aboutsummaryrefslogtreecommitdiff
path: root/lib/VMCore/LLVMContextImpl.h
diff options
context:
space:
mode:
authorOwen Anderson <resistor@mac.com>2009-07-24 23:12:02 +0000
committerOwen Anderson <resistor@mac.com>2009-07-24 23:12:02 +0000
commiteed707b1e6097aac2bb6b3d47271f6300ace7f2e (patch)
treec7390f63d90fc0c0ac483a90275863f41b69c085 /lib/VMCore/LLVMContextImpl.h
parente8530a3d8c940fb7710be7e25098b5c3b2c2de19 (diff)
Revert the ConstantInt constructors back to their 2.5 forms where possible, thanks to contexts-on-types. More to come.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77011 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/LLVMContextImpl.h')
-rw-r--r--lib/VMCore/LLVMContextImpl.h350
1 files changed, 335 insertions, 15 deletions
diff --git a/lib/VMCore/LLVMContextImpl.h b/lib/VMCore/LLVMContextImpl.h
index 73516245f5..96ac0f80fc 100644
--- a/lib/VMCore/LLVMContextImpl.h
+++ b/lib/VMCore/LLVMContextImpl.h
@@ -16,6 +16,7 @@
#define LLVM_LLVMCONTEXT_IMPL_H
#include "llvm/LLVMContext.h"
+#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
@@ -29,14 +30,336 @@
#include <map>
#include <vector>
-template<class ValType, class TypeClass, class ConstantClass,
- bool HasLargeKey = false /*true for arrays and structs*/ >
-class ValueMap;
-
namespace llvm {
template<class ValType>
struct ConstantTraits;
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
+// ConstantCreator - A class that is used to create constants by
+// ValueMap*. This class should be partially specialized if there is
+// something strange that needs to be done to interface to the ctor for the
+// constant.
+//
+template<typename T, typename Alloc>
+struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
+ static unsigned uses(const std::vector<T, Alloc>& v) {
+ return v.size();
+ }
+};
+
+template<class ConstantClass, class TypeClass, class ValType>
+struct VISIBILITY_HIDDEN ConstantCreator {
+ static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
+ return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+ }
+};
+
+template<class ConstantClass, class TypeClass>
+struct VISIBILITY_HIDDEN ConvertConstantType {
+ static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
+ llvm_unreachable("This type cannot be converted!");
+ }
+};
+
+// ConstantAggregateZero does not take extra "value" argument...
+template<class ValType>
+struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
+ static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
+ return new ConstantAggregateZero(Ty);
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantAggregateZero, Type> {
+ static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
+ // Make everyone now use a constant of the new type...
+ Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantArray, ArrayType> {
+ static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = NewTy->getContext().getConstantArray(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantStruct, StructType> {
+ static void convert(ConstantStruct *OldC, const StructType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = NewTy->getContext().getConstantStruct(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<>
+struct ConvertConstantType<ConstantVector, VectorType> {
+ static void convert(ConstantVector *OldC, const VectorType *NewTy) {
+ // Make everyone now use a constant of the new type...
+ std::vector<Constant*> C;
+ for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
+ C.push_back(cast<Constant>(OldC->getOperand(i)));
+ Constant *New = OldC->getContext().getConstantVector(NewTy, C);
+ assert(New != OldC && "Didn't replace constant??");
+ OldC->uncheckedReplaceAllUsesWith(New);
+ OldC->destroyConstant(); // This constant is now dead, destroy it.
+ }
+};
+
+template<class ValType, class TypeClass, class ConstantClass,
+ bool HasLargeKey = false /*true for arrays and structs*/ >
+class ValueMap : public AbstractTypeUser {
+public:
+ typedef std::pair<const Type*, ValType> MapKey;
+ typedef std::map<MapKey, Constant *> MapTy;
+ typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
+ typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
+private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+ /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
+ /// from the constants to their element in Map. This is important for
+ /// removal of constants from the array, which would otherwise have to scan
+ /// through the map with very large keys.
+ InverseMapTy InverseMap;
+
+ /// AbstractTypeMap - Map for abstract type constants.
+ ///
+ AbstractTypeMapTy AbstractTypeMap;
+
+ /// ValueMapLock - Mutex for this map.
