aboutsummaryrefslogtreecommitdiff
path: root/lib/VMCore/Constants.cpp
diff options
context:
space:
mode:
authorChandler Carruth <chandlerc@gmail.com>2013-01-02 09:10:48 +0000
committerChandler Carruth <chandlerc@gmail.com>2013-01-02 09:10:48 +0000
commitc2c50cdcdc19a1bca993c06d13d8cdca87083ce4 (patch)
treee46b4b6d4d44228df1e870f690506dbf296954c1 /lib/VMCore/Constants.cpp
parent3af932322859285988a4c53551540fc0658b2116 (diff)
Rename VMCore directory to IR.
Aside from moving the actual files, this patch only updates the build system and the source file comments under lib/... that are relevant. I'll be updating other docs and other files in smaller subsequnet commits. While I've tried to test this, but it is entirely possible that there will still be some build system fallout. Also, note that I've not changed the library name itself: libLLVMCore.a is still the library name. I'd be interested in others' opinions about whether we should rename this as well (I think we should, just not sure what it might break) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171359 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/VMCore/Constants.cpp')
-rw-r--r--lib/VMCore/Constants.cpp2769
1 files changed, 0 insertions, 2769 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp
deleted file mode 100644
index 008378a241..0000000000
--- a/lib/VMCore/Constants.cpp
+++ /dev/null
@@ -1,2769 +0,0 @@
-//===-- Constants.cpp - Implement Constant nodes --------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Constant* classes.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Constants.h"
-#include "ConstantFold.h"
-#include "LLVMContextImpl.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/FoldingSet.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/StringMap.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/GlobalValue.h"
-#include "llvm/Instructions.h"
-#include "llvm/Module.h"
-#include "llvm/Operator.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/ManagedStatic.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cstdarg>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// Constant Class
-//===----------------------------------------------------------------------===//
-
-void Constant::anchor() { }
-
-bool Constant::isNegativeZeroValue() const {
- // Floating point values have an explicit -0.0 value.
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->isZero() && CFP->isNegative();
-
- // Otherwise, just use +0.0.
- return isNullValue();
-}
-
-bool Constant::isNullValue() const {
- // 0 is null.
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
- return CI->isZero();
-
- // +0.0 is null.
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->isZero() && !CFP->isNegative();
-
- // constant zero is zero for aggregates and cpnull is null for pointers.
- return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
-}
-
-bool Constant::isAllOnesValue() const {
- // Check for -1 integers
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
- return CI->isMinusOne();
-
- // Check for FP which are bitcasted from -1 integers
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
- return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
-
- // Check for constant vectors which are splats of -1 values.
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
- if (Constant *Splat = CV->getSplatValue())
- return Splat->isAllOnesValue();
-
- // Check for constant vectors which are splats of -1 values.
- if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
- if (Constant *Splat = CV->getSplatValue())
- return Splat->isAllOnesValue();
-
- return false;
-}
-
-// Constructor to create a '0' constant of arbitrary type...
-Constant *Constant::getNullValue(Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::IntegerTyID:
- return ConstantInt::get(Ty, 0);
- case Type::HalfTyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEhalf));
- case Type::FloatTyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEsingle));
- case Type::DoubleTyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEdouble));
- case Type::X86_FP80TyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::x87DoubleExtended));
- case Type::FP128TyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat::getZero(APFloat::IEEEquad));
- case Type::PPC_FP128TyID:
- return ConstantFP::get(Ty->getContext(),
- APFloat(APInt::getNullValue(128)));
- case Type::PointerTyID:
- return ConstantPointerNull::get(cast<PointerType>(Ty));
- case Type::StructTyID:
- case Type::ArrayTyID:
- case Type::VectorTyID:
- return ConstantAggregateZero::get(Ty);
- default:
- // Function, Label, or Opaque type?
- llvm_unreachable("Cannot create a null constant of that type!");
- }
-}
-
-Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
- Type *ScalarTy = Ty->getScalarType();
-
- // Create the base integer constant.
