aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize
diff options
context:
space:
mode:
authorAlexander Kornienko <alexfh@google.com>2013-03-14 10:51:38 +0000
committerAlexander Kornienko <alexfh@google.com>2013-03-14 10:51:38 +0000
commit647735c781c5b37061ee03d6e9e6c7dda92218e2 (patch)
tree5a5e56606d41060263048b5a5586b3d2380898ba /lib/Transforms/Vectorize
parent6aed25d93d1cfcde5809a73ffa7dc1b0d6396f66 (diff)
parentf635ef401786c84df32090251a8cf45981ecca33 (diff)
Updating branches/google/stable to r176857
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/google/stable@177040 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/Vectorize')
-rw-r--r--lib/Transforms/Vectorize/BBVectorize.cpp1108
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp2588
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.h458
-rw-r--r--lib/Transforms/Vectorize/Vectorize.cpp2
4 files changed, 2624 insertions, 1532 deletions
diff --git a/lib/Transforms/Vectorize/BBVectorize.cpp b/lib/Transforms/Vectorize/BBVectorize.cpp
index a48229132b..17900dabbe 100644
--- a/lib/Transforms/Vectorize/BBVectorize.cpp
+++ b/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -29,26 +29,25 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/TargetTransformInfo.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Type.h"
#include <algorithm>
-#include <map>
using namespace llvm;
static cl::opt<bool>
@@ -89,6 +88,10 @@ MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
cl::desc("The maximum number of pairable instructions per group"));
static cl::opt<unsigned>
+MaxPairs("bb-vectorize-max-pairs-per-group", cl::init(3000), cl::Hidden,
+ cl::desc("The maximum number of candidate instruction pairs per group"));
+
+static cl::opt<unsigned>
MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
" a full cycle check"));
@@ -199,9 +202,7 @@ namespace {
DT = &P->getAnalysis<DominatorTree>();
SE = &P->getAnalysis<ScalarEvolution>();
TD = P->getAnalysisIfAvailable<DataLayout>();
- TTI = IgnoreTargetInfo ? 0 :
- P->getAnalysisIfAvailable<TargetTransformInfo>();
- VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
+ TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis<TargetTransformInfo>();
}
typedef std::pair<Value *, Value *> ValuePair;
@@ -209,18 +210,12 @@ namespace {
typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
typedef std::pair<VPPair, unsigned> VPPairWithType;
- typedef std::pair<std::multimap<Value *, Value *>::iterator,
- std::multimap<Value *, Value *>::iterator> VPIteratorPair;
- typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
- std::multimap<ValuePair, ValuePair>::iterator>
- VPPIteratorPair;
AliasAnalysis *AA;
DominatorTree *DT;
ScalarEvolution *SE;
DataLayout *TD;
- TargetTransformInfo *TTI;
- const VectorTargetTransformInfo *VTTI;
+ const TargetTransformInfo *TTI;
// FIXME: const correct?
@@ -228,7 +223,7 @@ namespace {
bool getCandidatePairs(BasicBlock &BB,
BasicBlock::iterator &Start,
- std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
DenseSet<ValuePair> &FixedOrderPairs,
DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts, bool NonPow2Len);
@@ -242,33 +237,36 @@ namespace {
PairConnectionSplat
};
- void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes);
+ void computeConnectedPairs(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes);
void buildDepMap(BasicBlock &BB,
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &PairableInstUsers);
-
- void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
- DenseMap<ValuePair, int> &CandidatePairCostSavings,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
- DenseSet<ValuePair> &PairableInstUsers,
- DenseMap<Value *, Value *>& ChosenPairs);
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &PairableInstUsers);
+
+ void choosePairs(DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *>& ChosenPairs);
void fuseChosenPairs(BasicBlock &BB,
- std::vector<Value *> &PairableInsts,
- DenseMap<Value *, Value *>& ChosenPairs,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps);
+ std::vector<Value *> &PairableInsts,
+ DenseMap<Value *, Value *>& ChosenPairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps);
bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
@@ -280,56 +278,63 @@ namespace {
bool trackUsesOfI(DenseSet<Value *> &Users,
AliasSetTracker &WriteSet, Instruction *I,
Instruction *J, bool UpdateUsers = true,
- std::multimap<Value *, Value *> *LoadMoveSet = 0);
+ DenseSet<ValuePair> *LoadMoveSetPairs = 0);
- void computePairsConnectedTo(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- ValuePair P);
+ void computePairsConnectedTo(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ ValuePair P);
bool pairsConflict(ValuePair P, ValuePair Q,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> >
+ *PairableInstUserMap = 0,
+ DenseSet<VPPair> *PairableInstUserPairSet = 0);
bool pairWillFormCycle(ValuePair P,
- std::multimap<ValuePair, ValuePair> &PairableInstUsers,
- DenseSet<ValuePair> &CurrentPairs);
-
- void pruneTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseMap<ValuePair, size_t> &Tree,
- DenseSet<ValuePair> &PrunedTree, ValuePair J,
- bool UseCycleCheck);
-
- void buildInitialTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseSet<ValuePair> &PairableInstUsers,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseMap<ValuePair, size_t> &Tree, ValuePair J);
-
- void findBestTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- DenseMap<ValuePair, int> &CandidatePairCostSavings,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
- int &BestEffSize, VPIteratorPair ChoiceRange,
- bool UseCycleCheck);
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
+ DenseSet<ValuePair> &CurrentPairs);
+
+ void pruneDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG,
+ DenseSet<ValuePair> &PrunedDAG, ValuePair J,
+ bool UseCycleCheck);
+
+ void buildInitialDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG, ValuePair J);
+
+ void findBestDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
+ int &BestEffSize, Value *II, std::vector<Value *>&JJ,
+ bool UseCycleCheck);
Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
Instruction *J, unsigned o);
@@ -361,20 +366,22 @@ namespace {
void collectPairLoadMoveSet(BasicBlock &BB,
DenseMap<Value *, Value *> &ChosenPairs,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *I);
void collectLoadMoveSet(BasicBlock &BB,
std::vector<Value *> &PairableInsts,
DenseMap<Value *, Value *> &ChosenPairs,
- std::multimap<Value *, Value *> &LoadMoveSet);
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs);
bool canMoveUsesOfIAfterJ(BasicBlock &BB,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *I, Instruction *J);
void moveUsesOfIAfterJ(BasicBlock &BB,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *&InsertionPt,
Instruction *I, Instruction *J);
@@ -387,7 +394,7 @@ namespace {
return false;
}
- DEBUG(if (VTTI) dbgs() << "BBV: using target information\n");
+ DEBUG(if (TTI) dbgs() << "BBV: using target information\n");
bool changed = false;
// Iterate a sufficient number of times to merge types of size 1 bit,
@@ -395,7 +402,7 @@ namespace {
// target vector register.
unsigned n = 1;
for (unsigned v = 2;
- (VTTI || v <= Config.VectorBits) &&
+ (TTI || v <= Config.VectorBits) &&
(!Config.MaxIter || n <= Config.MaxIter);
v *= 2, ++n) {
DEBUG(dbgs() << "BBV: fusing loop #" << n <<
@@ -426,9 +433,7 @@ namespace {
DT = &getAnalysis<DominatorTree>();
SE = &getAnalysis<ScalarEvolution>();
TD = getAnalysisIfAvailable<DataLayout>();
- TTI = IgnoreTargetInfo ? 0 :
- getAnalysisIfAvailable<TargetTransformInfo>();
- VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
+ TTI = IgnoreTargetInfo ? 0 : &getAnalysis<TargetTransformInfo>();
return vectorizeBB(BB);
}
@@ -438,6 +443,7 @@ namespace {
AU.addRequired<AliasAnalysis>();
AU.addRequired<DominatorTree>();
AU.addRequired<ScalarEvolution>();
+ AU.addRequired<TargetTransformInfo>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
@@ -467,18 +473,18 @@ namespace {
static inline void getInstructionTypes(Instruction *I,
Type *&T1, Type *&T2) {
- if (isa<StoreInst>(I)) {
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// For stores, it is the value type, not the pointer type that matters
// because the value is what will come from a vector register.
- Value *IVal = cast<StoreInst>(I)->getValueOperand();
+ Value *IVal = SI->getValueOperand();
T1 = IVal->getType();
} else {
T1 = I->getType();
}
- if (I->isCast())
- T2 = cast<CastInst>(I)->getSrcTy();
+ if (CastInst *CI = dyn_cast<CastInst>(I))
+ T2 = CI->getSrcTy();
else
T2 = T1;
@@ -504,7 +510,7 @@ namespace {
// InsertElement and ExtractElement have a depth factor of zero. This is
// for two reasons: First, they cannot be usefully fused. Second, because
// the pass generates a lot of these, they can confuse the simple metric
- // used to compare the trees in the next iteration. Thus, giving them a
+ // used to compare the dags in the next iteration. Thus, giving them a
// weight of zero allows the pass to essentially ignore them in
// subsequent iterations when looking for vectorization opportunities
// while still tracking dependency chains that flow through those
@@ -520,7 +526,7 @@ namespace {
return 1;
}
- // Returns the cost of the provided instruction using VTTI.
+ // Returns the cost of the provided instruction using TTI.
