diff options
author | Owen Anderson <resistor@mac.com> | 2009-08-04 22:41:48 +0000 |
---|---|---|
committer | Owen Anderson <resistor@mac.com> | 2009-08-04 22:41:48 +0000 |
commit | 48b2f3e4850cd27d54224cd42da8a160d6b95984 (patch) | |
tree | 4a9d1fe3a0e3feacea1d637131b754943e0939f1 /lib/VMCore/LLVMContextImpl.h | |
parent | 57035994f7329d63582365df278826dbbac5b046 (diff) |
Factor some of the constants+context related code out into a separate header, to make LLVMContextImpl.h
not hideous. Also, fix some MSVC compile errors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78115 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/LLVMContextImpl.h')
-rw-r--r-- | lib/VMCore/LLVMContextImpl.h | 765 |
1 files changed, 5 insertions, 760 deletions
diff --git a/lib/VMCore/LLVMContextImpl.h b/lib/VMCore/LLVMContextImpl.h index d7ad74fa1a..5a3056ad8f 100644 --- a/lib/VMCore/LLVMContextImpl.h +++ b/lib/VMCore/LLVMContextImpl.h @@ -15,776 +15,25 @@ #ifndef LLVM_LLVMCONTEXT_IMPL_H #define LLVM_LLVMCONTEXT_IMPL_H +#include "ConstantsContext.h" #include "llvm/LLVMContext.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" -#include "llvm/Instructions.h" -#include "llvm/Operator.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/System/Mutex.h" #include "llvm/System/RWMutex.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/StringMap.h" -#include <map> #include <vector> namespace llvm { -template<class ValType> -struct ConstantTraits; - - -/// UnaryConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement unary constant exprs. -class UnaryConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 1); - } - UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) - : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { - Op<0>() = C; - } - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// BinaryConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement binary constant exprs. -class BinaryConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) - : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { - Op<0>() = C1; - Op<1>() = C2; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// SelectConstantExpr - This class is private to Constants.cpp, and is used -/// behind the scenes to implement select constant exprs. -class SelectConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ExtractElementConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// extractelement constant exprs. -class ExtractElementConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - ExtractElementConstantExpr(Constant *C1, Constant *C2) - : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), - Instruction::ExtractElement, &Op<0>(), 2) { - Op<0>() = C1; - Op<1>() = C2; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// InsertElementConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// insertelement constant exprs. -class InsertElementConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(C1->getType(), Instruction::InsertElement, - &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ShuffleVectorConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// shufflevector constant exprs. -class ShuffleVectorConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly three operands - void *operator new(size_t s) { - return User::operator new(s, 3); - } - ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(VectorType::get( - cast<VectorType>(C1->getType())->getElementType(), - cast<VectorType>(C3->getType())->getNumElements()), - Instruction::ShuffleVector, - &Op<0>(), 3) { - Op<0>() = C1; - Op<1>() = C2; - Op<2>() = C3; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// ExtractValueConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// extractvalue constant exprs. -class ExtractValueConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 1); - } - ExtractValueConstantExpr(Constant *Agg, - const SmallVector<unsigned, 4> &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), - Indices(IdxList) { - Op<0>() = Agg; - } - - /// Indices - These identify which value to extract. - const SmallVector<unsigned, 4> Indices; - - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -/// InsertValueConstantExpr - This class is private to -/// Constants.cpp, and is used behind the scenes to implement -/// insertvalue constant exprs. -class InsertValueConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT -public: - // allocate space for exactly one operand - void *operator new(size_t s) { - return User::operator new(s, 2); - } - InsertValueConstantExpr(Constant *Agg, Constant *Val, - const SmallVector<unsigned, 4> &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), - Indices(IdxList) { - Op<0>() = Agg; - Op<1>() = Val; - } - - /// Indices - These identify the position for the insertion. - const SmallVector<unsigned, 4> Indices; - - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - - -/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is -/// used behind the scenes to implement getelementpr constant exprs. -class GetElementPtrConstantExpr : public ConstantExpr { - GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, - const Type *DestTy); -public: - static GetElementPtrConstantExpr *Create(Constant *C, - const std::vector<Constant*>&IdxList, - const Type *DestTy) { - return - new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -// CompareConstantExpr - This class is private to Constants.cpp, and is used -// behind the scenes to implement ICmp and FCmp constant expressions. This is -// needed in order to store the predicate value for these instructions. -struct CompareConstantExpr : public ConstantExpr { - void *operator new(size_t, unsigned); // DO NOT IMPLEMENT - // allocate space for exactly two operands - void *operator new(size_t s) { - return User::operator new(s, 2); - } - unsigned short