aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lib/Target/SparcV9/Makefile14
-rw-r--r--lib/Target/SparcV9/SparcV9InstrSelection.cpp2016
-rw-r--r--lib/Target/SparcV9/SparcV9RegInfo.cpp301
-rw-r--r--lib/Target/SparcV9/SparcV9TargetMachine.cpp123
4 files changed, 2454 insertions, 0 deletions
diff --git a/lib/Target/SparcV9/Makefile b/lib/Target/SparcV9/Makefile
new file mode 100644
index 0000000000..2daca1f772
--- /dev/null
+++ b/lib/Target/SparcV9/Makefile
@@ -0,0 +1,14 @@
+LEVEL = ../../../..
+
+DIRS =
+
+LIBRARYNAME = sparc
+
+## List source files in link order
+Source = \
+ Sparc.o \
+ Sparc.burm.o \
+ SparcInstrSelection.o
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Target/SparcV9/SparcV9InstrSelection.cpp b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
new file mode 100644
index 0000000000..c73264c221
--- /dev/null
+++ b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
@@ -0,0 +1,2016 @@
+//***************************************************************************
+// File:
+// SparcInstrSelection.cpp
+//
+// Purpose:
+//
+// History:
+// 7/02/01 - Vikram Adve - Created
+//**************************************************************************/
+
+#include "SparcInternals.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/InstrForest.h"
+#include "llvm/CodeGen/InstrSelection.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iMemory.h"
+#include "llvm/iOther.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Method.h"
+#include "llvm/ConstPoolVals.h"
+
+
+//******************** Internal Data Declarations ************************/
+
+// to be used later
+struct BranchPattern {
+ bool flipCondition; // should the sense of the test be reversed
+ BasicBlock* targetBB; // which basic block to branch to
+ MachineInstr* extraBranch; // if neither branch is fall-through, then this
+ // BA must be inserted after the cond'l one
+};
+
+//************************* Forward Declarations ***************************/
+
+
+static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode,
+ bool& isFPBranch);
+
+static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode,
+ const BinaryOperator* setCCInst);
+
+static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode,
+ const BinaryOperator* setCCInst);
+
+static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*);
+
+static MachineOpCode ChooseMovpccAfterSub (const InstructionNode* instrNode,
+ bool& mustClearReg,
+ int& valueToMove);
+
+static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*,
+ const Type* opType);
+
+static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode,
+ const Type* opType);
+
+static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode,
+ bool checkCasts);
+
+static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseLoadInstruction (const Type* resultType);
+
+static MachineOpCode ChooseStoreInstruction (const Type* valueType);
+
+static void SetOperandsForMemInstr(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ const TargetMachine& target);
+
+static void SetMemOperands_Internal (MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& target);
+
+static unsigned FixConstantOperands(const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr,
+ TargetMachine& target);
+
+static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr,
+ Value* val,
+ TmpInstruction*& tmpReg,
+ MachineInstr*& getMinstr2);
+
+static void ForwardOperand (InstructionNode* treeNode,
+ InstructionNode* parent,
+ int operandNum);
+
+
+//************************ Internal Functions ******************************/
+
+// Convenience function to get the value of an integer constant, for an
+// appropriate integer or non-integer type that can be held in an integer.
+// The type of the argument must be the following:
+// GetConstantValueAsSignedInt: any of the above, but the value
+// must fit into a int64_t.
+//
+// isValidConstant is set to true if a valid constant was found.
+//
+
+static int64_t GetConstantValueAsSignedInt(const Value *V,
+ bool &isValidConstant) {
+ if (!V->isConstant()) { isValidConstant = false; return 0; }
+ isValidConstant = true;
+
+ if (V->getType() == Type::BoolTy)
+ return ((ConstPoolBool*)V)->getValue();
+ if (V->getType()->isIntegral()) {
+ if (V->getType()->isSigned())
+ return ((ConstPoolSInt*)V)->getValue();
+
+ assert(V->getType()->isUnsigned());
+ uint64_t Val = ((ConstPoolUInt*)V)->getValue();
+
+ if (Val < INT64_MAX) // then safe to cast to signed
+ return (int64_t)Val;
+ }
+
+ isValidConstant = false;
+ return 0;
+}
+
+
+
+//------------------------------------------------------------------------
+// External Function: ThisIsAChainRule
+//
+// Purpose:
+// Check if a given BURG rule is a chain rule.