// This does not handle loads and stores.
unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) {
switch (Opcode) {
@@ -531,7 +537,7 @@ namespace {
// generate vector GEPs.
return 0;
case Instruction::Br:
- return VTTI->getCFInstrCost(Opcode);
+ return TTI->getCFInstrCost(Opcode);
case Instruction::PHI:
return 0;
case Instruction::Add:
@@ -552,11 +558,11 @@ namespace {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
- return VTTI->getArithmeticInstrCost(Opcode, T1);
+ return TTI->getArithmeticInstrCost(Opcode, T1);
case Instruction::Select:
case Instruction::ICmp:
case Instruction::FCmp:
- return VTTI->getCmpSelInstrCost(Opcode, T1, T2);
+ return TTI->getCmpSelInstrCost(Opcode, T1, T2);
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
@@ -570,7 +576,7 @@ namespace {
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::ShuffleVector:
- return VTTI->getCastInstrCost(Opcode, T1, T2);
+ return TTI->getCastInstrCost(Opcode, T1, T2);
}
return 1;
@@ -642,7 +648,7 @@ namespace {
Function *F = I->getCalledFunction();
if (!F) return false;
- unsigned IID = F->getIntrinsicID();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
if (!IID) return false;
switch(IID) {
@@ -660,23 +666,11 @@ namespace {
case Intrinsic::pow:
return Config.VectorizeMath;
case Intrinsic::fma:
+ case Intrinsic::fmuladd:
return Config.VectorizeFMA;
}
}
- // Returns true if J is the second element in some pair referenced by
- // some multimap pair iterator pair.
- template <typename V>
- bool isSecondInIteratorPair(V J, std::pair<
- typename std::multimap<V, V>::iterator,
- typename std::multimap<V, V>::iterator> PairRange) {
- for (typename std::multimap<V, V>::iterator K = PairRange.first;
- K != PairRange.second; ++K)
- if (K->second == J) return true;
-
- return false;
- }
-
bool isPureIEChain(InsertElementInst *IE) {
InsertElementInst *IENext = IE;
do {
@@ -701,11 +695,12 @@ namespace {
DenseMap<Value *, Value *> AllChosenPairs;
DenseSet<ValuePair> AllFixedOrderPairs;
DenseMap<VPPair, unsigned> AllPairConnectionTypes;
- std::multimap<ValuePair, ValuePair> AllConnectedPairs, AllConnectedPairDeps;
+ DenseMap<ValuePair, std::vector<ValuePair> > AllConnectedPairs,
+ AllConnectedPairDeps;
do {
std::vector<Value *> PairableInsts;
- std::multimap<Value *, Value *> CandidatePairs;
+ DenseMap<Value *, std::vector<Value *> > CandidatePairs;
DenseSet<ValuePair> FixedOrderPairs;
DenseMap<ValuePair, int> CandidatePairCostSavings;
ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
@@ -714,6 +709,14 @@ namespace {
PairableInsts, NonPow2Len);
if (PairableInsts.empty()) continue;
+ // Build the candidate pair set for faster lookups.
+ DenseSet<ValuePair> CandidatePairsSet;
+ for (DenseMap<Value *, std::vector<Value *> >::iterator I =
+ CandidatePairs.begin(), E = CandidatePairs.end(); I != E; ++I)
+ for (std::vector<Value *>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ CandidatePairsSet.insert(ValuePair(I->first, *J));
+
// Now we have a map of all of the pairable instructions and we need to
// select the best possible pairing. A good pairing is one such that the
// users of the pair are also paired. This defines a (directed) forest
@@ -723,30 +726,33 @@ namespace {
// Note that it only matters that both members of the second pair use some
// element of the first pair (to allow for splatting).
- std::multimap<ValuePair, ValuePair> ConnectedPairs, ConnectedPairDeps;
+ DenseMap<ValuePair, std::vector<ValuePair> > ConnectedPairs,
+ ConnectedPairDeps;
DenseMap<VPPair, unsigned> PairConnectionTypes;
- computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs,
- PairConnectionTypes);
+ computeConnectedPairs(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs, PairConnectionTypes);
if (ConnectedPairs.empty()) continue;
- for (std::multimap<ValuePair, ValuePair>::iterator
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
- I != IE; ++I) {
- ConnectedPairDeps.insert(VPPair(I->second, I->first));
- }
+ I != IE; ++I)
+ for (std::vector<ValuePair>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ ConnectedPairDeps[*J].push_back(I->first);
// Build the pairable-instruction dependency map
DenseSet<ValuePair> PairableInstUsers;
buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
// There is now a graph of the connected pairs. For each variable, pick
- // the pairing with the largest tree meeting the depth requirement on at
- // least one branch. Then select all pairings that are part of that tree
+ // the pairing with the largest dag meeting the depth requirement on at
+ // least one branch. Then select all pairings that are part of that dag
// and remove them from the list of available pairings and pairable
// variables.
DenseMap<Value *, Value *> ChosenPairs;
- choosePairs(CandidatePairs, CandidatePairCostSavings,
+ choosePairs(CandidatePairs, CandidatePairsSet,
+ CandidatePairCostSavings,
PairableInsts, FixedOrderPairs, PairConnectionTypes,
ConnectedPairs, ConnectedPairDeps,
PairableInstUsers, ChosenPairs);
@@ -780,14 +786,15 @@ namespace {
}
}
- for (std::multimap<ValuePair, ValuePair>::iterator
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator
I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
- I != IE; ++I) {
- if (AllPairConnectionTypes.count(*I)) {
- AllConnectedPairs.insert(*I);
- AllConnectedPairDeps.insert(VPPair(I->second, I->first));
- }
- }
+ I != IE; ++I)
+ for (std::vector<ValuePair>::iterator J = I->second.begin(),
+ JE = I->second.end(); J != JE; ++J)
+ if (AllPairConnectionTypes.count(VPPair(I->first, *J))) {
+ AllConnectedPairs[I->first].push_back(*J);
+ AllConnectedPairDeps[*J].push_back(I->first);
+ }
} while (ShouldContinue);
if (AllChosenPairs.empty()) return false;
@@ -903,8 +910,8 @@ namespace {
T2->getScalarType()->isPointerTy()))
return false;
- if (!VTTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
- T2->getPrimitiveSizeInBits() >= Config.VectorBits))
+ if (!TTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
+ T2->getPrimitiveSizeInBits() >= Config.VectorBits))
return false;
return true;
@@ -913,7 +920,7 @@ namespace {
// This function returns true if the two provided instructions are compatible
// (meaning that they can be fused into a vector instruction). This assumes
// that I has already been determined to be vectorizable and that J is not
- // in the use tree of I.
+ // in the use dag of I.
bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
bool IsSimpleLoadStore, bool NonPow2Len,
int &CostSavings, int &FixedOrder) {
@@ -935,7 +942,7 @@ namespace {
unsigned MaxTypeBits = std::max(
IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
- if (!VTTI && MaxTypeBits > Config.VectorBits)
+ if (!TTI && MaxTypeBits > Config.VectorBits)
return false;
// FIXME: handle addsub-type operations!
@@ -967,21 +974,26 @@ namespace {
return false;
}
- if (VTTI) {
- unsigned ICost = VTTI->getMemoryOpCost(I->getOpcode(), I->getType(),
- IAlignment, IAddressSpace);
- unsigned JCost = VTTI->getMemoryOpCost(J->getOpcode(), J->getType(),
- JAlignment, JAddressSpace);
- unsigned VCost = VTTI->getMemoryOpCost(I->getOpcode(), VType,
- BottomAlignment,
- IAddressSpace);
+ if (TTI) {
+ unsigned ICost = TTI->getMemoryOpCost(I->getOpcode(), aTypeI,
+ IAlignment, IAddressSpace);
+ unsigned JCost = TTI->getMemoryOpCost(J->getOpcode(), aTypeJ,
+ JAlignment, JAddressSpace);
+ unsigned VCost = TTI->getMemoryOpCost(I->getOpcode(), VType,
+ BottomAlignment,
+ IAddressSpace);
+
+ ICost += TTI->getAddressComputationCost(aTypeI);
+ JCost += TTI->getAddressComputationCost(aTypeJ);
+ VCost += TTI->getAddressComputationCost(VType);
+
if (VCost > ICost + JCost)
return false;
// We don't want to fuse to a type that will be split, even
// if the two input types will also be split and there is no other
// associated cost.
- unsigned VParts = VTTI->getNumberOfParts(VType);
+ unsigned VParts = TTI->getNumberOfParts(VType);
if (VParts > 1)
return false;
else if (!VParts && VCost == ICost + JCost)
@@ -992,11 +1004,17 @@ namespace {
} else {
return false;
}
- } else if (VTTI) {
+ } else if (TTI) {
unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
Type *VT1 = getVecTypeForPair(IT1, JT1),
*VT2 = getVecTypeForPair(IT2, JT2);
+
+ // Note that this procedure is incorrect for insert and extract element
+ // instructions (because combining these often results in a shuffle),
+ // but this cost is ignored (because insert and extract element
+ // instructions are assigned a zero depth factor and are not really
+ // fused in general).
unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2);
if (VCost > ICost + JCost)
@@ -1005,8 +1023,8 @@ namespace {
// We don't want to fuse to a type that will be split, even
// if the two input types will also be split and there is no other
// associated cost.
- unsigned VParts1 = VTTI->getNumberOfParts(VT1),
- VParts2 = VTTI->getNumberOfParts(VT2);
+ unsigned VParts1 = TTI->getNumberOfParts(VT1),
+ VParts2 = TTI->getNumberOfParts(VT2);
if (VParts1 > 1 || VParts2 > 1)
return false;
else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
@@ -1019,14 +1037,67 @@ namespace {
// vectorized, the second arguments must be equal.