predicate; - CompareConstantExpr(const Type *ty, Instruction::OtherOps opc, - unsigned short pred, Constant* LHS, Constant* RHS) - : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { - Op<0>() = LHS; - Op<1>() = RHS; - } - /// Transparently provide more efficient getOperand methods. - DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); -}; - -template <> -struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) - -template <> -struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) - -template <> -struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) - -template <> -struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) - -template <> -struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) - -template <> -struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) - -template <> -struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) - -template <> -struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) - -template <> -struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> { -}; - -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) - - -template <> -struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> { -}; -DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) - -struct ExprMapKeyType { - typedef SmallVector<unsigned, 4> IndexList; - - ExprMapKeyType(unsigned opc, - const std::vector<Constant*> &ops, - unsigned short pred = 0, - const IndexList &inds = IndexList()) - : opcode(opc), predicate(pred), operands(ops), indices(inds) {} - uint16_t opcode; - uint16_t predicate; - std::vector<Constant*> operands; - IndexList indices; - bool operator==(const ExprMapKeyType& that) const { - return this->opcode == that.opcode && - this->predicate == that.predicate && - this->operands == that.operands && - this->indices == that.indices; - } - bool operator<(const ExprMapKeyType & that) const { - return this->opcode < that.opcode || - (this->opcode == that.opcode && this->predicate < that.predicate) || - (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands < that.operands) || - (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands == that.operands && this->indices < that.indices); - } - - bool operator!=(const ExprMapKeyType& that) const { - return !(*this == that); - } -}; - -// The number of operands for each ConstantCreator::create method is -// determined by the ConstantTraits template. -// ConstantCreator - A class that is used to create constants by -// ValueMap*. This class should be partially specialized if there is -// something strange that needs to be done to interface to the ctor for the -// constant. -// -template<typename T, typename Alloc> -struct ConstantTraits< std::vector<T, Alloc> > { - static unsigned uses(const std::vector<T, Alloc>& v) { - return v.size(); - } -}; - -template<class ConstantClass, class TypeClass, class ValType> -struct ConstantCreator { - static ConstantClass *create(const TypeClass *Ty, const ValType &V) { - return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V); - } -}; - -template<class ConstantClass, class TypeClass> -struct ConvertConstantType { - static void convert(ConstantClass *OldC, const TypeClass *NewTy) { - llvm_unreachable("This type cannot be converted!"); - } -}; - -template<> -struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> { - static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, - unsigned short pred = 0) { - if (Instruction::isCast(V.opcode)) - return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); - if ((V.opcode >= Instruction::BinaryOpsBegin && - V.opcode < Instruction::BinaryOpsEnd)) - return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); - if (V.opcode == Instruction::Select) - return new SelectConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::ExtractElement) - return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); - if (V.opcode == Instruction::InsertElement) - return new InsertElementConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::ShuffleVector) - return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], - V.operands[2]); - if (V.opcode == Instruction::InsertValue) - return new InsertValueConstantExpr(V.operands[0], V.operands[1], - V.indices, Ty); - if (V.opcode == Instruction::ExtractValue) - return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); - if (V.opcode == Instruction::GetElementPtr) { - std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end()); - return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty); - } - - // The compare instructions are weird. We have to encode the predicate - // value and it is combined with the instruction opcode by multiplying - // the opcode by one hundred. We must decode this to get the predicate. - if (V.opcode == Instruction::ICmp) - return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, - V.operands[0], V.operands[1]); - if (V.opcode == Instruction::FCmp) - return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, - V.operands[0], V.operands[1]); - llvm_unreachable("Invalid ConstantExpr!"); - return 0; - } -}; - -template<> -struct ConvertConstantType<ConstantExpr, Type> { - static void convert(ConstantExpr *OldC, const Type *NewTy) { - Constant *New; - switch (OldC->getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), - NewTy); - break; - case Instruction::Select: - New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), - OldC->getOperand(1), - OldC->getOperand(2)); - break; - default: - assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && - OldC->getOpcode() < Instruction::BinaryOpsEnd); - New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), - OldC->getOperand(1)); - break; - case Instruction::GetElementPtr: - // Make everyone now use a constant of the new