+//------------------------------------------------------------------------
+
+extern bool
+ThisIsAChainRule(int eruleno)
+{
+ switch(eruleno)
+ {
+ case 111: // stmt: reg
+ case 112: // stmt: boolconst
+ case 113: // stmt: bool
+ case 121:
+ case 122:
+ case 123:
+ case 124:
+ case 125:
+ case 126:
+ case 127:
+ case 128:
+ case 129:
+ case 130:
+ case 131:
+ case 132:
+ case 153:
+ case 155: return true; break;
+
+ default: return false; break;
+ }
+}
+
+
+static inline MachineOpCode
+ChooseBprInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode;
+
+ Instruction* setCCInstr =
+ ((InstructionNode*) instrNode->leftChild())->getInstruction();
+
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BRZ; break;
+ case Instruction::SetNE: opCode = BRNZ; break;
+ case Instruction::SetLE: opCode = BRLEZ; break;
+ case Instruction::SetGE: opCode = BRGEZ; break;
+ case Instruction::SetLT: opCode = BRLZ; break;
+ case Instruction::SetGT: opCode = BRGZ; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ opCode = INVALID_OPCODE;
+ break;
+ }
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseBccInstruction(const InstructionNode* instrNode,
+ bool& isFPBranch)
+{
+ InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+ BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
+ const Type* setCCType = setCCInstr->getOperand(0)->getType();
+
+ isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
+
+ if (isFPBranch)
+ return ChooseBFpccInstruction(instrNode, setCCInstr);
+ else
+ return ChooseBpccInstruction(instrNode, setCCInstr);
+}
+
+
+static inline MachineOpCode
+ChooseBpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+
+ if (isSigned)
+ {
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLE; break;
+ case Instruction::SetGE: opCode = BGE; break;
+ case Instruction::SetLT: opCode = BL; break;
+ case Instruction::SetGT: opCode = BG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+ }
+ else
+ {
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLEU; break;
+ case Instruction::SetGE: opCode = BCC; break;
+ case Instruction::SetLT: opCode = BCS; break;
+ case Instruction::SetGT: opCode = BGU; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+ }
+
+ return opCode;
+}
+
+static inline MachineOpCode
+ChooseBFpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = FBE; break;
+ case Instruction::SetNE: opCode = FBNE; break;
+ case Instruction::SetLE: opCode = FBLE; break;
+ case Instruction::SetGE: opCode = FBGE; break;
+ case Instruction::SetLT: opCode = FBL; break;
+ case Instruction::SetGT: opCode = FBG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseMovFpccInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch(instrNode->getInstruction()->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = MOVFE; break;
+ case Instruction::SetNE: opCode = MOVFNE; break;
+ case Instruction::SetLE: opCode = MOVFLE; break;
+ case Instruction::SetGE: opCode = MOVFGE; break;
+ case Instruction::SetLT: opCode = MOVFL; break;
+ case Instruction::SetGT: opCode = MOVFG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+}
+
+
+// Assumes that SUBcc v1, v2 -> v3 has been executed.
+// In most cases, we want to clear v3 and then follow it by instruction
+// MOVcc 1 -> v3.
+// Set mustClearReg=false if v3 need not be cleared before conditional move.
+// Set valueToMove=0 if we want to conditionally move 0 instead of 1
+// (i.e., we want to test inverse of a condition)
+//
+//
+static MachineOpCode
+ChooseMovpccAfterSub(const InstructionNode* instrNode,
+ bool& mustClearReg,
+ int& valueToMove)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+ mustClearReg = true;
+ valueToMove = 1;
+
+ switch(instrNode->getInstruction()->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = MOVNE; mustClearReg = false;
+ valueToMove = 0; break;
+ case Instruction::SetLE: opCode = MOVLE; break;
+ case Instruction::SetGE: opCode = MOVGE; break;
+ case Instruction::SetLT: opCode = MOVL; break;
+ case Instruction::SetGT: opCode = MOVG; break;
+
+ case Instruction::SetNE: assert(0 && "No move required!");
+
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+ const Type* opType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch(instrNode->getOpLabel())
+ {
+ case ToFloatTy:
+ if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+ opCode = FITOS;
+ else if (opType == Type::LongTy)
+ opCode = FXTOS;
+ else if (opType == Type::DoubleTy)
+ opCode = FDTOS;
+ else if (opType == Type::FloatTy)
+ ;
+ else
+ assert(0 && "Cannot convert this type to FLOAT on SPARC");
+ break;
+
+ case ToDoubleTy:
+ if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+ opCode = FITOD;
+ else if (opType == Type::LongTy)
+ opCode = FXTOD;
+ else if (opType == Type::FloatTy)
+ opCode = FSTOD;
+ else if (opType == Type::DoubleTy)
+ ;
+ else
+ assert(0 && "Cannot convert this type to DOUBLE on SPARC");
+ break;
+
+ default:
+ break;
+ }
+
+ return opCode;
+}
+
+static inline MachineOpCode
+ChooseConvertToIntInstr(const InstructionNode* instrNode,
+ const Type* opType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;;
+
+ int instrType = (int) instrNode->getOpLabel();
+
+ if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
+ {