- Constant *C = ConstantInt::get(Ty->getContext(), V);
-
- // Convert an integer to a pointer, if necessary.
- if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
- C = ConstantExpr::getIntToPtr(C, PTy);
-
- // Broadcast a scalar to a vector, if necessary.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- C = ConstantVector::getSplat(VTy->getNumElements(), C);
-
- return C;
-}
-
-Constant *Constant::getAllOnesValue(Type *Ty) {
- if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
- return ConstantInt::get(Ty->getContext(),
- APInt::getAllOnesValue(ITy->getBitWidth()));
-
- if (Ty->isFloatingPointTy()) {
- APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
- !Ty->isPPC_FP128Ty());
- return ConstantFP::get(Ty->getContext(), FL);
- }
-
- VectorType *VTy = cast<VectorType>(Ty);
- return ConstantVector::getSplat(VTy->getNumElements(),
- getAllOnesValue(VTy->getElementType()));
-}
-
-/// getAggregateElement - For aggregates (struct/array/vector) return the
-/// constant that corresponds to the specified element if possible, or null if
-/// not. This can return null if the element index is a ConstantExpr, or if
-/// 'this' is a constant expr.
-Constant *Constant::getAggregateElement(unsigned Elt) const {
- if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
- return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
-
- if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
- return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
-
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
- return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
-
- if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
- return CAZ->getElementValue(Elt);
-
- if (const UndefValue *UV = dyn_cast<UndefValue>(this))
- return UV->getElementValue(Elt);
-
- if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
- return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
- return 0;
-}
-
-Constant *Constant::getAggregateElement(Constant *Elt) const {
- assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
- return getAggregateElement(CI->getZExtValue());
- return 0;
-}
-
-
-void Constant::destroyConstantImpl() {
- // When a Constant is destroyed, there may be lingering
- // references to the constant by other constants in the constant pool. These
- // constants are implicitly dependent on the module that is being deleted,
- // but they don't know that. Because we only find out when the CPV is
- // deleted, we must now notify all of our users (that should only be
- // Constants) that they are, in fact, invalid now and should be deleted.
- //
- while (!use_empty()) {
- Value *V = use_back();
-#ifndef NDEBUG // Only in -g mode...
- if (!isa<Constant>(V)) {
- dbgs() << "While deleting: " << *this
- << "\n\nUse still stuck around after Def is destroyed: "
- << *V << "\n\n";
- }
-#endif
- assert(isa<Constant>(V) && "References remain to Constant being destroyed");
- cast<Constant>(V)->destroyConstant();
-
- // The constant should remove itself from our use list...
- assert((use_empty() || use_back() != V) && "Constant not removed!");
- }
-
- // Value has no outstanding references it is safe to delete it now...
- delete this;
-}
-
-/// canTrap - Return true if evaluation of this constant could trap. This is
-/// true for things like constant expressions that could divide by zero.
-bool Constant::canTrap() const {
- assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
- // The only thing that could possibly trap are constant exprs.
- const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
- if (!CE) return false;
-
- // ConstantExpr traps if any operands can trap.
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (CE->getOperand(i)->canTrap())
- return true;
-
- // Otherwise, only specific operations can trap.
- switch (CE->getOpcode()) {
- default:
- return false;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- // Div and rem can trap if the RHS is not known to be non-zero.
- if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
- return true;
- return false;
- }
-}
-
-/// isThreadDependent - Return true if the value can vary between threads.
-bool Constant::isThreadDependent() const {
- SmallPtrSet<const Constant*, 64> Visited;
- SmallVector<const Constant*, 64> WorkList;
- WorkList.push_back(this);
- Visited.insert(this);
-
- while (!WorkList.empty()) {
- const Constant *C = WorkList.pop_back_val();
-
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
- if (GV->isThreadLocal())
- return true;
- }
-
- for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
- const Constant *D = dyn_cast<Constant>(C->getOperand(I));
- if (!D)
- continue;
- if (Visited.insert(D))
- WorkList.push_back(D);
- }
- }
-
- return false;
-}
-
-/// isConstantUsed - Return true if the constant has users other than constant
-/// exprs and other dangling things.