type... - std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end()); - New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), - &Idx[0], Idx.size()); - break; - } - - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } -}; - -// ConstantAggregateZero does not take extra "value" argument... -template<class ValType> -struct ConstantCreator<ConstantAggregateZero, Type, ValType> { - static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ - return new ConstantAggregateZero(Ty); - } -}; - -template<> -struct ConvertConstantType<ConstantVector, VectorType> { - static void convert(ConstantVector *OldC, const VectorType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector<Constant*> C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast<Constant>(OldC->getOperand(i))); - Constant *New = ConstantVector::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } -}; - -template<> -struct ConvertConstantType<ConstantAggregateZero, Type> { - static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { - // Make everyone now use a constant of the new type... - Constant *New = ConstantAggregateZero::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } -}; - -template<> -struct ConvertConstantType<ConstantArray, ArrayType> { - static void convert(ConstantArray *OldC, const ArrayType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector<Constant*> C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast<Constant>(OldC->getOperand(i))); - Constant *New = ConstantArray::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } -}; - -template<> -struct ConvertConstantType<ConstantStruct, StructType> { - static void convert(ConstantStruct *OldC, const StructType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector<Constant*> C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast<Constant>(OldC->getOperand(i))); - Constant *New = ConstantStruct::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } -}; - -// ConstantPointerNull does not take extra "value" argument... -template<class ValType> -struct ConstantCreator<ConstantPointerNull, PointerType, ValType> { - static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ - return new ConstantPointerNull(Ty); - } -}; - -template<> -struct ConvertConstantType<ConstantPointerNull, PointerType> { - static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { - // Make everyone now use a constant of the new type... - Constant *New = ConstantPointerNull::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } -}; - -// UndefValue does not take extra "value" argument... -template<class ValType> -struct ConstantCreator<UndefValue, Type, ValType> { - static UndefValue *create(const Type *Ty, const ValType &V) { - return new UndefValue(Ty); - } -}; - -template<> -struct ConvertConstantType<UndefValue, Type> { - static void convert(UndefValue *OldC, const Type *NewTy) { - // Make everyone now use a constant of the new type. - Constant *New = UndefValue::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. - } -}; - -template<class ValType, class TypeClass, class ConstantClass, - bool HasLargeKey = false /*true for arrays and structs*/ > -class ValueMap : public AbstractTypeUser { -public: - typedef std::pair<const Type*, ValType> MapKey; - typedef std::map<MapKey, Constant *> MapTy; - typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy; - typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy; -private: - /// Map - This is the main map from the element descriptor to the Constants. - /// This is the primary way we avoid creating two of the same shape - /// constant. - MapTy Map; - - /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping - /// from the constants to their element in Map. This is important for - /// removal of constants from the array, which would otherwise have to scan - /// through the map with very large keys. - InverseMapTy InverseMap; - - /// AbstractTypeMap - Map for abstract type constants. - /// - AbstractTypeMapTy AbstractTypeMap; - - /// ValueMapLock - Mutex for this map. - sys::SmartMutex<true> ValueMapLock; - -public: - // NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator map_end() { return Map.end(); } - - /// InsertOrGetItem - Return an iterator for the specified element. - /// If the element exists in the map, the returned iterator points to the - /// entry and Exists=true. If not, the iterator points to the newly - /// inserted entry and returns Exists=false. Newly inserted entries have - /// I->second == 0, and should be filled in. - /// NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *> - &InsertVal, - bool &Exists) { - std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal); - Exists = !IP.second; - return IP.first; - } - -private: - typename MapTy::iterator FindExistingElement(ConstantClass *CP) { - if (HasLargeKey) { - typename InverseMapTy::iterator IMI = InverseMap.find(CP); - assert(IMI != InverseMap.end() && IMI->second != Map.end() && - IMI->second->second == CP && - "InverseMap corrupt!"); - return IMI->second; - } - - typename MapTy::iterator I = - Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()), - getValType(CP))); - if (I == Map.end() || I->second != CP) { - // FIXME: This should not use a linear scan. If this gets to be a - // performance problem, someone should look at this. - for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) - /* empty */; - } - return I; - } - - ConstantClass* Create(const TypeClass *Ty, const ValType &V, - typename MapTy::iterator I) { - ConstantClass* Result = - ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V); - - assert(Result->getType() == Ty && "Type specified is not correct!"); - I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); - - if (HasLargeKey) // Remember the reverse mapping if needed. - InverseMap.insert(std::make_pair(Result, I)); - - // If the type of the constant is abstract, make sure that an entry - // exists