+ switch (opType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSTOI; break;
+ case Type::DoubleTyID: opCode = FDTOI; break;
+ default:
+ assert(0 && "Non-numeric non-bool type cannot be converted to Int");
+ break;
+ }
+ }
+ else if (instrType == ToLongTy)
+ {
+ switch (opType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSTOX; break;
+ case Type::DoubleTyID: opCode = FDTOX; break;
+ default:
+ assert(0 && "Non-numeric non-bool type cannot be converted to Long");
+ break;
+ }
+ }
+ else
+ assert(0 && "Should not get here, Mo!");
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseAddInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral() ||
+ resultType->isPointerType() ||
+ resultType->isMethodType() ||
+ resultType->isLabelType())
+ {
+ opCode = ADD;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FADDS; break;
+ case Type::DoubleTyID: opCode = FADDD; break;
+ default: assert(0 && "Invalid type for ADD instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateMovFloatInstruction(const InstructionNode* instrNode,
+ const Type* resultType)
+{
+ MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
+ ? FMOVS : FMOVD);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
+ return minstr;
+}
+
+static inline MachineInstr*
+CreateAddConstInstruction(const InstructionNode* instrNode)
+{
+ MachineInstr* minstr = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->isConstant());
+
+ // Cases worth optimizing are:
+ // (1) Add with 0 for float or double: use an FMOV of appropriate type,
+ // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType == Type::FloatTy || resultType == Type::DoubleTy) {
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode, resultType);
+ }
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseSubInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral() ||
+ resultType->isPointerType())
+ {
+ opCode = SUB;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSUBS; break;
+ case Type::DoubleTyID: opCode = FSUBD; break;
+ default: assert(0 && "Invalid type for SUB instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateSubConstInstruction(const InstructionNode* instrNode)
+{
+ MachineInstr* minstr = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->isConstant());
+
+ // Cases worth optimizing are:
+ // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
+ // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode, resultType);
+ }
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseFcmpInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID()) {
+ case Type::FloatTyID: opCode = FCMPS; break;
+ case Type::DoubleTyID: opCode = FCMPD; break;
+ default: assert(0 && "Invalid type for FCMP instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+// Assumes that leftArg and rightArg are both cast instructions.
+//
+static inline bool
+BothFloatToDouble(const InstructionNode* instrNode)
+{
+ InstrTreeNode* leftArg = instrNode->leftChild();
+ InstrTreeNode* rightArg = instrNode->rightChild();
+ InstrTreeNode* leftArgArg = leftArg->leftChild();
+ InstrTreeNode* rightArgArg = rightArg->leftChild();
+ assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
+
+ // Check if both arguments are floats cast to double
+ return (leftArg->getValue()->getType() == Type::DoubleTy &&
+ leftArgArg->getValue()->getType() == Type::FloatTy &&
+ rightArgArg->getValue()->getType() == Type::FloatTy);
+}
+
+
+static inline MachineOpCode
+ChooseMulInstruction(const InstructionNode* instrNode,
+ bool checkCasts)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ if (checkCasts && BothFloatToDouble(instrNode))
+ {
+ return opCode = FSMULD;
+ }
+ // else fall through and use the regular multiply instructions
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ opCode = MULX;
+ }
+ else
+ {
+ switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FMULS; break;
+ case Type::DoubleTyID: opCode = FMULD; break;
+ default: assert(0 && "Invalid type for MUL instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateIntNegInstruction(Value* vreg)
+{
+ MachineInstr* minstr = new MachineInstr(SUB);
+ minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
+ return minstr;
+}
+
+
+static inline MachineInstr*
+CreateMulConstInstruction(const InstructionNode* instrNode,
+ MachineInstr*& getMinstr2)
+{
+ MachineInstr* minstr = NULL;
+ getMinstr2 = NULL;
+ bool needNeg = false;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->isConstant());
+
+ // Cases worth optimizing are:
+ // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
+ // (2) Multiply by 2^x for integer types: replace with Shift
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ unsigned pow;
+ bool isValidConst;
+ int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
+ if (isValidConst)
+ {
+ bool needNeg = false;
+ if (C < 0)
+ {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 0 || C == 1)
+ {
+ minstr = new MachineInstr(ADD);
+
+ if (C == 0)
+ minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
+ else
+ minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ }
+ else if (IsPowerOf2(C, pow))
+ {
+ minstr = new MachineInstr((resultType == Type::LongTy)
+ ? SLLX : SLL);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ pow);