-bool Constant::isConstantUsed() const {
- for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
- const Constant *UC = dyn_cast<Constant>(*UI);
- if (UC == 0 || isa<GlobalValue>(UC))
- return true;
-
- if (UC->isConstantUsed())
- return true;
- }
- return false;
-}
-
-
-
-/// getRelocationInfo - This method classifies the entry according to
-/// whether or not it may generate a relocation entry. This must be
-/// conservative, so if it might codegen to a relocatable entry, it should say
-/// so. The return values are:
-///
-/// NoRelocation: This constant pool entry is guaranteed to never have a
-/// relocation applied to it (because it holds a simple constant like
-/// '4').
-/// LocalRelocation: This entry has relocations, but the entries are
-/// guaranteed to be resolvable by the static linker, so the dynamic
-/// linker will never see them.
-/// GlobalRelocations: This entry may have arbitrary relocations.
-///
-/// FIXME: This really should not be in VMCore.
-Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
- if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
- return LocalRelocation; // Local to this file/library.
- return GlobalRelocations; // Global reference.
- }
-
- if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
- return BA->getFunction()->getRelocationInfo();
-
- // While raw uses of blockaddress need to be relocated, differences between
- // two of them don't when they are for labels in the same function. This is a
- // common idiom when creating a table for the indirect goto extension, so we
- // handle it efficiently here.
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
- if (CE->getOpcode() == Instruction::Sub) {
- ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
- ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
- if (LHS && RHS &&
- LHS->getOpcode() == Instruction::PtrToInt &&
- RHS->getOpcode() == Instruction::PtrToInt &&
- isa<BlockAddress>(LHS->getOperand(0)) &&
- isa<BlockAddress>(RHS->getOperand(0)) &&
- cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
- cast<BlockAddress>(RHS->getOperand(0))->getFunction())
- return NoRelocation;
- }
-
- PossibleRelocationsTy Result = NoRelocation;
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- Result = std::max(Result,
- cast<Constant>(getOperand(i))->getRelocationInfo());
-
- return Result;
-}
-
-/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
-/// it. This involves recursively eliminating any dead users of the
-/// constantexpr.
-static bool removeDeadUsersOfConstant(const Constant *C) {
- if (isa<GlobalValue>(C)) return false; // Cannot remove this
-
- while (!C->use_empty()) {
- const Constant *User = dyn_cast<Constant>(C->use_back());
- if (!User) return false; // Non-constant usage;
- if (!removeDeadUsersOfConstant(User))
- return false; // Constant wasn't dead
- }
-
- const_cast<Constant*>(C)->destroyConstant();
- return true;
-}
-
-
-/// removeDeadConstantUsers - If there are any dead constant users dangling
-/// off of this constant, remove them. This method is useful for clients
-/// that want to check to see if a global is unused, but don't want to deal
-/// with potentially dead constants hanging off of the globals.
-void Constant::removeDeadConstantUsers() const {
- Value::const_use_iterator I = use_begin(), E = use_end();
- Value::const_use_iterator LastNonDeadUser = E;
- while (I != E) {
- const Constant *User = dyn_cast<Constant>(*I);
- if (User == 0) {
- LastNonDeadUser = I;
- ++I;
- continue;
- }
-
- if (!removeDeadUsersOfConstant(User)) {
- // If the constant wasn't dead, remember that this was the last live use
- // and move on to the next constant.
- LastNonDeadUser = I;
- ++I;
- continue;
- }
-
- // If the constant was dead, then the iterator is invalidated.