CallInst *CI = dyn_cast<CallInst>(I);
Function *FI;
- if (CI && (FI = CI->getCalledFunction()) &&
- FI->getIntrinsicID() == Intrinsic::powi) {
-
- Value *A1I = CI->getArgOperand(1),
- *A1J = cast<CallInst>(J)->getArgOperand(1);
- const SCEV *A1ISCEV = SE->getSCEV(A1I),
- *A1JSCEV = SE->getSCEV(A1J);
- return (A1ISCEV == A1JSCEV);
+ if (CI && (FI = CI->getCalledFunction())) {
+ Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
+ if (IID == Intrinsic::powi) {
+ Value *A1I = CI->getArgOperand(1),
+ *A1J = cast<CallInst>(J)->getArgOperand(1);
+ const SCEV *A1ISCEV = SE->getSCEV(A1I),
+ *A1JSCEV = SE->getSCEV(A1J);
+ return (A1ISCEV == A1JSCEV);
+ }
+
+ if (IID && TTI) {
+ SmallVector<Type*, 4> Tys;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ unsigned ICost = TTI->getIntrinsicInstrCost(IID, IT1, Tys);
+
+ Tys.clear();
+ CallInst *CJ = cast<CallInst>(J);
+ for (unsigned i = 0, ie = CJ->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(CJ->getArgOperand(i)->getType());
+ unsigned JCost = TTI->getIntrinsicInstrCost(IID, JT1, Tys);
+
+ Tys.clear();
+ assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
+ "Intrinsic argument counts differ");
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (IID == Intrinsic::powi && i == 1)
+ Tys.push_back(CI->getArgOperand(i)->getType());
+ else
+ Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
+ CJ->getArgOperand(i)->getType()));
+ }
+
+ Type *RetTy = getVecTypeForPair(IT1, JT1);
+ unsigned VCost = TTI->getIntrinsicInstrCost(IID, RetTy, Tys);
+
+ if (VCost > ICost + JCost)
+ return false;
+
+ // We don't want to fuse to a type that will be split, even
+ // if the two input types will also be split and there is no other
+ // associated cost.
+ unsigned RetParts = TTI->getNumberOfParts(RetTy);
+ if (RetParts > 1)
+ return false;
+ else if (!RetParts && VCost == ICost + JCost)
+ return false;
+
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ if (!Tys[i]->isVectorTy())
+ continue;
+
+ unsigned NumParts = TTI->getNumberOfParts(Tys[i]);
+ if (NumParts > 1)
+ return false;
+ else if (!NumParts && VCost == ICost + JCost)
+ return false;
+ }
+
+ CostSavings = ICost + JCost - VCost;
+ }
}
return true;
@@ -1040,7 +1111,7 @@ namespace {
// to contain any memory locations to which J writes. The function returns
// true if J uses I. By default, alias analysis is used to determine
// whether J reads from memory that overlaps with a location in WriteSet.
- // If LoadMoveSet is not null, then it is a previously-computed multimap
+ // If LoadMoveSet is not null, then it is a previously-computed map
// where the key is the memory-based user instruction and the value is
// the instruction to be compared with I. So, if LoadMoveSet is provided,
// then the alias analysis is not used. This is necessary because this
@@ -1050,7 +1121,7 @@ namespace {
bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
AliasSetTracker &WriteSet, Instruction *I,
Instruction *J, bool UpdateUsers,
- std::multimap<Value *, Value *> *LoadMoveSet) {
+ DenseSet<ValuePair> *LoadMoveSetPairs) {
bool UsesI = false;
// This instruction may already be marked as a user due, for example, to
@@ -1068,9 +1139,8 @@ namespace {
}
}
if (!UsesI && J->mayReadFromMemory()) {
- if (LoadMoveSet) {
- VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
- UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
+ if (LoadMoveSetPairs) {
+ UsesI = LoadMoveSetPairs->count(ValuePair(J, I));
} else {
for (AliasSetTracker::iterator W = WriteSet.begin(),
WE = WriteSet.end(); W != WE; ++W) {
@@ -1094,10 +1164,11 @@ namespace {
// basic block and collects all candidate pairs for vectorization.
bool BBVectorize::getCandidatePairs(BasicBlock &BB,
BasicBlock::iterator &Start,
- std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
DenseSet<ValuePair> &FixedOrderPairs,
DenseMap<ValuePair, int> &CandidatePairCostSavings,
std::vector<Value *> &PairableInsts, bool NonPow2Len) {
+ size_t TotalPairs = 0;
BasicBlock::iterator E = BB.end();
if (Start == E) return false;
@@ -1143,8 +1214,9 @@ namespace {
PairableInsts.push_back(I);
}
- CandidatePairs.insert(ValuePair(I, J));
- if (VTTI)
+ CandidatePairs[I].push_back(J);
+ ++TotalPairs;
+ if (TTI)
CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
CostSavings));
@@ -1167,7 +1239,8 @@ namespace {
// If we have already found too many pairs, break here and this function
// will be called again starting after the last instruction selected
// during this invocation.
- if (PairableInsts.size() >= Config.MaxInsts) {
+ if (PairableInsts.size() >= Config.MaxInsts ||
+ TotalPairs >= Config.MaxPairs) {
ShouldContinue = true;
break;
}
@@ -1187,11 +1260,12 @@ namespace {
// it looks for pairs such that both members have an input which is an
// output of PI or PJ.
void BBVectorize::computePairsConnectedTo(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- ValuePair P) {
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ ValuePair P) {
StoreInst *SI, *SJ;
// For each possible pairing for this variable, look at the uses of
@@ -1209,8 +1283,6 @@ namespace {
continue;
}
- VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
-
// For each use of the first variable, look for uses of the second
// variable...
for (Value::use_iterator J = P.second->use_begin(),
@@ -1219,19 +1291,17 @@ namespace {
P.second == SJ->getPointerOperand())
continue;
- VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
-
// Look for <I, J>:
- if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
VPPair VP(P, ValuePair(*I, *J));
- ConnectedPairs.insert(VP);
+ ConnectedPairs[VP.first].push_back(VP.second);
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
}
// Look for <J, I>:
- if (isSecondInIteratorPair<Value*>(*I, JPairRange)) {
+ if (CandidatePairsSet.count(ValuePair(*J, *I))) {
VPPair VP(P, ValuePair(*J, *I));
- ConnectedPairs.insert(VP);
+ ConnectedPairs[VP.first].push_back(VP.second);
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
}
}
@@ -1244,9 +1314,9 @@ namespace {
P.first == SJ->getPointerOperand())
continue;
- if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
VPPair VP(P, ValuePair(*I, *J));
- ConnectedPairs.insert(VP);
+ ConnectedPairs[VP.first].push_back(VP.second);
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
}
}
@@ -1263,16 +1333,14 @@ namespace {
P.second == SI->getPointerOperand())
continue;
- VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
-
for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
if ((SJ = dyn_cast<StoreInst>(*J)) &&
P.second == SJ->getPointerOperand())
continue;
- if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
+ if (CandidatePairsSet.count(ValuePair(*I, *J))) {
VPPair VP(P, ValuePair(*I, *J));
- ConnectedPairs.insert(VP);
+ ConnectedPairs[VP.first].push_back(VP.second);
PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
}
}
@@ -1283,55 +1351,73 @@ namespace {
// connected if some output of the first pair forms an input to both members
// of the second pair.
void BBVectorize::computeConnectedPairs(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes) {
-
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes) {
for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
PE = PairableInsts.end(); PI != PE; ++PI) {
- VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
+ DenseMap<Value *, std::vector<Value *> >::iterator PP =
+ CandidatePairs.find(*PI);
+ if (PP == CandidatePairs.end())
+ continue;
- for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
- P != choiceRange.second; ++P)
- computePairsConnectedTo(CandidatePairs, PairableInsts,
- ConnectedPairs, PairConnectionTypes, *P);
+ for (std::vector<Value *>::iterator P = PP->second.begin(),
+ E = PP->second.end(); P != E; ++P)
+ computePairsConnectedTo(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs,
+ PairConnectionTypes, ValuePair(*PI, *P));
}
- DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
+ DEBUG(size_t TotalPairs = 0;
+ for (DenseMap<ValuePair, std::vector<ValuePair> >::iterator I =
+ ConnectedPairs.begin(), IE = ConnectedPairs.end(); I != IE; ++I)
+ TotalPairs += I->second.size();
+ dbgs() << "BBV: found " << TotalPairs
<< " pair connections.\n");
}
// This function builds a set of use tuples such that <A, B> is in the set
- // if B is in the use tree of A. If B is in the use tree of A, then B
+ // if B is in the use dag of A. If B is in the use dag of A, then B
// depends on the output of A.
void BBVectorize::buildDepMap(
BasicBlock &BB,
- std::multimap<Value *, Value *> &CandidatePairs,
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
std::vector<Value *> &PairableInsts,
DenseSet<ValuePair> &PairableInstUsers) {
DenseSet<Value *> IsInPair;
- for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
- E = CandidatePairs.end(); C != E; ++C) {
+ for (DenseMap<Value *, std::vector<Value *> >::iterator C =
+ CandidatePairs.begin(), E = CandidatePairs.end(); C != E; ++C) {
IsInPair.insert(C->first);
- IsInPair.insert(C->second);
+ IsInPair.insert(C->second.begin(), C->second.end());
}
- // Iterate through the basic block, recording all Users of each
+ // Iterate through the basic block, recording all users of each
// pairable instruction.