+ }
+
+ if (minstr && needNeg)
+ { // insert <reg = SUB 0, reg> after the instr to flip the sign
+ getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
+ }
+ }
+ }
+ else
+ {
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ bool isValidConst;
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+
+ if (isValidConst)
+ {
+ if (dval == 0)
+ {
+ minstr = new MachineInstr((resultType == Type::FloatTy)
+ ? FITOS : FITOD);
+ minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+ }
+ else if (fabs(dval) == 1)
+ {
+ bool needNeg = (dval < 0);
+
+ MachineOpCode opCode = needNeg
+ ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+ : (resultType == Type::FloatTy? FMOVS : FMOVD);
+
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0,
+ MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ }
+ }
+ }
+ }
+
+ if (minstr != NULL)
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseDivInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ opCode = resultType->isSigned()? SDIVX : UDIVX;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FDIVS; break;
+ case Type::DoubleTyID: opCode = FDIVD; break;
+ default: assert(0 && "Invalid type for DIV instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateDivConstInstruction(const InstructionNode* instrNode,
+ MachineInstr*& getMinstr2)
+{
+ MachineInstr* minstr = NULL;
+ getMinstr2 = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->isConstant());
+
+ // Cases worth optimizing are:
+ // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
+ // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ unsigned pow;
+ bool isValidConst;
+ int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
+ if (isValidConst)
+ {
+ bool needNeg = false;
+ if (C < 0)
+ {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 1)
+ {
+ minstr = new MachineInstr(ADD);
+ minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ }
+ else if (IsPowerOf2(C, pow))
+ {
+ MachineOpCode opCode= ((resultType->isSigned())
+ ? (resultType==Type::LongTy)? SRAX : SRA
+ : (resultType==Type::LongTy)? SRLX : SRL);
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ pow);
+ }
+
+ if (minstr && needNeg)
+ { // insert <reg = SUB 0, reg> after the instr to flip the sign
+ getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
+ }
+ }
+ }
+ else
+ {
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ bool isValidConst;
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+
+ if (isValidConst && fabs(dval) == 1)
+ {
+ bool needNeg = (dval < 0);
+
+ MachineOpCode opCode = needNeg
+ ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+ : (resultType == Type::FloatTy? FMOVS : FMOVD);
+
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ }
+ }
+ }
+
+ if (minstr != NULL)
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseLoadInstruction(const Type* resultType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch (resultType->getPrimitiveID())
+ {
+ case Type::BoolTyID: opCode = LDUB; break;
+ case Type::UByteTyID: opCode = LDUB; break;
+ case Type::SByteTyID: opCode = LDSB; break;
+ case Type::UShortTyID: opCode = LDUH; break;
+ case Type::ShortTyID: opCode = LDSH; break;
+ case Type::UIntTyID: opCode = LDUW; break;
+ case Type::IntTyID: opCode = LDSW; break;
+ case Type::ULongTyID:
+ case Type::LongTyID: opCode = LDX; break;
+ case Type::FloatTyID: opCode = LD; break;
+ case Type::DoubleTyID: opCode = LDD; break;
+ default: assert(0 && "Invalid type for Load instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseStoreInstruction(const Type* valueType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch (valueType->getPrimitiveID())
+ {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: opCode = STB; break;
+ case Type::UShortTyID:
+ case Type::ShortTyID: opCode = STH; break;
+ case Type::UIntTyID:
+ case Type::IntTyID: opCode = STW; break;
+ case Type::ULongTyID:
+ case Type::LongTyID: opCode = STX; break;
+ case Type::FloatTyID: opCode = ST; break;
+ case Type::DoubleTyID: opCode = STD; break;
+ default: assert(0 && "Invalid type for Store instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+//------------------------------------------------------------------------
+// Function SetOperandsForMemInstr
+//
+// Choose addressing mode for the given load or store instruction.
+// Use [reg+reg] if it is an indexed reference, and the index offset is
+// not a constant or if it cannot fit in the offset field.
+// Use [reg+offset] in all other cases.
+//
+// This assumes that all array refs are "lowered" to one of these forms:
+// %x = load (subarray*) ptr, constant ; single constant offset
+// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
+// Generally, this should happen via strength reduction + LICM.
+// Also, strength reduction should take care of using the same register for
+// the loop index variable and an array index, when that is profitable.
+//------------------------------------------------------------------------
+
+static void
+SetOperandsForMemInstr(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ const TargetMachine& target)
+{
+ MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+
+ // Variables to hold the index vector, ptr value, and offset value.