- if (LastNonDeadUser == E) {
- I = use_begin();
- if (I == E) break;
- } else {
- I = LastNonDeadUser;
- ++I;
- }
- }
-}
-
-
-
-//===----------------------------------------------------------------------===//
-// ConstantInt
-//===----------------------------------------------------------------------===//
-
-void ConstantInt::anchor() { }
-
-ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
- : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
- assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
-}
-
-ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
- LLVMContextImpl *pImpl = Context.pImpl;
- if (!pImpl->TheTrueVal)
- pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
- return pImpl->TheTrueVal;
-}
-
-ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
- LLVMContextImpl *pImpl = Context.pImpl;
- if (!pImpl->TheFalseVal)
- pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
- return pImpl->TheFalseVal;
-}
-
-Constant *ConstantInt::getTrue(Type *Ty) {
- VectorType *VTy = dyn_cast<VectorType>(Ty);
- if (!VTy) {
- assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
- return ConstantInt::getTrue(Ty->getContext());
- }
- assert(VTy->getElementType()->isIntegerTy(1) &&
- "True must be vector of i1 or i1.");
- return ConstantVector::getSplat(VTy->getNumElements(),
- ConstantInt::getTrue(Ty->getContext()));
-}
-
-Constant *ConstantInt::getFalse(Type *Ty) {
- VectorType *VTy = dyn_cast<VectorType>(Ty);
- if (!VTy) {
- assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
- return ConstantInt::getFalse(Ty->getContext());
- }
- assert(VTy->getElementType()->isIntegerTy(1) &&
- "False must be vector of i1 or i1.");
- return ConstantVector::getSplat(VTy->getNumElements(),
- ConstantInt::getFalse(Ty->getContext()));
-}
-
-
-// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
-// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
-// operator== and operator!= to ensure that the DenseMap doesn't attempt to
-// compare APInt's of different widths, which would violate an APInt class
-// invariant which generates an assertion.
-ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
- // Get the corresponding integer type for the bit width of the value.
- IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
- // get an existing value or the insertion position
- DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
- ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
- if (!Slot) Slot = new ConstantInt(ITy, V);
- return Slot;
-}
-
-Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
- Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
-
- // For vectors, broadcast the value.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
-
- return C;
-}
-
-ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
- bool isSigned) {
- return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
-}
-
-ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
- return get(Ty, V, true);
-}
-
-Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
- return get(Ty, V, true);
-}
-
-Constant *ConstantInt::get(Type *Ty, const APInt& V) {
- ConstantInt *C = get(Ty->getContext(), V);
- assert(C->getType() == Ty->getScalarType() &&
- "ConstantInt type doesn't match the type implied by its value!");
-
- // For vectors, broadcast the value.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
-
- return C;
-}
-
-ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
- uint8_t radix) {
- return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
-}
-
-//===----------------------------------------------------------------------===//
-// ConstantFP
-//===----------------------------------------------------------------------===//
-
-static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
- if (Ty->isHalfTy())
- return &APFloat::IEEEhalf;
- if (Ty->isFloatTy())
- return &APFloat::IEEEsingle;
- if (Ty->isDoubleTy())
- return &APFloat::IEEEdouble;
- if (Ty->isX86_FP80Ty())
- return &APFloat::x87DoubleExtended;
- else if (Ty->isFP128Ty())
- return &APFloat::IEEEquad;
-
- assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
- return &APFloat::PPCDoubleDouble;
-}
-
-void ConstantFP::anchor() { }
-
-/// get() - This returns a constant fp for the specified value in the
-/// specified type. This should only be used for simple constant values like
-/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
-Constant *ConstantFP::get(Type *Ty, double V) {
- LLVMContext &Context = Ty->getContext();
-
- APFloat FV(V);
- bool ignored;
- FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
- APFloat::rmNearestTiesToEven, &ignored);
- Constant *C = get(Context, FV);
-
- // For vectors, broadcast the value.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
-
- return C;
-}
-
-
-Constant *ConstantFP::get(Type *Ty, StringRef Str) {
- LLVMContext &Context = Ty->getContext();
-
- APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
- Constant *C = get(Context, FV);
-
- // For vectors, broadcast the value.
