse() && !DefAndUseVReg.empty()) { - for (unsigned dau = 0, e = DefAndUseVReg.size(); dau != e; ++dau) - if (DefAndUseVReg[dau].first == i) { - VirtReg = DefAndUseVReg[dau].second; - OpTakenCareOf = true; - break; - } - } - - if (!OpTakenCareOf) { - // Check to see if this is a noop copy. If so, eliminate the - // instruction before considering the dest reg to be changed. - unsigned Src, Dst; - if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { - ++NumDCE; - DEBUG(std::cerr << "Removing now-noop copy: " << MI); - MBB.erase(&MI); - VRM.RemoveFromFoldedVirtMap(&MI); - goto ProcessNextInst; - } - Spills.ClobberPhysReg(VirtReg); - continue; + // Check to see if this is a noop copy. If so, eliminate the + // instruction before considering the dest reg to be changed. + unsigned Src, Dst; + if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) { + ++NumDCE; + DEBUG(std::cerr << "Removing now-noop copy: " << MI); + MBB.erase(&MI); + VRM.RemoveFromFoldedVirtMap(&MI); + goto ProcessNextInst; } + Spills.ClobberPhysReg(VirtReg); + continue; } // The only vregs left are stack slot definitions. int StackSlot = VRM.getStackSlot(VirtReg); const TargetRegisterClass *RC = MBB.getParent()->getSSARegMap()->getRegClass(VirtReg); - unsigned PhysReg; - // If this is a def&use operand, and we used a different physreg for - // it than the one assigned, make sure to execute the store from the - // correct physical register. - if (MO.getReg() == VirtReg) - PhysReg = VRM.getPhys(VirtReg); + // If this def is part of a two-address operand, make sure to execute + // the store from the correct physical register. + unsigned PhysReg; + if (i == 0 && TII->isTwoAddrInstr(MI.getOpcode())) + PhysReg = MI.getOperand(1).getReg(); else - PhysReg = MO.getReg(); + PhysReg = VRM.getPhys(VirtReg); PhysRegsUsed[PhysReg] = true; MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC); diff --git a/lib/CodeGen/VirtRegMap.h b/lib/CodeGen/VirtRegMap.h index 83d5aada47..426d1cf9b0 100644 --- a/lib/CodeGen/VirtRegMap.h +++ b/lib/CodeGen/VirtRegMap.h @@ -23,6 +23,7 @@ namespace llvm { class MachineInstr; + class TargetInstrInfo; class VirtRegMap { public: @@ -31,6 +32,8 @@ namespace llvm { std::pair<unsigned, ModRef> > MI2VirtMapTy; private: + const TargetInstrInfo &TII; + MachineFunction &MF; /// Virt2PhysMap - This is a virtual to physical register /// mapping. Each virtual register is required to have an entry in @@ -58,10 +61,7 @@ namespace llvm { }; public: - VirtRegMap(MachineFunction &mf) - : MF(mf), Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT) { - grow(); - } + VirtRegMap(MachineFunction &mf); void grow(); diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp index 47388eae48..9d8eab8ca5 100644 --- a/lib/Target/X86/X86InstrInfo.cpp +++ b/lib/Target/X86/X86InstrInfo.cpp @@ -22,7 +22,7 @@ using namespace llvm; X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])), - TM(tm) { + TM(tm), RI(*this) { } diff --git a/lib/Target/X86/X86RegisterInfo.cpp b/lib/Target/X86/X86RegisterInfo.cpp index 90ca91d12a..89cc8f2c94 100644 --- a/lib/Target/X86/X86RegisterInfo.cpp +++ b/lib/Target/X86/X86RegisterInfo.cpp @@ -46,8 +46,8 @@ namespace { cl::Hidden); } -X86RegisterInfo::X86RegisterInfo() - : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP) {} +X86RegisterInfo::X86RegisterInfo(const TargetInstrInfo &tii) + : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP), TII(tii) {} void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, @@ -139,39 +139,46 @@ void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB, BuildMI(MBB, MI, Opc, 1, DestReg).addReg(SrcReg); } - -static MachineInstr *MakeMInst(unsigned Opcode, unsigned FrameIndex, - MachineInstr *MI) { - return addFrameReference(BuildMI(Opcode, 4), FrameIndex); -} - -static MachineInstr *MakeMRInst(unsigned Opcode, unsigned FrameIndex, - MachineInstr *MI) { - return addFrameReference(BuildMI(Opcode, 5), FrameIndex) - .addReg(MI->getOperand(1).getReg()); -} - -static MachineInstr *MakeMRIInst(unsigned Opcode, unsigned FrameIndex, - MachineInstr *MI) { - return addFrameReference(BuildMI(Opcode, 6), FrameIndex) - .addReg(MI->getOperand(1).getReg()) - .addImm(MI->getOperand(2).getImmedValue()); +static MachineInstr *FuseTwoAddrInst(unsigned Opcode, unsigned FrameIndex, + MachineInstr *MI) { + unsigned NumOps = MI->getNumOperands()-2; + // Create the base instruction with the memory operand as the first part. + MachineInstrBuilder MIB = addFrameReference(BuildMI(Opcode, 4+NumOps), + FrameIndex); + + // Loop over the rest of the ri operands, converting them over. + for (unsigned i = 0; i != NumOps; ++i) { + if (MI->getOperand(i+2).isReg()) + MIB = MIB.addReg(MI->getOperand(i+2).getReg()); + else { + assert(MI->getOperand(i+2).isImm() && "Unknown operand type!"); + MIB = MIB.addImm(MI->getOperand(i+2).getImm()); + } + } + return MIB; } -static MachineInstr *MakeMIInst(unsigned Opcode, unsigned FrameIndex, - MachineInstr *MI) { - if (MI->getOperand(1).isImmediate()) - return addFrameReference(BuildMI(Opcode, 5), FrameIndex) - .addImm(MI->getOperand(1).getImmedValue()); - else if (MI->getOperand(1).isGlobalAddress()) - return addFrameReference(BuildMI(Opcode, 5), FrameIndex) - .addGlobalAddress(MI->getOperand(1).getGlobal(), - MI->getOperand(1).getOffset()); - else if (MI->getOperand(1).isJumpTableIndex()) - return addFrameReference(BuildMI(Opcode, 5), FrameIndex) - .addJumpTableIndex(MI->getOperand(1).getJumpTableIndex()); - assert(0 && "Unknown operand for MakeMI!"); - return 0; +static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo, + unsigned FrameIndex, MachineInstr *MI) { + MachineInstrBuilder MIB = BuildMI(Opcode, MI->getNumOperands()+3); + + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (i == OpNo) { + assert(MO.isReg() && "Expected to fold into reg operand!"); + MIB = addFrameReference(MIB, FrameIndex); + } else if (MO.isReg()) + MIB = MIB.addReg(MO.getReg(), MO.getUseType()); + else if (MO.isImm()) + MIB = MIB.addImm(MO.getImm()); + else if (MO.isGlobalAddress()) + MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset()); + else if (MO.isJumpTableIndex()) + MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex()); + else + assert(0 && "Unknown operand for FuseInst!"); + } + return MIB; } static MachineInstr *MakeM0Inst(unsigned Opcode, unsigned FrameIndex, @@ -179,20 +186,6 @@ static MachineInstr *MakeM0Inst(unsigned Opcode, unsigned FrameIndex, return addFrameReference(BuildMI(Opcode, 5), FrameIndex).addImm(0); } -static MachineInstr *MakeRMInst(unsigned Opcode, unsigned FrameIndex, - MachineInstr *MI) { - const MachineOperand& op = MI->getOperand(0); - return addFrameReference(BuildMI(Opcode, 5, op.getReg(), op.getUseType()), - FrameIndex); -} - -static MachineInstr *MakeRMIInst(unsigned Opcode, unsigned FrameIndex, - MachineInstr *MI) { - const MachineOperand& op = MI->getOperand(0); - return addFrameReference(BuildMI(Opcode, 6, op.getReg(), op.getUseType()), - FrameIndex).addImm(MI->getOperand(2).getImmedValue()); -} - //===----------------------------------------------------------------------===// // Efficient Lookup Table Support @@ -204,8 +197,6 @@ namespace { struct TableEntry { unsigned from; // Original opcode. unsigned to; // New opcode. - unsigned make; // Form of make required to produce the - // new instruction. // less operators used by STL search. bool operator<(const TableEntry &TE) const { return from < TE.from; } @@ -257,451 +248,451 @@ static const TableEntry *TableLookup(const TableEntry *Table, unsigned N, #endif -MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr* MI, +MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned i, int FrameIndex) const { // Check switch flag if (NoFusing) return NULL; - // Selection of instruction makes - enum { - makeM0Inst, - makeMIInst, - makeMInst, - makeMRIInst, - makeMRInst, - makeRMIInst, - makeRMInst - }; - // Table (and size) to search const TableEntry *OpcodeTablePtr = NULL; unsigned OpcodeTableSize = 0; - - if (i == 0) { // If operand 0 + bool isTwoAddrFold = false; + + // Folding a memory location into the two-address part of a two-address + // instruction is different than folding it other places. It requires + // replacing the *two* registers with the memory location. + if (MI->getNumOperands() >= 2 && MI->getOperand(0).isReg() && + MI->getOperand(1).isReg() && i < 2 && + MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && + TII.isTwoAddrInstr(MI->getOpcode())) { + static const TableEntry OpcodeTable[] = { + { X86::ADC32ri, X86::ADC32mi }, + { X86::ADC32ri8, X86::ADC32mi8 }, + { X86::ADC32rr, X86::ADC32mr }, + { X86::ADD16ri, X86::ADD16mi }, + { X86::ADD16ri8, X86::ADD16mi8 }, + { X86::ADD16rr, X86::ADD16mr }, + { X86::ADD32ri, X86::ADD32mi }, + { X86::ADD32ri8, X86::ADD32mi8 }, + { X86::ADD32rr, X86::ADD32mr }, + { X86::ADD8ri, X86::ADD8mi }, + { X86::ADD8rr, X86::ADD8mr }, + { X86::AND16ri, X86::AND16mi }, + { X86::AND16ri8, X86::AND16mi8 }, + { X86::AND16rr, X86::AND16mr }, + { X86::AND32ri, X86::AND32mi }, + { X86::AND32ri8, X86::AND32mi8 }, + { X86::AND32rr, X86::AND32mr }, + { X86::AND8ri, X86::AND8mi }, + { X86::AND8rr, X86::AND8mr }, + { X86::DEC16r, X86::DEC16m }, + { X86::DEC32r, X86::DEC32m }, + { X86::DEC8r, X86::DEC8m }, + { X86::INC16r, X86::INC16m }, + { X86::INC32r, X86::INC32m }, + { X86::INC8r, X86::INC8m }, + { X86::NEG16r, X86::NEG16m }, + { X86::NEG32r, X86::NEG32m }, + { X86::NEG8r, X86::NEG8m }, + { X86::NOT16r, X86::NOT16m }, + { X86::NOT32r, X86::NOT32m }, + { X86::NOT8r, X86::NOT8m }, + { X86::OR16ri, X86::OR16mi }, + { X86::OR16ri8, X86::OR16mi8 }, + { X86::OR16rr, X86::OR16mr }, + { X86::OR32ri, X86::OR32mi }, + { X86::OR32ri8, X86::OR32mi8 }, + { X86::OR32rr, X86::OR32mr }, + { X86::OR8ri, X86::OR8mi }, + { X86::OR8rr, X86::OR8mr }, + { X86::ROL16r1, X86::ROL16m1 }, + { X86::ROL16rCL, X86::ROL16mCL }, + { X86::ROL16ri, X86::ROL16mi }, + { X86::ROL32r1, X86::ROL32m1 }, + { X86::ROL32rCL, X86::ROL32mCL }, + { X86::ROL32ri, X86::ROL32mi }, + { X86::ROL8r1, X86::ROL8m1 }, + { X86::ROL8rCL, X86::ROL8mCL }, + { X86::ROL8ri, X86::ROL8mi }, + { X86::ROR16r1, X86::ROR16m1 }, + { X86::ROR16rCL, X86::ROR16mCL }, + { X86::ROR16ri, X86::ROR16mi }, + { X86::ROR32r1, X86::ROR32m1 }, + { X86::ROR32rCL, X86::ROR32mCL }, + { X86::ROR32ri, X86::ROR32mi }, + { X86::ROR8r1, X86::ROR8m1 }, + { X86::ROR8rCL, X86::ROR8mCL }, + { X86::ROR8ri, X86::ROR8mi }, + { X86::SAR16r1, X86::SAR16m1 }, + { X86::SAR16rCL, X86::SAR16mCL }, + { X86::SAR16ri, X86::SAR16mi }, + { X86::SAR32r1, X86::SAR32m1 }, + { X86::SAR32rCL, X86::SAR32mCL }, + { X86::SAR32ri, X86::SAR32mi }, + { X86::SAR8r1, X86::SAR8m1 }, + { X86::SAR8rCL, X86::SAR8mCL }, + { X86::SAR8ri, X86::SAR8mi }, + { X86::SBB32ri, X86::SBB32mi }, + { X86::SBB32ri8, X86::SBB32mi8 }, + { X86::SBB32rr, X86::SBB32mr }, + { X86::SHL16r1, X86::SHL16m1 }, + { X86::SHL16rCL, X86::SHL16mCL }, + { X86::SHL16ri, X86::SHL16mi }, + { X86::SHL32r1, X86::SHL32m1 }, + { X86::SHL32rCL, X86::SHL32mCL }, + { X86::SHL32ri, X86::SHL32mi }, + { X86::SHL8r1, X86::SHL8m1 }, + { X86::SHL8rCL, X86::SHL8mCL }, + { X86::SHL8ri, X86::SHL8mi }, + { X86::SHLD16rrCL, X86::SHLD16mrCL }, + { X86::SHLD16rri8, X86::SHLD16mri8 }, + { X86::SHLD32rrCL, X86::SHLD32mrCL }, + { X86::SHLD32rri8, X86::SHLD32mri8 }, + { X86::SHR16r1, X86::SHR16m1 }, + { X86::SHR16rCL, X86::SHR16mCL }, + { X86::SHR16ri, X86::SHR16mi }, + { X86::SHR32r1, X86::SHR32m1 }, + { X86::SHR32rCL, X86::SHR32mCL }, + { X86::SHR32ri, X86::SHR32mi }, + { X86::SHR8r1, X86::SHR8m1 }, + { X86::SHR8rCL, X86::SHR8mCL }, + { X86::SHR8ri, X86::SHR8mi }, + { X86::SHRD16rrCL, X86::SHRD16mrCL }, + { X86::SHRD16rri8, X86::SHRD16mri8 }, + { X86::SHRD32rrCL, X86::SHRD32mrCL }, + { X86::SHRD32rri8, X86::SHRD32mri8 }, + { X86::SUB16ri, X86::SUB16mi }, + { X86::SUB16ri8, X86::SUB16mi8 }, + { X86::SUB16rr, X86::SUB16mr }, + { X86::SUB32ri, X86::SUB32mi }, + { X86::SUB32ri8, X86::SUB32mi8 }, + { X86::SUB32rr, X86::SUB32mr }, + { X86::SUB8ri, X86::SUB8mi }, + { X86::SUB8rr, X86::SUB8mr }, + { X86::XOR16ri, X86::XOR16mi }, + { X86::XOR16ri8, X86::XOR16mi8 }, + { X86::XOR16rr, X86::XOR16mr }, + { X86::XOR32ri, X86::XOR32mi }, + { X86::XOR32ri8, X86::XOR32mi8 }, + { X86::XOR32rr, X86::XOR32mr }, + { X86::XOR8ri, X86::XOR8mi }, + { X86::XOR8rr, X86::XOR8mr } + }; + ASSERT_SORTED(OpcodeTable); + OpcodeTablePtr = OpcodeTable; + OpcodeTableSize = ARRAY_SIZE(OpcodeTable); + isTwoAddrFold = true; + } else if (i == 0) { // If operand 0 + if (MI->getOpcode() == X86::MOV16r0) + return MakeM0Inst(X86::MOV16mi, FrameIndex, MI); + else if (MI->getOpcode() == X86::MOV32r0) + return MakeM0Inst(X86::MOV32mi, FrameIndex, MI); + else if (MI->getOpcode() == X86::MOV8r0) + return MakeM0Inst(X86::MOV8mi, FrameIndex, MI); + static const TableEntry OpcodeTable[] = { - { X86::ADC32ri, X86::ADC32mi, makeMIInst }, - { X86::ADC32ri8, X86::ADC32mi8, makeMIInst }, - { X86::ADC32rr, X86::ADC32mr, makeMRInst }, - { X86::ADD16ri, X86::ADD16mi, makeMIInst }, - { X86::ADD16ri8, X86::ADD16mi8, makeMIInst }, - { X86::ADD16rr, X86::ADD16mr, makeMRInst }, - { X86::ADD32ri, X86::ADD32mi, makeMIInst }, - { X86::ADD32ri8, X86::ADD32mi8, makeMIInst }, - { X86::ADD32rr, X86::ADD32mr, makeMRInst }, - { X86::ADD8ri, X86::ADD8mi, makeMIInst }, - { X86::ADD8rr, X86::ADD8mr, makeMRInst }, - { X86::AND16ri, X86::AND16mi, makeMIInst }, - { X86::AND16ri8, X86::AND16mi8, makeMIInst }, - { X86::AND16rr, X86::AND16mr, makeMRInst }, - { X86::AND32ri, X86::AND32mi, makeMIInst }, - { X86::AND32ri8, X86::AND32mi8, makeMIInst }, - { X86::AND32rr, X86::AND32mr, makeMRInst }, - { X86::AND8ri, X86::AND8mi, makeMIInst }, - { X86::AND8rr, X86::AND8mr, makeMRInst }, - { X86::DEC16r, X86::DEC16m, makeMInst }, - { X86::DEC32r, X86::DEC32m, makeMInst }, - { X86::DEC8r, X86::DEC8m, makeMInst }, - { X86::DIV16r, X86::DIV16m, makeMInst }, - { X86::DIV32r, X86::DIV32m, makeMInst }, - { X86::DIV8r, X86::DIV8m, makeMInst }, - { X86::FsMOVAPDrr, X86::MOVSDmr, makeMRInst }, - { X86::FsMOVAPSrr, X86::MOVSSmr, makeMRInst }, - { X86::IDIV16r, X86::IDIV16m, makeMInst }, - { X86::IDIV32r, X86::IDIV32m, makeMInst }, - { X86::IDIV8r, X86::IDIV8m, makeMInst }, - { X86::IMUL16r, X86::IMUL16m, makeMInst }, - { X86::IMUL32r, X86::IMUL32m, makeMInst }, - { X86::IMUL8r, X86::IMUL8m, makeMInst }, - { X86::INC16r, X86::INC16m, makeMInst }, - { X86::INC32r, X86::INC32m, makeMInst }, - { X86::INC8r, X86::INC8m, makeMInst }, - { X86::MOV16r0, X86::MOV16mi, makeM0Inst }, - { X86::MOV16ri, X86::MOV16mi, makeMIInst }, - { X86::MOV16rr, X86::MOV16mr, makeMRInst }, - { X86::MOV32r0, X86::MOV32mi, makeM0Inst }, - { X86::MOV32ri, X86::MOV32mi, makeMIInst }, - { X86::MOV32rr, X86::MOV32mr, makeMRInst }, - { X86::MOV8r0, X86::MOV8mi, makeM0Inst }, - { X86::MOV8ri, X86::MOV8mi, makeMIInst }, - { X86::MOV8rr, X86::MOV8mr, makeMRInst }, - { X86::MOVAPDrr, X86::MOVAPDmr, makeMRInst }, - { X86::MOVAPSrr, X86::MOVAPSmr, makeMRInst }, - { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, makeMRInst }, - { X86::MOVPS2SSrr, X86::MOVPS2SSmr, makeMRInst }, - { X86::MOVSDrr, X86::MOVSDmr, makeMRInst }, - { X86::MOVSSrr, X86::MOVSSmr, makeMRInst }, - { X86::MOVUPDrr, X86::MOVUPDmr, makeMRInst }, - { X86::MOVUPSrr, X86::MOVUPSmr, makeMRInst }, - { X86::MUL16r, X86::MUL16m, makeMInst }, - { X86::MUL32r, X86::MUL32m, makeMInst }, - { X86::MUL8r, X86::MUL8m, makeMInst }, - { X86::NEG16r, X86::NEG16m, makeMInst }, - { X86::NEG32r, X86::NEG32m, makeMInst }, - { X86::NEG8r, X86::NEG8m, makeMInst }, - { X86::NOT16r, X86::NOT16m, makeMInst }, - { X86::NOT32r, X86::NOT32m, makeMInst }, - { X86::NOT8r, X86::NOT8m, makeMInst }, - { X86::OR16ri, X86::OR16mi, makeMIInst }, - { X86::OR16ri8, X86::OR16mi8, makeMIInst }, - { X86::OR16rr, X86::OR16mr, makeMRInst }, - { X86::OR32ri, X86::OR32mi, makeMIInst }, - { X86::OR32ri8, X86::OR32mi8, makeMIInst }, - { X86::OR32rr, X86::OR32mr, makeMRInst }, - { X86::OR8ri, X86::OR8mi, makeMIInst }, - { X86::OR8rr, X86::OR8mr, makeMRInst }, - { X86::ROL16r1, X86::ROL16m1, makeMInst }, - { X86::ROL16rCL, X86::ROL16mCL, makeMInst }, - { X86::ROL16ri, X86::ROL16mi, makeMIInst }, - { X86::ROL32r1, X86::ROL32m1, makeMInst }, - { X86::ROL32rCL, X86::ROL32mCL, makeMInst }, - { X86::ROL32ri, X86::ROL32mi, makeMIInst }, - { X86::ROL8r1, X86::ROL8m1, makeMInst }, - { X86::ROL8rCL, X86::ROL8mCL, makeMInst }, - { X86::ROL8ri, X86::ROL8mi, makeMIInst }, - { X86::ROR16r1, X86::ROR16m1, makeMInst }, - { X86::ROR16rCL, X86::ROR16mCL, makeMInst }, - { X86::ROR16ri, X86::ROR16mi, makeMIInst }, - { X86::ROR32r1, X86::ROR32m1, makeMInst }, - { X86::ROR32rCL, X86::ROR32mCL, makeMInst }, - { X86::ROR32ri, X86::ROR32mi, makeMIInst }, - { X86::ROR8r1, X86::ROR8m1, makeMInst }, - { X86::ROR8rCL, X86::ROR8mCL, makeMInst }, - { X86::ROR8ri, X86::ROR8mi, makeMIInst }, - { X86::SAR16r1, X86::SAR16m1, makeMInst }, - { X86::SAR16rCL, X86::SAR16mCL, makeMInst }, - { X86::SAR16ri, X86::SAR16mi, makeMIInst }, - { X86::SAR32r1, X86::SAR32m1, makeMInst }, - { X86::SAR32rCL, X86::SAR32mCL, makeMInst }, - { X86::SAR32ri, X86::SAR32mi, makeMIInst }, - { X86::SAR8r1, X86::SAR8m1, makeMInst }, - { X86::SAR8rCL, X86::SAR8mCL, makeMInst }, - { X86::SAR8ri, X86::SAR8mi, makeMIInst }, - { X86::SBB32ri, X86::SBB32mi, makeMIInst }, - { X86::SBB32ri8, X86::SBB32mi8, makeMIInst }, - { X86::SBB32rr, X86::SBB32mr, makeMRInst }, - { X86::SETAEr, X86::SETAEm, makeMInst }, - { X86::SETAr, X86::SETAm, makeMInst }, - { X86::SETBEr, X86::SETBEm, makeMInst }, - { X86::SETBr, X86::SETBm, makeMInst }, - { X86::SETEr, X86::SETEm, makeMInst }, - { X86::SETGEr, X86::SETGEm, makeMInst }, - { X86::SETGr, X86::SETGm, makeMInst }, - { X86::SETLEr, X86::SETLEm, makeMInst }, - { X86::SETLr, X86::SETLm, makeMInst }, - { X86::SETNEr, X86::SETNEm, makeMInst }, - { X86::SETNPr, X86::SETNPm, makeMInst }, - { X86::SETNSr, X86::SETNSm, makeMInst }, - { X86::SETPr, X86::SETPm, makeMInst }, - { X86::SETSr, X86::SETSm, makeMInst }, - { X86::SHL16r1, X86::SHL16m1, makeMInst }, - { X86::SHL16rCL, X86::SHL16mCL, makeMInst }, - { X86::SHL16ri, X86::SHL16mi, makeMIInst }, - { X86::SHL32r1, X86::SHL32m1, makeMInst }, - { X86::SHL32rCL, X86::SHL32mCL, makeMInst }, - { X86::SHL32ri, X86::SHL32mi, makeMIInst }, - { X86::SHL8r1, X86::SHL8m1, makeMInst }, - { X86::SHL8rCL, X86::SHL8mCL, makeMInst }, - { X86::SHL8ri, X86::SHL8mi, makeMIInst }, - { X86::SHLD16rrCL, X86::SHLD16mrCL, makeMRInst }, - { X86::SHLD16rri8, X86::SHLD16mri8, makeMRIInst }, - { X86::SHLD32rrCL, X86::SHLD32mrCL, makeMRInst }, - { X86::SHLD32rri8, X86::SHLD32mri8, makeMRIInst }, |