for it in the AbstractTypeMap. - if (Ty->isAbstract()) { - typename AbstractTypeMapTy::iterator TI = - AbstractTypeMap.find(Ty); - - if (TI == AbstractTypeMap.end()) { - // Add ourselves to the ATU list of the type. - cast<DerivedType>(Ty)->addAbstractTypeUser(this); - - AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); - } - } - - return Result; - } -public: - - /// getOrCreate - Return the specified constant from the map, creating it if - /// necessary. - ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { - sys::SmartScopedLock<true> Lock(ValueMapLock); - MapKey Lookup(Ty, V); - ConstantClass* Result = 0; - - typename MapTy::iterator I = Map.find(Lookup); - // Is it in the map? - if (I != Map.end()) - Result = static_cast<ConstantClass *>(I->second); - - if (!Result) { - // If no preexisting value, create one now... - Result = Create(Ty, V, I); - } - - return Result; - } - - void remove(ConstantClass *CP) { - sys::SmartScopedLock<true> Lock(ValueMapLock); - typename MapTy::iterator I = FindExistingElement(CP); - assert(I != Map.end() && "Constant not found in constant table!"); - assert(I->second == CP && "Didn't find correct element?"); - - if (HasLargeKey) // Remember the reverse mapping if needed. - InverseMap.erase(CP); - - // Now that we found the entry, make sure this isn't the entry that - // the AbstractTypeMap points to. - const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first); - if (Ty->isAbstract()) { - assert(AbstractTypeMap.count(Ty) && - "Abstract type not in AbstractTypeMap?"); - typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; - if (ATMEntryIt == I) { - // Yes, we are removing the representative entry for this type. - // See if there are any other entries of the same type. - typename MapTy::iterator TmpIt = ATMEntryIt; - - // First check the entry before this one... - if (TmpIt != Map.begin()) { - --TmpIt; - if (TmpIt->first.first != Ty) // Not the same type, move back... - ++TmpIt; - } - - // If we didn't find the same type, try to move forward... - if (TmpIt == ATMEntryIt) { - ++TmpIt; - if (TmpIt == Map.end() || TmpIt->first.first != Ty) - --TmpIt; // No entry afterwards with the same type - } - - // If there is another entry in the map of the same abstract type, - // update the AbstractTypeMap entry now. - if (TmpIt != ATMEntryIt) { - ATMEntryIt = TmpIt; - } else { - // Otherwise, we are removing the last instance of this type - // from the table. Remove from the ATM, and from user list. - cast<DerivedType>(Ty)->removeAbstractTypeUser(this); - AbstractTypeMap.erase(Ty); - } - } - } - - Map.erase(I); - } - - - /// MoveConstantToNewSlot - If we are about to change C to be the element - /// specified by I, update our internal data structures to reflect this - /// fact. - /// NOTE: This function is not locked. It is the responsibility of the - /// caller to enforce proper synchronization if using this method. - void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { - // First, remove the old location of the specified constant in the map. - typename MapTy::iterator OldI = FindExistingElement(C); - assert(OldI != Map.end() && "Constant not found in constant table!"); - assert(OldI->second == C && "Didn't find correct element?"); - - // If this constant is the representative element for its abstract type, - // update the AbstractTypeMap so that the representative element is I. - if (C->getType()->isAbstract()) { - typename AbstractTypeMapTy::iterator ATI = - AbstractTypeMap.find(C->getType()); - assert(ATI != AbstractTypeMap.end() && - "Abstract type not in AbstractTypeMap?"); - if (ATI->second == OldI) - ATI->second = I; - } - - // Remove the old entry from the map. - Map.erase(OldI); - - // Update the inverse map so that we know that this constant is now - // located at descriptor I. - if (HasLargeKey) { - assert(I->second == C && "Bad inversemap entry!"); - InverseMap[C] = I; - } - } - - void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { - sys::SmartScopedLock<true> Lock(ValueMapLock); - typename AbstractTypeMapTy::iterator I = - AbstractTypeMap.find(cast<Type>(OldTy)); - - assert(I != AbstractTypeMap.end() && - "Abstract type not in AbstractTypeMap?"); - - // Convert a constant at a time until the last one is gone. The last one - // leaving will remove() itself, causing the AbstractTypeMapEntry to be - // eliminated eventually. - do { - ConvertConstantType<ConstantClass, - TypeClass>::convert( - static_cast<ConstantClass *>(I->second->second), - cast<TypeClass>(NewTy)); - - I = AbstractTypeMap.find(cast<Type>(OldTy)); - } while (I != AbstractTypeMap.end()); - } - - // If the type became concrete without being refined to any other existing - // type, we just remove ourselves from the ATU list. - void typeBecameConcrete(const DerivedType *AbsTy) { - AbsTy->removeAbstractTypeUser(this); - } - - void dump() const { - DOUT << "Constant.cpp: ValueMap\n"; - } -}; - class ConstantInt; class ConstantFP; class MDString; class MDNode; -class LLVMContext; +struct LLVMContext; class Type; class Value; @@ -844,11 +93,11 @@ struct LLVMContextImpl { sys::SmartRWMutex<true> ConstantsLock; typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, - DenseMapAPIntKeyInfo> IntMapTy; + DenseMapAPIntKeyInfo> IntMapTy; IntMapTy IntConstants; typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, - DenseMapAPFloatKeyInfo> FPMapTy; + DenseMapAPFloatKeyInfo> FPMapTy; FPMapTy FPConstants; StringMap<MDString*> MDStringCache; @@ -875,14 +124,10 @@ struct LLVMContextImpl { ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants; - LLVMContext &Context; ConstantInt *TheTrueVal; ConstantInt *TheFalseVal; - LLVMContextImpl(LLVMContext &C); -private: - LLVMContextImpl(); - LLVMContextImpl(const LLVMContextImpl&); + LLVMContextImpl() : TheTrueVal(0), TheFalseVal(0) { } }; } |