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
-
- return C;
-}
-
-
-ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
- LLVMContext &Context = Ty->getContext();
- APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
- apf.changeSign();
- return get(Context, apf);
-}
-
-
-Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
- Type *ScalarTy = Ty->getScalarType();
- if (ScalarTy->isFloatingPointTy()) {
- Constant *C = getNegativeZero(ScalarTy);
- if (VectorType *VTy = dyn_cast<VectorType>(Ty))
- return ConstantVector::getSplat(VTy->getNumElements(), C);
- return C;
- }
-
- return Constant::getNullValue(Ty);
-}
-
-
-// ConstantFP accessors.
-ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
- DenseMapAPFloatKeyInfo::KeyTy Key(V);
-
- LLVMContextImpl* pImpl = Context.pImpl;
-
- ConstantFP *&Slot = pImpl->FPConstants[Key];
-
- if (!Slot) {
- Type *Ty;
- if (&V.getSemantics() == &APFloat::IEEEhalf)
- Ty = Type::getHalfTy(Context);
- else if (&V.getSemantics() == &APFloat::IEEEsingle)
- Ty = Type::getFloatTy(Context);
- else if (&V.getSemantics() == &APFloat::IEEEdouble)
- Ty = Type::getDoubleTy(Context);
- else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
- Ty = Type::getX86_FP80Ty(Context);
- else if (&V.getSemantics() == &APFloat::IEEEquad)
- Ty = Type::getFP128Ty(Context);
- else {
- assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
- "Unknown FP format");
- Ty = Type::getPPC_FP128Ty(Context);
- }
- Slot = new ConstantFP(Ty, V);
- }
-
- return Slot;
-}
-
-ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
- const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
- return ConstantFP::get(Ty->getContext(),
- APFloat::getInf(Semantics, Negative));
-}
-
-ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
- : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
- assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
- "FP type Mismatch");
-}
-
-bool ConstantFP::isExactlyValue(const APFloat &V) const {
- return Val.bitwiseIsEqual(V);
-}
-
-//===----------------------------------------------------------------------===//
-// ConstantAggregateZero Implementation
-//===----------------------------------------------------------------------===//
-
-/// getSequentialElement - If this CAZ has array or vector type, return a zero
-/// with the right element type.
-Constant *ConstantAggregateZero::getSequentialElement() const {
- return Constant::getNullValue(getType()->getSequentialElementType());
-}
-
-/// getStructElement - If this CAZ has struct type, return a zero with the
-/// right element type for the specified element.
-Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
- return Constant::getNullValue(getType()->getStructElementType(Elt));
-}
-
-/// getElementValue - Return a zero of the right value for the specified GEP
-/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
-Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
- if (isa<SequentialType>(getType()))
- return getSequentialElement();
- return getStructElement(cast<ConstantInt>(C)->getZExtValue());
-}
-
-/// getElementValue - Return a zero of the right value for the specified GEP
-/// index.
-Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
- if (isa<SequentialType>(getType()))
- return getSequentialElement();
- return getStructElement(Idx);
-}
-
-
-//===----------------------------------------------------------------------===//
-// UndefValue Implementation
-//===----------------------------------------------------------------------===//
-
-/// getSequentialElement - If this undef has array or vector type, return an
-/// undef with the right element type.
-UndefValue *UndefValue::getSequentialElement() const {
- return UndefValue::get(getType()->getSequentialElementType());
-}
-
-/// getStructElement - If this undef has struct type, return a zero with the
-/// right element type for the specified element.
-UndefValue *UndefValue::getStructElement(unsigned Elt) const {
- return UndefValue::get(getType()->getStructElementType(Elt));
-}
-
-/// getElementValue - Return an undef of the right value for the specified GEP
-/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
-UndefValue *UndefValue::getElementValue(Constant *C) const {
- if (isa<SequentialType>(getType()))
- return getSequentialElement();
- return getStructElement(cast<ConstantInt>(C)->getZExtValue());
-}
-
-/// getElementValue - Return an undef of the right value for the specified GEP
-/// index.