- BasicBlock::iterator E = BB.end();
+ BasicBlock::iterator E = BB.end(), EL =
+ BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
if (IsInPair.find(I) == IsInPair.end()) continue;
DenseSet<Value *> Users;
AliasSetTracker WriteSet(*AA);
- for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
+ for (BasicBlock::iterator J = llvm::next(I); J != E; ++J) {
(void) trackUsesOfI(Users, WriteSet, I, J);
+ if (J == EL)
+ break;
+ }
+
for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
- U != E; ++U)
+ U != E; ++U) {
+ if (IsInPair.find(*U) == IsInPair.end()) continue;
PairableInstUsers.insert(ValuePair(I, *U));
+ }
+
+ if (I == EL)
+ break;
}
}
@@ -1339,8 +1425,9 @@ namespace {
// input of pair Q is an output of pair P. If this is the case, then these
// two pairs cannot be simultaneously fused.
bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > *PairableInstUserMap,
+ DenseSet<VPPair> *PairableInstUserPairSet) {
// Two pairs are in conflict if they are mutual Users of eachother.
bool QUsesP = PairableInstUsers.count(ValuePair(P.first, Q.first)) ||
PairableInstUsers.count(ValuePair(P.first, Q.second)) ||
@@ -1353,17 +1440,14 @@ namespace {
if (PairableInstUserMap) {
// FIXME: The expensive part of the cycle check is not so much the cycle
// check itself but this edge insertion procedure. This needs some
- // profiling and probably a different data structure (same is true of
- // most uses of std::multimap).
+ // profiling and probably a different data structure.
if (PUsesQ) {
- VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
- if (!isSecondInIteratorPair(P, QPairRange))
- PairableInstUserMap->insert(VPPair(Q, P));
+ if (PairableInstUserPairSet->insert(VPPair(Q, P)).second)
+ (*PairableInstUserMap)[Q].push_back(P);
}
if (QUsesP) {
- VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
- if (!isSecondInIteratorPair(Q, PPairRange))
- PairableInstUserMap->insert(VPPair(P, Q));
+ if (PairableInstUserPairSet->insert(VPPair(P, Q)).second)
+ (*PairableInstUserMap)[P].push_back(Q);
}
}
@@ -1373,8 +1457,8 @@ namespace {
// This function walks the use graph of current pairs to see if, starting
// from P, the walk returns to P.
bool BBVectorize::pairWillFormCycle(ValuePair P,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseSet<ValuePair> &CurrentPairs) {
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<ValuePair> &CurrentPairs) {
DEBUG(if (DebugCycleCheck)
dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
<< *P.second << "\n");
@@ -1391,36 +1475,41 @@ namespace {
DEBUG(if (DebugCycleCheck)
dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
<< *QTop.second << "\n");
- VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
- for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
- C != QPairRange.second; ++C) {
- if (C->second == P) {
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ PairableInstUserMap.find(QTop);
+ if (QQ == PairableInstUserMap.end())
+ continue;
+
+ for (std::vector<ValuePair>::iterator C = QQ->second.begin(),
+ CE = QQ->second.end(); C != CE; ++C) {
+ if (*C == P) {
DEBUG(dbgs()
<< "BBV: rejected to prevent non-trivial cycle formation: "
- << *C->first.first << " <-> " << *C->first.second << "\n");
+ << QTop.first << " <-> " << C->second << "\n");
return true;
}
- if (CurrentPairs.count(C->second) && !Visited.count(C->second))
- Q.push_back(C->second);
+ if (CurrentPairs.count(*C) && !Visited.count(*C))
+ Q.push_back(*C);
}
} while (!Q.empty());
return false;
}
- // This function builds the initial tree of connected pairs with the
+ // This function builds the initial dag of connected pairs with the
// pair J at the root.
- void BBVectorize::buildInitialTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseSet<ValuePair> &PairableInstUsers,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
- // Each of these pairs is viewed as the root node of a Tree. The Tree
+ void BBVectorize::buildInitialDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG, ValuePair J) {
+ // Each of these pairs is viewed as the root node of a DAG. The DAG
// is then walked (depth-first). As this happens, we keep track of
- // the pairs that compose the Tree and the maximum depth of the Tree.
+ // the pairs that compose the DAG and the maximum depth of the DAG.
SmallVector<ValuePairWithDepth, 32> Q;
// General depth-first post-order traversal:
Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
@@ -1430,69 +1519,65 @@ namespace {
// Push each child onto the queue:
bool MoreChildren = false;
size_t MaxChildDepth = QTop.second;
- VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
- for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
- k != qtRange.second; ++k) {
- // Make sure that this child pair is still a candidate:
- bool IsStillCand = false;
- VPIteratorPair checkRange =
- CandidatePairs.equal_range(k->second.first);
- for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
- m != checkRange.second; ++m) {
- if (m->second == k->second.second) {
- IsStillCand = true;
- break;
- }
- }
-
- if (IsStillCand) {
- DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
- if (C == Tree.end()) {
- size_t d = getDepthFactor(k->second.first);
- Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
- MoreChildren = true;
- } else {
- MaxChildDepth = std::max(MaxChildDepth, C->second);
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ ConnectedPairs.find(QTop.first);
+ if (QQ != ConnectedPairs.end())
+ for (std::vector<ValuePair>::iterator k = QQ->second.begin(),
+ ke = QQ->second.end(); k != ke; ++k) {
+ // Make sure that this child pair is still a candidate:
+ if (CandidatePairsSet.count(*k)) {
+ DenseMap<ValuePair, size_t>::iterator C = DAG.find(*k);
+ if (C == DAG.end()) {
+ size_t d = getDepthFactor(k->first);
+ Q.push_back(ValuePairWithDepth(*k, QTop.second+d));
+ MoreChildren = true;
+ } else {
+ MaxChildDepth = std::max(MaxChildDepth, C->second);
+ }
}
}
- }
if (!MoreChildren) {
- // Record the current pair as part of the Tree:
- Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
+ // Record the current pair as part of the DAG:
+ DAG.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
Q.pop_back();
}
} while (!Q.empty());
}
- // Given some initial tree, prune it by removing conflicting pairs (pairs
+ // Given some initial dag, prune it by removing conflicting pairs (pairs
// that cannot be simultaneously chosen for vectorization).
- void BBVectorize::pruneTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- std::vector<Value *> &PairableInsts,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseMap<ValuePair, size_t> &Tree,
- DenseSet<ValuePair> &PrunedTree, ValuePair J,
- bool UseCycleCheck) {
+ void BBVectorize::pruneDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ std::vector<Value *> &PairableInsts,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseMap<ValuePair, size_t> &DAG,
+ DenseSet<ValuePair> &PrunedDAG, ValuePair J,
+ bool UseCycleCheck) {
SmallVector<ValuePairWithDepth, 32> Q;
// General depth-first post-order traversal:
Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
do {
ValuePairWithDepth QTop = Q.pop_back_val();
- PrunedTree.insert(QTop.first);
+ PrunedDAG.insert(QTop.first);
// Visit each child, pruning as necessary...
SmallVector<ValuePairWithDepth, 8> BestChildren;
- VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
- for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
- K != QTopRange.second; ++K) {
- DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
- if (C == Tree.end()) continue;
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator QQ =
+ ConnectedPairs.find(QTop.first);
+ if (QQ == ConnectedPairs.end())
+ continue;
+
+ for (std::vector<ValuePair>::iterator K = QQ->second.begin(),
+ KE = QQ->second.end(); K != KE; ++K) {
+ DenseMap<ValuePair, size_t>::iterator C = DAG.find(*K);
+ if (C == DAG.end()) continue;
- // This child is in the Tree, now we need to make sure it is the
+ // This child is in the DAG, now we need to make sure it is the
// best of any conflicting children. There could be multiple
// conflicting children, so first, determine if we're keeping
// this child, then delete conflicting children as necessary.
@@ -1506,7 +1591,7 @@ namespace {
// fusing (a,b) we have y .. a/b .. x where y is an input
// to a/b and x is an output to a/b: x and y can no longer
// be legally fused. To prevent this condition, we must
- // make sure that a child pair added to the Tree is not
+ // make sure that a child pair added to the DAG is not
// both an input and output of an already-selected pair.
// Pairing-induced dependencies can also form from more complicated
@@ -1525,7 +1610,8 @@ namespace {
C2->first.second == C->first.first ||
C2->first.second == C->first.second ||
pairsConflict(C2->first, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
if (C2->second >= C->second) {
CanAdd = false;
break;
@@ -1537,15 +1623,16 @@ namespace {
if (!CanAdd) continue;
// Even worse, this child could conflict with another node already
- // selected for the Tree. If that is the case, ignore this child.
- for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
- E2 = PrunedTree.end(); T != E2; ++T) {
+ // selected for the DAG. If that is the case, ignore this child.
+ for (DenseSet<ValuePair>::iterator T = PrunedDAG.begin(),
+ E2 = PrunedDAG.end(); T != E2; ++T) {
if (T->first == C->first.first ||
T->first == C->first.second ||
T->second == C->first.first ||
T->second == C->first.second ||
pairsConflict(*T, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
CanAdd = false;
break;
}
@@ -1562,7 +1649,8 @@ namespace {
C2->first.second == C->first.first ||
C2->first.second == C->first.second ||
pairsConflict(C2->first, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
CanAdd = false;
break;
}
@@ -1577,7 +1665,8 @@ namespace {
ChosenPairs.begin(), E2 = ChosenPairs.end();
C2 != E2; ++C2) {
if (pairsConflict(*C2, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
CanAdd = false;
break;
}
@@ -1589,7 +1678,7 @@ namespace {
// To check for non-trivial cycles formed by the addition of the
// current pair we've formed a list of all relevant pairs, now use a
// graph walk to check for a cycle. We start from the current pair and
- // walk the use tree to see if we again reach the current pair. If we
+ // walk the use dag to see if we again reach the current pair. If we
// do, then the current pair is rejected.
// FIXME: It may be more efficient to use a topological-ordering
@@ -1626,34 +1715,40 @@ namespace {
} while (!Q.empty());
}
- // This function finds the best tree of mututally-compatible connected
+ // This function finds the best dag of mututally-compatible connected
// pairs, given the choice of root pairs as an iterator range.