+ sys::SmartMutex<true> ValueMapLock;
+
+public:
+ // NOTE: This function is not locked. It is the caller's responsibility
+ // to enforce proper synchronization.
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ /// InsertOrGetItem - Return an iterator for the specified element.
+ /// If the element exists in the map, the returned iterator points to the
+ /// entry and Exists=true. If not, the iterator points to the newly
+ /// inserted entry and returns Exists=false. Newly inserted entries have
+ /// I->second == 0, and should be filled in.
+ /// NOTE: This function is not locked. It is the caller's responsibility
+ // to enforce proper synchronization.
+ typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
+ &InsertVal,
+ bool &Exists) {
+ std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
+ Exists = !IP.second;
+ return IP.first;
+ }
+
+private:
+ typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
+ if (HasLargeKey) {
+ typename InverseMapTy::iterator IMI = InverseMap.find(CP);
+ assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
+ IMI->second->second == CP &&
+ "InverseMap corrupt!");
+ return IMI->second;
+ }
+
+ typename MapTy::iterator I =
+ Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
+ getValType(CP)));
+ if (I == Map.end() || I->second != CP) {
+ // FIXME: This should not use a linear scan. If this gets to be a
+ // performance problem, someone should look at this.
+ for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
+ /* empty */;
+ }
+ return I;
+ }
+
+ ConstantClass* Create(const TypeClass *Ty, const ValType &V,
+ typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
+
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.insert(std::make_pair(Result, I));
+
+ // If the type of the constant is abstract, make sure that an entry
+ // exists for it in the AbstractTypeMap.
+ if (Ty->isAbstract()) {
+ typename AbstractTypeMapTy::iterator TI =
+ AbstractTypeMap.find(Ty);
+
+ if (TI == AbstractTypeMap.end()) {
+ // Add ourselves to the ATU list of the type.
+ cast<DerivedType>(Ty)->addAbstractTypeUser(this);
+
+ AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
+ }
+ }
+
+ return Result;
+ }
+public:
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ MapKey Lookup(Ty, V);
+ ConstantClass* Result = 0;
+
+ typename MapTy::iterator I = Map.find(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ Result = static_cast<ConstantClass *>(I->second);
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
+
+ return Result;
+ }
+
+ void remove(ConstantClass *CP) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ typename MapTy::iterator I = FindExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->second == CP && "Didn't find correct element?");
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.erase(CP);
+
+ // Now that we found the entry, make sure this isn't the entry that
+ // the AbstractTypeMap points to.
+ const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
+ if (Ty->isAbstract()) {
+ assert(AbstractTypeMap.count(Ty) &&
+ "Abstract type not in AbstractTypeMap?");
+ typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
+ if (ATMEntryIt == I) {
+ // Yes, we are removing the representative entry for this type.
+ // See if there are any other entries of the same type.
+ typename MapTy::iterator TmpIt = ATMEntryIt;
+
+ // First check the entry before this one...
+ if (TmpIt != Map.begin()) {
+ --TmpIt;
+ if (TmpIt->first.first != Ty) // Not the same type, move back...
+ ++TmpIt;
+ }
+
+ // If we didn't find the same type, try to move forward...
+ if (TmpIt == ATMEntryIt) {
+ ++TmpIt;
+ if (TmpIt == Map.end() || TmpIt->first.first != Ty)
+ --TmpIt; // No entry afterwards with the same type
+ }
+
+ // If there is another entry in the map of the same abstract type,
+ // update the AbstractTypeMap entry now.
+ if (TmpIt != ATMEntryIt) {
+ ATMEntryIt = TmpIt;
+ } else {
+ // Otherwise, we are removing the last instance of this type
+ // from the table. Remove from the ATM, and from user list.
+ cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
+ AbstractTypeMap.erase(Ty);
+ }
+ }
+ }
+
+ Map.erase(I);
+ }
+
+
+ /// MoveConstantToNewSlot - If we are about to change C to be the element
+ /// specified by I, update our internal data structures to reflect this
+ /// fact.
+ /// NOTE: This function is not locked. It is the responsibility of the
+ /// caller to enforce proper synchronization if using this method.