-UndefValue *UndefValue::getElementValue(unsigned Idx) const {
- if (isa<SequentialType>(getType()))
- return getSequentialElement();
- return getStructElement(Idx);
-}
-
-
-
-//===----------------------------------------------------------------------===//
-// ConstantXXX Classes
-//===----------------------------------------------------------------------===//
-
-template <typename ItTy, typename EltTy>
-static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
- for (; Start != End; ++Start)
- if (*Start != Elt)
- return false;
- return true;
-}
-
-ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
- : Constant(T, ConstantArrayVal,
- OperandTraits<ConstantArray>::op_end(this) - V.size(),
- V.size()) {
- assert(V.size() == T->getNumElements() &&
- "Invalid initializer vector for constant array");
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- assert(V[i]->getType() == T->getElementType() &&
- "Initializer for array element doesn't match array element type!");
- std::copy(V.begin(), V.end(), op_begin());
-}
-
-Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
- // Empty arrays are canonicalized to ConstantAggregateZero.
- if (V.empty())
- return ConstantAggregateZero::get(Ty);
-
- for (unsigned i = 0, e = V.size(); i != e; ++i) {
- assert(V[i]->getType() == Ty->getElementType() &&
- "Wrong type in array element initializer");
- }
- LLVMContextImpl *pImpl = Ty->getContext().pImpl;
-
- // If this is an all-zero array, return a ConstantAggregateZero object. If
- // all undef, return an UndefValue, if "all simple", then return a
- // ConstantDataArray.
- Constant *C = V[0];
- if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
- return UndefValue::get(Ty);
-
- if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
- return ConstantAggregateZero::get(Ty);
-
- // Check to see if all of the elements are ConstantFP or ConstantInt and if
- // the element type is compatible with ConstantDataVector. If so, use it.
- if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
- // We speculatively build the elements here even if it turns out that there
- // is a constantexpr or something else weird in the array, since it is so
- // uncommon for that to happen.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getType()->isIntegerTy(8)) {
- SmallVector<uint8_t, 16> Elts;
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
- Elts.push_back(CI->getZExtValue());
- else
- break;
- if (Elts.size() == V.size())
- return ConstantDataArray::get(C->getContext(), Elts);
- } else if (CI->getType()->isIntegerTy(16)) {
- SmallVector<uint16_t, 16> Elts;
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
- Elts.push_back(CI->getZExtValue());
- else
- break;
- if (Elts.size() == V.size())
- return ConstantDataArray::get(C->getContext(), Elts);
- } else if (CI->getType()->isIntegerTy(32)) {
- SmallVector<uint32_t, 16> Elts;
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
- Elts.push_back(CI->getZExtValue());
- else
- break;
- if (Elts.size() == V.size())
- return ConstantDataArray::get(C->getContext(), Elts);
- } else if (CI->getType()->isIntegerTy(64)) {
- SmallVector<uint64_t, 16> Elts;
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
- Elts.push_back(CI->getZExtValue());
- else
- break;
- if (Elts.size() == V.size())
- return ConstantDataArray::get(C->getContext(), Elts);
- }
- }
-
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- if (CFP->getType()->isFloatTy()) {
- SmallVector<float, 16> Elts;
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
- Elts.push_back(CFP->getValueAPF().convertToFloat());
- else
- break;
- if (Elts.size() == V.size())
- return ConstantDataArray::get(C->getContext(), Elts);
- } else if (CFP->getType()->isDoubleTy()) {
- SmallVector<double, 16> Elts;
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
- Elts.push_back(CFP->getValueAPF().convertToDouble());
- else
- break;
- if (Elts.size() == V.size())
- return ConstantDataArray::get(C->getContext(), Elts);
- }
- }
- }
-
- // Otherwise, we really do want to create a ConstantArray.