+ // The major work here is to extract these for all 3 instruction types
+ // and then call the common function SetMemOperands_Internal().
+ //
+ const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
+ vector<ConstPoolVal*>* newIdxVec = NULL;
+ Value* ptrVal;
+ Value* arrayOffsetVal = NULL;
+
+ // Test if a GetElemPtr instruction is being folded into this mem instrn.
+ // If so, it will be in the left child for Load and GetElemPtr,
+ // and in the right child for Store instructions.
+ //
+ InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
+ ? vmInstrNode->rightChild()
+ : vmInstrNode->leftChild());
+
+ if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+ ptrChild->getOpLabel() == GetElemPtrIdx)
+ {
+ // There is a GetElemPtr instruction and there may be a chain of
+ // more than one. Use the pointer value of the last one in the chain.
+ // Fold the index vectors from the entire chain and from the mem
+ // instruction into one single index vector.
+ // Finally, we never fold for an array instruction so make that NULL.
+
+ newIdxVec = new vector<ConstPoolVal*>;
+ ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
+
+ newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
+ idxVec = newIdxVec;
+
+ assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
+ && "GetElemPtr cannot be folded into array refs in selection");
+ }
+ else
+ {
+ // There is no GetElemPtr instruction.
+ // Use the pointer value and the index vector from the Mem instruction.
+ // If it is an array reference, get the array offset value.
+ //
+ ptrVal = memInst->getPtrOperand();
+
+ const Type* opType =
+ ((const PointerType*) ptrVal->getType())->getValueType();
+ if (opType->isArrayType())
+ {
+ assert((memInst->getNumOperands()
+ == (unsigned) 1 + memInst->getFirstOffsetIdx())
+ && "Array refs must be lowered before Instruction Selection");
+
+ arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
+ }
+ }
+
+ SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
+ *idxVec, target);
+
+ if (newIdxVec != NULL)
+ delete newIdxVec;
+}
+
+
+static void
+SetMemOperands_Internal(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& target)
+{
+ MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+
+ // Initialize so we default to storing the offset in a register.
+ int64_t smallConstOffset;
+ Value* valueForRegOffset = NULL;
+ MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
+
+ // Check if there is an index vector and if so, if it translates to
+ // a small enough constant to fit in the immediate-offset field.
+ //
+ if (idxVec.size() > 0)
+ {
+ bool isConstantOffset = false;
+ unsigned offset;
+
+ const PointerType* ptrType = (PointerType*) ptrVal->getType();
+
+ if (ptrType->getValueType()->isStructType())
+ {
+ // the offset is always constant for structs
+ isConstantOffset = true;
+
+ // Compute the offset value using the index vector
+ offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
+ }
+ else
+ {
+ // It must be an array ref. Check if the offset is a constant,
+ // and that the indexing has been lowered to a single offset.
+ //
+ assert(ptrType->getValueType()->isArrayType());
+ assert(arrayOffsetVal != NULL
+ && "Expect to be given Value* for array offsets");
+
+ if (ConstPoolVal *CPV = arrayOffsetVal->castConstant())
+ {
+ isConstantOffset = true; // always constant for structs
+ assert(arrayOffsetVal->getType()->isIntegral());
+ offset = (CPV->getType()->isSigned()
+ ? ((ConstPoolSInt*)CPV)->getValue()
+ : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
+ }
+ else
+ {
+ valueForRegOffset = arrayOffsetVal;
+ }
+ }
+
+ if (isConstantOffset)
+ {
+ // create a virtual register for the constant
+ valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
+ }
+ }
+ else
+ {
+ offsetOpType = MachineOperand::MO_SignExtendedImmed;
+ smallConstOffset = 0;
+ }
+
+ // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
+ // It is the left child in the instruction tree in all cases.
+ Value* leftVal = vmInstrNode->leftChild()->getValue();
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
+
+ // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
+ // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
+ //
+ unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
+ if (offsetOpType == MachineOperand::MO_VirtualRegister)
+ {
+ assert(valueForRegOffset != NULL);
+ minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
+ }
+ else
+ minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
+
+ if (memInst->getOpcode() == Instruction::Store)
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
+ else
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ vmInstrNode->getValue());
+}
+
+
+// Special handling for constant operands:
+// -- if the constant is 0, use the hardwired 0 register, if any;
+// -- if the constant is of float or double type but has an integer value,
+// use int-to-float conversion instruction instead of generating a load;
+// -- if the constant fits in the IMMEDIATE field, use that field;
+// -- else insert instructions to put the constant into a register, either
+// directly or by loading explicitly from the constan