+ void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
+ // First, remove the old location of the specified constant in the map.
+ typename MapTy::iterator OldI = FindExistingElement(C);
+ assert(OldI != Map.end() && "Constant not found in constant table!");
+ assert(OldI->second == C && "Didn't find correct element?");
+
+ // If this constant is the representative element for its abstract type,
+ // update the AbstractTypeMap so that the representative element is I.
+ if (C->getType()->isAbstract()) {
+ typename AbstractTypeMapTy::iterator ATI =
+ AbstractTypeMap.find(C->getType());
+ assert(ATI != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+ if (ATI->second == OldI)
+ ATI->second = I;
+ }
+
+ // Remove the old entry from the map.
+ Map.erase(OldI);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey) {
+ assert(I->second == C && "Bad inversemap entry!");
+ InverseMap[C] = I;
+ }
+ }
+
+ void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
+ sys::SmartScopedLock<true> Lock(ValueMapLock);
+ typename AbstractTypeMapTy::iterator I =
+ AbstractTypeMap.find(cast<Type>(OldTy));
+
+ assert(I != AbstractTypeMap.end() &&
+ "Abstract type not in AbstractTypeMap?");
+
+ // Convert a constant at a time until the last one is gone. The last one
+ // leaving will remove() itself, causing the AbstractTypeMapEntry to be
+ // eliminated eventually.
+ do {
+ ConvertConstantType<ConstantClass,
+ TypeClass>::convert(
+ static_cast<ConstantClass *>(I->second->second),
+ cast<TypeClass>(NewTy));
+
+ I = AbstractTypeMap.find(cast<Type>(OldTy));
+ } while (I != AbstractTypeMap.end());
+ }
+
+ // If the type became concrete without being refined to any other existing
+ // type, we just remove ourselves from the ATU list.
+ void typeBecameConcrete(const DerivedType *AbsTy) {
+ AbsTy->removeAbstractTypeUser(this);
+ }
+
+ void dump() const {
+ DOUT << "Constant.cpp: ValueMap\n";
+ }
+};
+
+
class ConstantInt;
class ConstantFP;
class MDString;
@@ -112,19 +435,19 @@ class LLVMContextImpl {
FoldingSet<MDNode> MDNodeSet;
- ValueMap<char, Type, ConstantAggregateZero> *AggZeroConstants;
+ ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
typedef ValueMap<std::vector<Constant*>, ArrayType,
ConstantArray, true /*largekey*/> ArrayConstantsTy;
- ArrayConstantsTy *ArrayConstants;
+ ArrayConstantsTy ArrayConstants;
typedef ValueMap<std::vector<Constant*>, StructType,
ConstantStruct, true /*largekey*/> StructConstantsTy;
- StructConstantsTy *StructConstants;
+ StructConstantsTy StructConstants;
typedef ValueMap<std::vector<Constant*>, VectorType,
ConstantVector> VectorConstantsTy;
- VectorConstantsTy *VectorConstants;
+ VectorConstantsTy VectorConstants;
LLVMContext &Context;
ConstantInt *TheTrueVal;
@@ -132,13 +455,10 @@ class LLVMContextImpl {
LLVMContextImpl();
LLVMContextImpl(const LLVMContextImpl&);
+
+ friend class ConstantInt;
public:
LLVMContextImpl(LLVMContext &C);
- ~LLVMContextImpl();
-
- /// Return a ConstantInt with the specified value and an implied Type. The
- /// type is the integer type that corresponds to the bit width of the value.
- ConstantInt *getConstantInt(const APInt &V);
ConstantFP *getConstantFP(const APFloat &V);
@@ -161,14 +481,14 @@ public:
if (TheTrueVal)
return TheTrueVal;
else
- return (TheTrueVal = Context.getConstantInt(IntegerType::get(1), 1));
+ return (TheTrueVal = ConstantInt::get(IntegerType::get(1), 1));
}
ConstantInt *getFalse() {
if (TheFalseVal)
return TheFalseVal;
else
- return (TheFalseVal = Context.getConstantInt(IntegerType::get(1), 0));
+ return (TheFalseVal = ConstantInt::get(IntegerType::get(1), 0));
}
void erase(MDString *M);