- void BBVectorize::findBestTreeFor(
- std::multimap<Value *, Value *> &CandidatePairs,
- DenseMap<ValuePair, int> &CandidatePairCostSavings,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
- DenseSet<ValuePair> &PairableInstUsers,
- std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
- int &BestEffSize, VPIteratorPair ChoiceRange,
- bool UseCycleCheck) {
- for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
- J != ChoiceRange.second; ++J) {
+ void BBVectorize::findBestDAGFor(
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUserMap,
+ DenseSet<VPPair> &PairableInstUserPairSet,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &BestDAG, size_t &BestMaxDepth,
+ int &BestEffSize, Value *II, std::vector<Value *>&JJ,
+ bool UseCycleCheck) {
+ for (std::vector<Value *>::iterator J = JJ.begin(), JE = JJ.end();
+ J != JE; ++J) {
+ ValuePair IJ(II, *J);
+ if (!CandidatePairsSet.count(IJ))
+ continue;
// Before going any further, make sure that this pair does not
// conflict with any already-selected pairs (see comment below
- // near the Tree pruning for more details).
+ // near the DAG pruning for more details).
DenseSet<ValuePair> ChosenPairSet;
bool DoesConflict = false;
for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
E = ChosenPairs.end(); C != E; ++C) {
- if (pairsConflict(*C, *J, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0)) {
+ if (pairsConflict(*C, IJ, PairableInstUsers,
+ UseCycleCheck ? &PairableInstUserMap : 0,
+ UseCycleCheck ? &PairableInstUserPairSet : 0)) {
DoesConflict = true;
break;
}
@@ -1663,40 +1758,42 @@ namespace {
if (DoesConflict) continue;
if (UseCycleCheck &&
- pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
+ pairWillFormCycle(IJ, PairableInstUserMap, ChosenPairSet))
continue;
- DenseMap<ValuePair, size_t> Tree;
- buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
- PairableInstUsers, ChosenPairs, Tree, *J);
+ DenseMap<ValuePair, size_t> DAG;
+ buildInitialDAGFor(CandidatePairs, CandidatePairsSet,
+ PairableInsts, ConnectedPairs,
+ PairableInstUsers, ChosenPairs, DAG, IJ);
// Because we'll keep the child with the largest depth, the largest
- // depth is still the same in the unpruned Tree.
- size_t MaxDepth = Tree.lookup(*J);
+ // depth is still the same in the unpruned DAG.
+ size_t MaxDepth = DAG.lookup(IJ);
- DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
- << *J->first << " <-> " << *J->second << "} of depth " <<
- MaxDepth << " and size " << Tree.size() << "\n");
+ DEBUG(if (DebugPairSelection) dbgs() << "BBV: found DAG for pair {"
+ << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
+ MaxDepth << " and size " << DAG.size() << "\n");
- // At this point the Tree has been constructed, but, may contain
+ // At this point the DAG has been constructed, but, may contain
// contradictory children (meaning that different children of
- // some tree node may be attempting to fuse the same instruction).
- // So now we walk the tree again, in the case of a conflict,
+ // some dag node may be attempting to fuse the same instruction).
+ // So now we walk the dag again, in the case of a conflict,
// keep only the child with the largest depth. To break a tie,
// favor the first child.
- DenseSet<ValuePair> PrunedTree;
- pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
- PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
- PrunedTree, *J, UseCycleCheck);
+ DenseSet<ValuePair> PrunedDAG;
+ pruneDAGFor(CandidatePairs, PairableInsts, ConnectedPairs,
+ PairableInstUsers, PairableInstUserMap,
+ PairableInstUserPairSet,
+ ChosenPairs, DAG, PrunedDAG, IJ, UseCycleCheck);
int EffSize = 0;
- if (VTTI) {
- DenseSet<Value *> PrunedTreeInstrs;
- for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
- E = PrunedTree.end(); S != E; ++S) {
- PrunedTreeInstrs.insert(S->first);
- PrunedTreeInstrs.insert(S->second);
+ if (TTI) {
+ DenseSet<Value *> PrunedDAGInstrs;
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S) {
+ PrunedDAGInstrs.insert(S->first);
+ PrunedDAGInstrs.insert(S->second);
}
// The set of pairs that have already contributed to the total cost.
@@ -1709,8 +1806,8 @@ namespace {
// The node weights represent the cost savings associated with
// fusing the pair of instructions.
- for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
- E = PrunedTree.end(); S != E; ++S) {
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S) {
if (!isa<ShuffleVectorInst>(S->first) &&
!isa<InsertElementInst>(S->first) &&
!isa<ExtractElementInst>(S->first))
@@ -1728,15 +1825,17 @@ namespace {
// The edge weights contribute in a negative sense: they represent
// the cost of shuffles.
- VPPIteratorPair IP = ConnectedPairDeps.equal_range(*S);
- if (IP.first != ConnectedPairDeps.end()) {
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator SS =
+ ConnectedPairDeps.find(*S);
+ if (SS != ConnectedPairDeps.end()) {
unsigned NumDepsDirect = 0, NumDepsSwap = 0;
- for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
- Q != IP.second; ++Q) {
- if (!PrunedTree.count(Q->second))
+ for (std::vector<ValuePair>::iterator T = SS->second.begin(),
+ TE = SS->second.end(); T != TE; ++T) {
+ VPPair Q(*S, *T);
+ if (!PrunedDAG.count(Q.second))
continue;
DenseMap<VPPair, unsigned>::iterator R =
- PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
assert(R != PairConnectionTypes.end() &&
"Cannot find pair connection type");
if (R->second == PairConnectionDirect)
@@ -1752,24 +1851,35 @@ namespace {
((NumDepsSwap > NumDepsDirect) ||
FixedOrderPairs.count(ValuePair(S->second, S->first)));
- for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
- Q != IP.second; ++Q) {
- if (!PrunedTree.count(Q->second))
+ for (std::vector<ValuePair>::iterator T = SS->second.begin(),
+ TE = SS->second.end(); T != TE; ++T) {
+ VPPair Q(*S, *T);
+ if (!PrunedDAG.count(Q.second))
continue;
DenseMap<VPPair, unsigned>::iterator R =
- PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
assert(R != PairConnectionTypes.end() &&
"Cannot find pair connection type");
- Type *Ty1 = Q->second.first->getType(),
- *Ty2 = Q->second.second->getType();
+ Type *Ty1 = Q.second.first->getType(),
+ *Ty2 = Q.second.second->getType();
Type *VTy = getVecTypeForPair(Ty1, Ty2);
if ((R->second == PairConnectionDirect && FlipOrder) ||
(R->second == PairConnectionSwap && !FlipOrder) ||
R->second == PairConnectionSplat) {
int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
VTy, VTy);
+
+ if (VTy->getVectorNumElements() == 2) {
+ if (R->second == PairConnectionSplat)
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Broadcast, VTy));
+ else
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Reverse, VTy));
+ }
+
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
- *Q->second.first << " <-> " << *Q->second.second <<
+ *Q.second.first << " <-> " << *Q.second.second <<
"} -> {" <<
*S->first << " <-> " << *S->second << "} = " <<
ESContrib << "\n");
@@ -1796,7 +1906,7 @@ namespace {
}
if (isa<ExtractElementInst>(*I))
continue;
- if (PrunedTreeInstrs.count(*I))
+ if (PrunedDAGInstrs.count(*I))
continue;
NeedsExtraction = true;
break;
@@ -1804,11 +1914,13 @@ namespace {
if (NeedsExtraction) {
int ESContrib;
- if (Ty1->isVectorTy())
+ if (Ty1->isVectorTy()) {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
Ty1, VTy);
- else
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_ExtractSubvector, VTy, 0, Ty1));
+ } else
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::ExtractElement, VTy, 0);
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
@@ -1826,7 +1938,7 @@ namespace {
}
if (isa<ExtractElementInst>(*I))
continue;
- if (PrunedTreeInstrs.count(*I))
+ if (PrunedDAGInstrs.count(*I))
continue;
NeedsExtraction = true;
break;
@@ -1834,11 +1946,14 @@ namespace {
if (NeedsExtraction) {
int ESContrib;
- if (Ty2->isVectorTy())
+ if (Ty2->isVectorTy()) {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
Ty2, VTy);
- else
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_ExtractSubvector, VTy,
+ Ty1->isVectorTy() ? Ty1->getVectorNumElements() : 1, Ty2));
+ } else
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::ExtractElement, VTy, 1);
DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
*S->second << "} = " << ESContrib << "\n");
@@ -1865,7 +1980,7 @@ namespace {
ValuePair VPR = ValuePair(O2, O1);
// Internal edges are not handled here.
- if (PrunedTree.count(VP) || PrunedTree.count(VPR))
+ if (PrunedDAG.count(VP) || PrunedDAG.count(VPR))
continue;
Type *Ty1 = O1->getType(),
@@ -1913,22 +2028,26 @@ namespace {
} else if (IncomingPairs.count(VPR)) {
ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
VTy, VTy);
+
+ if (VTy->getVectorNumElements() == 2)
+ ESContrib = std::min(ESContrib, (int) TTI->getShuffleCost(
+ TargetTransformInfo::SK_Reverse, VTy));
} else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, VTy, 0);
- ESContrib += (int) VTTI->getVectorInstrCost(
+ ESContrib += (int) TTI->getVectorInstrCost(
Instruction::InsertElement, VTy, 1);
} else if (!Ty1->isVectorTy()) {
// O1 needs to be inserted into a vector of size O2, and then
// both need to be shuffled together.
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, Ty2, 0);
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
VTy, Ty2);
} else if (!Ty2->isVectorTy()) {
// O2 needs to be inserted into a vector of size O1, and then
// both need to be shuffled together.