- return pImpl->ArrayConstants.getOrCreate(Ty, V);
-}
-
-/// getTypeForElements - Return an anonymous struct type to use for a constant
-/// with the specified set of elements. The list must not be empty.
-StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
- ArrayRef<Constant*> V,
- bool Packed) {
- unsigned VecSize = V.size();
- SmallVector<Type*, 16> EltTypes(VecSize);
- for (unsigned i = 0; i != VecSize; ++i)
- EltTypes[i] = V[i]->getType();
-
- return StructType::get(Context, EltTypes, Packed);
-}
-
-
-StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
- bool Packed) {
- assert(!V.empty() &&
- "ConstantStruct::getTypeForElements cannot be called on empty list");
- return getTypeForElements(V[0]->getContext(), V, Packed);
-}
-
-
-ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
- : Constant(T, ConstantStructVal,
- OperandTraits<ConstantStruct>::op_end(this) - V.size(),
- V.size()) {
- assert(V.size() == T->getNumElements() &&
- "Invalid initializer vector for constant structure");
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
- "Initializer for struct element doesn't match struct element type!");
- std::copy(V.begin(), V.end(), op_begin());
-}
-
-// ConstantStruct accessors.
-Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
- assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
- "Incorrect # elements specified to ConstantStruct::get");
-
- // Create a ConstantAggregateZero value if all elements are zeros.
- bool isZero = true;
- bool isUndef = false;
-
- if (!V.empty()) {
- isUndef = isa<UndefValue>(V[0]);
- isZero = V[0]->isNullValue();
- if (isUndef || isZero) {
- for (unsigned i = 0, e = V.size(); i != e; ++i) {
- if (!V[i]->isNullValue())
- isZero = false;
- if (!isa<UndefValue>(V[i]))
- isUndef = false;
- }
- }
- }
- if (isZero)
- return ConstantAggregateZero::get(ST);
- if (isUndef)
- return UndefValue::get(ST);
-
- return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
-}
-
-Constant *ConstantStruct::get(StructType *T, ...) {
- va_list ap;
- SmallVector<Constant*, 8> Values;
- va_start(ap, T);
- while (Constant *Val = va_arg(ap, llvm::Constant*))
- Values.push_back(Val);
- va_end(ap);
- return get(T, Values);
-}
-
-ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
- : Constant(T, ConstantVectorVal,
- OperandTraits<ConstantVector>::op_end(this) - V.size(),
- V.size()) {
- for (size_t i = 0, e = V.size(); i != e; i++)
- assert(V[i]->getType() == T->getElementType() &&
- "Initializer for vector element doesn't match vector element type!");
- std::copy(V.begin(), V.end(), op_begin());
-}
-
-// ConstantVector accessors.
-Constant *ConstantVector::get(ArrayRef<Constant*> V) {
- assert(!V.empty() && "Vectors can't be empty");
- VectorType *T = VectorType::get(V.front()->getType(), V.size());
- LLVMContextImpl *pImpl = T->getContext().pImpl;
-
- // If this is an all-undef or all-zero vector, return a
- // ConstantAggregateZero or UndefValue.
- Constant *C = V[0];
- bool isZero = C->isNullValue();
- bool isUndef = isa<UndefValue>(C);
-
- if (isZero || isUndef) {
- for (unsigned i = 1, e = V.size(); i != e; ++i)
- if (V[i] != C) {
- isZero = isUndef = false;
- break;
- }
- }
-
- if (isZero)
- return ConstantAggregateZero::get(T);
- if (isUndef)
- return UndefValue::get(T);
-
- // Check to see if all of the elements are ConstantFP or ConstantInt and if
- // the element type is compatible with ConstantDataVector. If so, use it.
- if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
- // We speculatively build the elements here even if it turns out that there
- // is a constantexpr or something else weird in the array, since it is so
- // uncommon for that to happen.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getType()->isIntegerTy(8)) {
- SmallVector<uint8_t, 16> Elts;
- for (unsigned i = 0, e = V.size(); i != e; ++i)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))