- ESContrib = (int) VTTI->getVectorInstrCost(
+ ESContrib = (int) TTI->getVectorInstrCost(
Instruction::InsertElement, Ty1, 0);
ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
VTy, Ty1);
@@ -1955,27 +2074,27 @@ namespace {
if (!HasNontrivialInsts) {
DEBUG(if (DebugPairSelection) dbgs() <<
- "\tNo non-trivial instructions in tree;"
+ "\tNo non-trivial instructions in DAG;"
" override to zero effective size\n");
EffSize = 0;
}
} else {
- for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
- E = PrunedTree.end(); S != E; ++S)
+ for (DenseSet<ValuePair>::iterator S = PrunedDAG.begin(),
+ E = PrunedDAG.end(); S != E; ++S)
EffSize += (int) getDepthFactor(S->first);
}
DEBUG(if (DebugPairSelection)
- dbgs() << "BBV: found pruned Tree for pair {"
- << *J->first << " <-> " << *J->second << "} of depth " <<
- MaxDepth << " and size " << PrunedTree.size() <<
+ dbgs() << "BBV: found pruned DAG for pair {"
+ << *IJ.first << " <-> " << *IJ.second << "} of depth " <<
+ MaxDepth << " and size " << PrunedDAG.size() <<
" (effective size: " << EffSize << ")\n");
- if (((VTTI && !UseChainDepthWithTI) ||
+ if (((TTI && !UseChainDepthWithTI) ||
MaxDepth >= Config.ReqChainDepth) &&
EffSize > 0 && EffSize > BestEffSize) {
BestMaxDepth = MaxDepth;
BestEffSize = EffSize;
- BestTree = PrunedTree;
+ BestDAG = PrunedDAG;
}
}
}
@@ -1983,66 +2102,98 @@ namespace {
// Given the list of candidate pairs, this function selects those
// that will be fused into vector instructions.
void BBVectorize::choosePairs(
- std::multimap<Value *, Value *> &CandidatePairs,
- DenseMap<ValuePair, int> &CandidatePairCostSavings,
- std::vector<Value *> &PairableInsts,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
- DenseSet<ValuePair> &PairableInstUsers,
- DenseMap<Value *, Value *>& ChosenPairs) {
+ DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
+ DenseSet<ValuePair> &CandidatePairsSet,
+ DenseMap<ValuePair, int> &CandidatePairCostSavings,
+ std::vector<Value *> &PairableInsts,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps,
+ DenseSet<ValuePair> &PairableInstUsers,
+ DenseMap<Value *, Value *>& ChosenPairs) {
bool UseCycleCheck =
- CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
- std::multimap<ValuePair, ValuePair> PairableInstUserMap;
+ CandidatePairsSet.size() <= Config.MaxCandPairsForCycleCheck;
+
+ DenseMap<Value *, std::vector<Value *> > CandidatePairs2;
+ for (DenseSet<ValuePair>::iterator I = CandidatePairsSet.begin(),
+ E = CandidatePairsSet.end(); I != E; ++I) {
+ std::vector<Value *> &JJ = CandidatePairs2[I->second];
+ if (JJ.empty()) JJ.reserve(32);
+ JJ.push_back(I->first);
+ }
+
+ DenseMap<ValuePair, std::vector<ValuePair> > PairableInstUserMap;
+ DenseSet<VPPair> PairableInstUserPairSet;
for (std::vector<Value *>::iterator I = PairableInsts.begin(),
E = PairableInsts.end(); I != E; ++I) {
// The number of possible pairings for this variable:
- size_t NumChoices = CandidatePairs.count(*I);
+ size_t NumChoices = CandidatePairs.lookup(*I).size();
if (!NumChoices) continue;
- VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
+ std::vector<Value *> &JJ = CandidatePairs[*I];
- // The best pair to choose and its tree:
+ // The best pair to choose and its dag:
size_t BestMaxDepth = 0;
int BestEffSize = 0;
- DenseSet<ValuePair> BestTree;
- findBestTreeFor(CandidatePairs, CandidatePairCostSavings,
+ DenseSet<ValuePair> BestDAG;
+ findBestDAGFor(CandidatePairs, CandidatePairsSet,
+ CandidatePairCostSavings,
PairableInsts, FixedOrderPairs, PairConnectionTypes,
ConnectedPairs, ConnectedPairDeps,
- PairableInstUsers, PairableInstUserMap, ChosenPairs,
- BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
+ PairableInstUsers, PairableInstUserMap,
+ PairableInstUserPairSet, ChosenPairs,
+ BestDAG, BestMaxDepth, BestEffSize, *I, JJ,
UseCycleCheck);
- // A tree has been chosen (or not) at this point. If no tree was
+ if (BestDAG.empty())
+ continue;
+
+ // A dag has been chosen (or not) at this point. If no dag was
// chosen, then this instruction, I, cannot be paired (and is no longer
// considered).
- DEBUG(if (BestTree.size() > 0)
- dbgs() << "BBV: selected pairs in the best tree for: "
- << *cast<Instruction>(*I) << "\n");
+ DEBUG(dbgs() << "BBV: selected pairs in the best DAG for: "
+ << *cast<Instruction>(*I) << "\n");
- for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
- SE2 = BestTree.end(); S != SE2; ++S) {
- // Insert the members of this tree into the list of chosen pairs.
+ for (DenseSet<ValuePair>::iterator S = BestDAG.begin(),
+ SE2 = BestDAG.end(); S != SE2; ++S) {
+ // Insert the members of this dag into the list of chosen pairs.
ChosenPairs.insert(ValuePair(S->first, S->second));
DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
*S->second << "\n");
- // Remove all candidate pairs that have values in the chosen tree.
- for (std::multimap<Value *, Value *>::iterator K =
- CandidatePairs.begin(); K != CandidatePairs.end();) {
- if (K->first == S->first || K->second == S->first ||
- K->second == S->second || K->first == S->second) {
- // Don't remove the actual pair chosen so that it can be used
- // in subsequent tree selections.
- if (!(K->first == S->first && K->second == S->second))
- CandidatePairs.erase(K++);
- else
- ++K;
- } else {
- ++K;
- }
+ // Remove all candidate pairs that have values in the chosen dag.
+ std::vector<Value *> &KK = CandidatePairs[S->first];
+ for (std::vector<Value *>::iterator K = KK.begin(), KE = KK.end();
+ K != KE; ++K) {
+ if (*K == S->second)
+ continue;
+
+ CandidatePairsSet.erase(ValuePair(S->first, *K));
+ }
+
+ std::vector<Value *> &LL = CandidatePairs2[S->second];
+ for (std::vector<Value *>::iterator L = LL.begin(), LE = LL.end();
+ L != LE; ++L) {
+ if (*L == S->first)
+ continue;
+
+ CandidatePairsSet.erase(ValuePair(*L, S->second));
+ }
+
+ std::vector<Value *> &MM = CandidatePairs[S->second];
+ for (std::vector<Value *>::iterator M = MM.begin(), ME = MM.end();
+ M != ME; ++M) {
+ assert(*M != S->first && "Flipped pair in candidate list?");
+ CandidatePairsSet.erase(ValuePair(S->second, *M));
+ }
+
+ std::vector<Value *> &NN = CandidatePairs2[S->first];
+ for (std::vector<Value *>::iterator N = NN.begin(), NE = NN.end();
+ N != NE; ++N) {
+ assert(*N != S->second && "Flipped pair in candidate list?");
+ CandidatePairsSet.erase(ValuePair(*N, S->first));
}
}
}
@@ -2550,7 +2701,7 @@ namespace {
continue;
} else if (isa<CallInst>(I)) {
Function *F = cast<CallInst>(I)->getCalledFunction();
- unsigned IID = F->getIntrinsicID();
+ Intrinsic::ID IID = (Intrinsic::ID) F->getIntrinsicID();
if (o == NumOperands-1) {
BasicBlock &BB = *I->getParent();
@@ -2559,8 +2710,7 @@ namespace {
Type *ArgTypeJ = J->getType();
Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
- ReplacedOperands[o] = Intrinsic::getDeclaration(M,
- (Intrinsic::ID) IID, VArgType);
+ ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
continue;
} else if (IID == Intrinsic::powi && o == 1) {
// The second argument of powi is a single integer and we've already
@@ -2647,7 +2797,7 @@ namespace {
// Move all uses of the function I (including pairing-induced uses) after J.
bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *I, Instruction *J) {
// Skip to the first instruction past I.
BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
@@ -2655,18 +2805,18 @@ namespace {
DenseSet<Value *> Users;
AliasSetTracker WriteSet(*AA);
for (; cast<Instruction>(L) != J; ++L)
- (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
+ (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs);
assert(cast<Instruction>(L) == J &&
"Tracking has not proceeded far enough to check for dependencies");
// If J is now in the use set of I, then trackUsesOfI will return true
// and we have a dependency cycle (and the fusing operation must abort).
- return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
+ return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSetPairs);
}
// Move all uses of the function I (including pairing-induced uses) after J.
void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *&InsertionPt,
Instruction *I, Instruction *J) {
// Skip to the first instruction past I.
@@ -2675,7 +2825,7 @@ namespace {
DenseSet<Value *> Users;
AliasSetTracker WriteSet(*AA);
for (; cast<Instruction>(L) != J;) {
- if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
+ if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs)) {
// Move this instruction
Instruction *InstToMove = L; ++L;
@@ -2695,7 +2845,8 @@ namespace {
// to be moved after J (the second instruction) when the pair is fused.
void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
DenseMap<Value *, Value *> &ChosenPairs,
- std::multimap<Value *, Value *> &LoadMoveSet,
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs,
Instruction *I) {
// Skip to the first instruction past I.
BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
@@ -2708,8 +2859,10 @@ namespace {
// could be before I if this is an inverted input.
for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
if (trackUsesOfI(Users, WriteSet, I, L)) {
- if (L->mayReadFromMemory())
- LoadMoveSet.insert(ValuePair(L, I));
+ if (L->mayReadFromMemory()) {
+ LoadMoveSet[L].push_back(I);
+ LoadMoveSetPairs.insert(ValuePair(L, I));
+ }
}
}
}
@@ -2718,20 +2871,22 @@ namespace {
// are chosen for vectorization, we can end up in a situation where the
// aliasing analysis starts returning different query results as the
// process of fusing instruction pairs continues. Because the algorithm
- // relies on finding the same use trees here as were found earlier, we'll
+ // relies on finding the same use dags here as were found earlier, we'll
// need to precompute the necessary aliasing information here and then
// manually update it during the fusion process.
void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
std::vector<Value *> &PairableInsts,
DenseMap<Value *, Value *> &ChosenPairs,
- std::multimap<Value *, Value *> &LoadMoveSet) {
+ DenseMap<Value *, std::vector<Value *> > &LoadMoveSet,
+ DenseSet<ValuePair> &LoadMoveSetPairs) {
for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
PIE = PairableInsts.end(); PI != PIE; ++PI) {
DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
if (P == ChosenPairs.end()) continue;
Instruction *I = cast<Instruction>(P->first);
- collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
+ collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet,
+ LoadMoveSetPairs, I);
}
}
@@ -2767,12 +2922,12 @@ namespace {
// because the vector instruction is inserted in the location of the pair's
// second member).
void BBVectorize::fuseChosenPairs(BasicBlock &BB,
- std::vector<Value *> &PairableInsts,
- DenseMap<Value *, Value *> &ChosenPairs,
- DenseSet<ValuePair> &FixedOrderPairs,
- DenseMap<VPPair, unsigned> &PairConnectionTypes,
- std::multimap<ValuePair, ValuePair> &ConnectedPairs,
- std::multimap<ValuePair, ValuePair> &ConnectedPairDeps) {
+ std::vector<Value *> &PairableInsts,
+ DenseMap<Value *, Value *> &ChosenPairs,
+ DenseSet<ValuePair> &FixedOrderPairs,
+ DenseMap<VPPair, unsigned> &PairConnectionTypes,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairs,
+ DenseMap<ValuePair, std::vector<ValuePair> > &ConnectedPairDeps) {
LLVMContext& Context = BB.getContext();
// During the vectorization process, the order of the pairs to be fused
@@ -2786,8 +2941,10 @@ namespace {
E = FlippedPairs.end(); P != E; ++P)
ChosenPairs.insert(*P);
- std::multimap<Value *, Value *> LoadMoveSet;
- collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
+ DenseMap<Value *, std::vector<Value *> > LoadMoveSet;
+ DenseSet<ValuePair> LoadMoveSetPairs;
+ collectLoadMoveSet(BB, PairableInsts, ChosenPairs,
+ LoadMoveSet, LoadMoveSetPairs);
DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
@@ -2819,7 +2976,7 @@ namespace {
ChosenPairs.erase(FP);
ChosenPairs.erase(P);
- if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
+ if (!canMoveUsesOfIAfterJ(BB, LoadMoveSetPairs, I, J)) {
DEBUG(dbgs() << "BBV: fusion of: " << *I <<
" <-> " << *J <<
" aborted because of non-trivial dependency cycle\n");
@@ -2836,18 +2993,20 @@ namespace {
// of dependencies connected via swaps, and those directly connected,
// and flip the order if the number of swaps is greater.
bool OrigOrder = true;
- VPPIteratorPair IP = ConnectedPairDeps.equal_range(ValuePair(I, J));
- if (IP.first == ConnectedPairDeps.end()) {
- IP = ConnectedPairDeps.equal_range(ValuePair(J, I));
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator IJ =
+ ConnectedPairDeps.find(ValuePair(I, J));
+ if (IJ == ConnectedPairDeps.end()) {
+ IJ = ConnectedPairDeps.find(ValuePair(J, I));
OrigOrder = false;
}
- if (IP.first != ConnectedPairDeps.end()) {
+ if (IJ != ConnectedPairDeps.end()) {
unsigned NumDepsDirect = 0, NumDepsSwap = 0;
- for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
- Q != IP.second; ++Q) {
+ for (std::vector<ValuePair>::iterator T = IJ->second.begin(),
+ TE = IJ->second.end(); T != TE; ++T) {
+ VPPair Q(IJ->first, *T);
DenseMap<VPPair, unsigned>::iterator R =
- PairConnectionTypes.find(VPPair(Q->second, Q->first));
+ PairConnectionTypes.find(VPPair(Q.second, Q.first));
assert(R != PairConnectionTypes.end() &&
"Cannot find pair connection type");
if (R->second == PairConnectionDirect)
@@ -2873,17 +3032,20 @@ namespace {
// If the pair being fused uses the opposite order from that in the pair
// connection map, then we need to flip the types.
- VPPIteratorPair IP = ConnectedPairs.equal_range(ValuePair(H, L));
- for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
- Q != IP.second; ++Q) {
- DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(*Q);
- assert(R != PairConnectionTypes.end() &&
- "Cannot find pair connection type");
- if (R->second == PairConnectionDirect)
- R->second = PairConnectionSwap;
- else if (R->second == PairConnectionSwap)
- R->second = PairConnectionDirect;
- }
+ DenseMap<ValuePair, std::vector<ValuePair> >::iterator HL =
+ ConnectedPairs.find(ValuePair(H, L));
+ if (HL != ConnectedPairs.end())
+ for (std::vector<ValuePair>::iterator T = HL->second.begin(),
+ TE = HL->second.end(); T != TE; ++T) {
+ VPPair Q(HL->first, *T);
+ DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(Q);
+ assert(R != PairConnectionTypes.end() &&
+ "Cannot find pair connection type");
+ if (R->second == PairConnectionDirect)
+ R->second = PairConnectionSwap;
+ else if (R->second == PairConnectionSwap)
+ R->second = PairConnectionDirect;
+ }
bool LBeforeH = !FlipPairOrder;
unsigned NumOperands = I->getNumOperands();
@@ -2915,12 +3077,12 @@ namespace {
Instruction *K1 = 0, *K2 = 0;
replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
- // The use tree of the first original instruction must be moved to after
- // the location of the second instruction. The entire use tree of the
- // first instruction is disjoint from the input tree of the second
+ // The use dag of the first original instruction must be moved to after
+ // the location of the second instruction. The entire use dag of the
+ // first instruction is disjoint from the input dag of the second
// (by definition), and so commutes with it.
- moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
+ moveUsesOfIAfterJ(BB, LoadMoveSetPairs, InsertionPt, I, J);
if (!isa<StoreInst>(I)) {
L->replaceAllUsesWith(K1);
@@ -2937,17 +3099,23 @@ namespace {
// yet-to-be-fused pair. The loads in question are the keys of the map.
if (I->mayReadFromMemory()) {
std::vector<ValuePair> NewSetMembers;
- VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
- VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
- for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
- N != IPairRange.second; ++N)
- NewSetMembers.push_back(ValuePair(K, N->second));
- for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
- N != JPairRange.second; ++N)
- NewSetMembers.push_back(ValuePair(K, N->second));
+ DenseMap<Value *, std::vector<Value *> >::iterator II =
+ LoadMoveSet.find(I);
+ if (II != LoadMoveSet.end())
+ for (std::vector<Value *>::iterator N = II->second.begin(),
+ NE = II->second.end(); N != NE; ++N)
+ NewSetMembers.push_back(ValuePair(K, *N));
+ DenseMap<Value *, std::vector<Value *> >::iterator JJ =
+ LoadMoveSet.find(J);
+ if (JJ != LoadMoveSet.end())
+ for (std::vector<Value *>::iterator N = JJ->second.begin(),
+ NE = JJ->second.end(); N != NE; ++N)
+ NewSetMembers.push_back(ValuePair(K, *N));
for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
- AE = NewSetMembers.end(); A != AE; ++A)
- LoadMoveSet.insert(*A);
+ AE = NewSetMembers.end(); A != AE; ++A) {
+ LoadMoveSet[A->first].push_back(A->second);
+ LoadMoveSetPairs.insert(*A);
+ }
}
// Before removing I, set the iterator to the next instruction.
@@ -2972,6 +3140,7 @@ char BBVectorize::ID = 0;
static const char bb_vectorize_name[] = "Basic-Block Vectorization";
INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
@@ -3006,6 +3175,7 @@ VectorizeConfig::VectorizeConfig() {
MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
SplatBreaksChain = ::SplatBreaksChain;
MaxInsts = ::MaxInsts;
+ MaxPairs = ::MaxPairs;
MaxIter = ::MaxIter;
Pow2LenOnly = ::Pow2LenOnly;
NoMemOpBoost = ::NoMemOpBoost;
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index feeececedb..07dd453424 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -6,7 +6,51 @@
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
-#include "LoopVectorize.h"
+//
+// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
+// and generates target-independent LLVM-IR. Legalization of the IR is done
+// in the codegen. However, the vectorizer uses (will use) the codegen
+// interfaces to generate IR that is likely to result in an optimal binary.
+//
+// The loop vectorizer combines consecutive loop iterations into a single
+// 'wide' iteration. After this transformation the index is incremented
+// by the SIMD vector width, and not by one.
+//
+// This pass has three parts:
+// 1. The main loop pass that drives the different parts.
+// 2. LoopVectorizationLegality - A unit that checks for the legality
+// of the vectorization.
+// 3. InnerLoopVectorizer - A unit that performs the actual
+// widening of instructions.
+// 4. LoopVectorizationCostModel - A unit that checks for the profitability
+// of vectorization. It decides on the optimal vector width, which
+// can be one, if vectorization is not profitable.
+//
+//===----------------------------------------------------------------------===//
+//
+// The reduction-variable vectorization is based on the paper:
+// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
+//
+// Variable uniformity checks are inspired by:
+// Karrenberg, R. and Hack, S. Whole Function Vectorization.
+//
+// Other ideas/concepts are from:
+// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
+//
+// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
+// Vectorizing Compilers.
+//
+//===----------------------------------------------------------------------===//
+
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+#include "llvm/Transforms/Vectorize.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
@@ -14,46 +58,586 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/Verifier.h"
-#include "llvm/Constants.h"
-#include "llvm/DataLayout.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/TargetTransformInfo.h"
+#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Vectorize.h"
-#include "llvm/Type.h"
-#include "llvm/Value.h"
+#include <algorithm>
+#include <map>
+
+using namespace llvm;
static cl::opt<unsigned>
VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
cl::desc("Sets the SIMD width. Zero is autoselect."));
+static cl::opt<unsigned>
+VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
+ cl::desc("Sets the vectorization unroll count. "
+ "Zero is autoselect."));
+
static cl::opt<bool>
EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
cl::desc("Enable if-conversion during vectorization."));
+/// We don't vectorize loops with a known constant trip count below this number.
+static cl::opt<unsigned>
+TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
+ cl::Hidden,
+ cl::desc("Don't vectorize loops with a constant "
+ "trip count that is smaller than this "
+ "value."));
+
+/// We don't unroll loops with a known constant trip count below this number.
+static const unsigned TinyTripCountUnrollThreshold = 128;
+
+/// When performing a runtime memory check, do not check more than this
+/// number of pointers. Notice that the check is quadratic!
+static const unsigned RuntimeMemoryCheckThreshold = 4;
+
+/// We use a metadata with this name to indicate that a scalar loop was
+/// vectorized and that we don't need to re-vectorize it if we run into it
+/// again.
+static const char*
+AlreadyVectorizedMDName = "llvm.vectorizer.already_vectorized";
+
namespace {
+// Forward declarations.
+class LoopVectorizationLegality;
+class LoopVectorizationCostModel;
+
+/// InnerLoopVectorizer vectorizes loops which contain only one basic
+/// block to a specified vectorization factor (VF).
+/// This class performs the widening of scalars into vectors, or multiple
+/// scalars. This class also implements the following features:
+/// * It inserts an epilogue loop for handling loops that don't have iteration
+/// counts that are known to be a multiple of the vectorization factor.
+/// * It handles the code generation for reduction variables.
+/// * Scalarization (implementation using scalars) of un-vectorizable
+/// instructions.
+/// InnerLoopVectorizer does not perform any vectorization-legality
+/// checks, and relies on the caller to check for the different legality
+/// aspects. The InnerLoopVectorizer relies on the
+/// LoopVectorizationLegality class to provide information about the induction
+/// and reduction variables that were found to a given vectorization factor.
+class InnerLoopVectorizer {
+public:
+ InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
+ DominatorTree *DT, DataLayout *DL,
+ const TargetLibraryInfo *TLI, unsigned VecWidth,
+ unsigned UnrollFactor)
+ : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
+ VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
+ OldInduction(0), WidenMap(UnrollFactor) {}
+
+ // Perform the actual loop widening (vectorization).
+ void vectorize(LoopVectorizationLegality *Legal) {
+ // Create a new empty loop. Unlink the old loop and connect the new one.
+ createEmptyLoop(Legal);
+ // Widen each instruction in the old loop to a new one in the new loop.
+ // Use the Legality module to find the induction and reduction variables.
+ vectorizeLoop(Legal);
+ // Register the new loop and update the analysis passes.
+ updateAnalysis();
+ }
+
+private:
+ /// A small list of PHINodes.
+ typedef SmallVector<PHINode*, 4> PhiVector;
+ /// When we unroll loops we have multiple vector values for each scalar.
+ /// This data structure holds the unrolled and vectorized values that
+ /// originated from one scalar instruction.
+ typedef SmallVector<Value*, 2> VectorParts;
+
+ /// Add code that checks at runtime if the accessed arrays overlap.
+ /// Returns the comparator value or NULL if no check is needed.
+ Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
+ Instruction *Loc);
+ /// Create an empty loop, based on the loop ranges of the old loop.
+ void createEmptyLoop(LoopVectorizationLegality *Legal);
+ /// Copy and widen the instructions from the old loop.
+ void vectorizeLoop(LoopVectorizationLegality *Legal);
+
+ /// A helper function that computes the predicate of the block BB, assuming
+ /// that the header block of the loop is set to True. It returns the *entry*
+ /// mask for the block BB.
+ VectorParts createBlockInMask(BasicBlock *BB);
+ /// A helper function that computes the predicate of the edge between SRC
+ /// and DST.
+ VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
+
+ /// A helper function to vectorize a single BB within the innermost loop.
+ void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
+ PhiVector *PV);
+
+ /// Insert the new loop to the loop hierarchy and pass manager
+ /// and update the analysis passes.
+ void updateAnalysis();
+
+ /// This instruction is un-vectorizable. Implement it as a sequence
+ /// of scalars.
+ void scalarizeInstruction(Instruction *Instr);
+
+ /// Vectorize Load and Store instructions,
+ void vectorizeMemoryInstruction(Instruction *Instr,
+ LoopVectorizationLegality *Legal);
+
+ /// Create a broadcast instruction. This method generates a broadcast
+ /// instruction (shuffle) for loop invariant values and for the induction
+ /// value. If this is the induction variable then we extend it to N, N+1, ...
+ /// this is needed because each iteration in the loop corresponds to a SIMD
+ /// element.
+ Value *getBroadcastInstrs(Value *V);
+
+ /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
+ /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
+ /// The sequence starts at StartIndex.
+ Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
+
+ /// When we go over instructions in the basic block we rely on previous
+ /// values within the current basic block or on loop invariant values.
+ /// When we widen (vectorize) values we place them in the map. If the values
+ /// are not within the map, they have to be loop invariant, so we simply
+ /// broadcast them into a vector.
+ VectorParts &getVectorValue(Value *V);
+
+ /// Generate a shuffle sequence that will reverse the vector Vec.
+ Value *reverseVector(Value *Vec);
+
+ /// This is a helper class that holds the vectorizer state. It maps scalar
+ /// instructions to vector instructions. When the code is 'unrolled' then
+ /// then a single scalar value is mapped to multiple vector parts. The parts
+ /// are stored in the VectorPart type.
+ struct ValueMap {
+ /// C'tor. UnrollFactor controls the number of vectors ('parts') that
+ /// are mapped.
+ ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
+
+ /// \return True if 'Key' is saved in the Value Map.
+ bool has(Value *Key) const { return MapStorage.count(Key); }
+
+ /// Initializes a new entry in the map. Sets all of the vector parts to the
+ /// save value in 'Val'.
+ /// \return A reference to a vector with splat values.
+ VectorParts &splat(Value *Key, Value *Val) {
+ VectorParts &Entry = MapStorage[Key];
+ Entry.assign(UF, Val);
+ return Entry;
+ }
+
+ ///\return A reference to the value that is stored at 'Key'.
+ VectorParts &get(Value *Key) {
+ VectorParts &Entry = MapStorage[Key];
+ if (Entry.empty())
+ Entry.resize(UF);
+ assert(Entry.size() == UF);
+ return Entry;
+ }
+
+ private:
+ /// The unroll factor. Each entry in the map stores this number of vector
+ /// elements.
+ unsigned UF;
+
+ /// Map storage. We use std::map and not DenseMap because insertions to a
+ /// dense map invalidates its iterators.
+ std::map<Value *, VectorParts> MapStorage;
+ };
+
+ /// The original loop.
+ Loop *OrigLoop;
+ /// Scev analysis to use.
+ ScalarEvolution *SE;
+ /// Loop Info.
+ LoopInfo *LI;
+ /// Dominator Tree.
+ DominatorTree *DT;
+ /// Data Layout.
+ DataLayout *DL;
+ /// Target Library Info.
+ const TargetLibraryInfo *TLI;
+
+ /// The vectorization SIMD factor to use. Each vector will have this many
+ /// vector elements.
+ unsigned VF;
+ /// The vectorization unroll factor to use. Each scalar is vectorized to this
+ /// many different vector instructions.
+ unsigned UF;
+
+ /// The builder that we use
+ IRBuilder<> Builder;
+
+ // --- Vectorization state ---
+
+ /// The vector-loop preheader.
+ BasicBlock *LoopVectorPreHeader;
+ /// The scalar-loop preheader.
+ BasicBlock *LoopScalarPreHeader;
+ /// Middle Block between the vector and the scalar.
+ BasicBlock *LoopMiddleBlock;
+ ///The ExitBlock of the scalar loop.
+ BasicBlock *LoopExitBlock;
+ ///The vector loop body.
+ BasicBlock *LoopVectorBody;
+ ///The scalar loop body.
+ BasicBlock *LoopScalarBody;
+ /// A list of all bypass blocks. The first block is the entry of the loop.
+ SmallVector<BasicBlock *, 4> LoopBypassBlocks;
+
+ /// The new Induction variable which was added to the new block.
+ PHINode *Induction;
+ /// The induction variable of the old basic block.
+ PHINode *OldInduction;
+ /// Maps scalars to widened vectors.
+ ValueMap WidenMap;
+};
+
+/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
+/// to what vectorization factor.
+/// This class does not look at the profitability of vectorization, only the
+/// legality. This class has two main kinds of checks:
+/// * Memory checks - The code in canVectorizeMemory checks if vectorization
+/// will change the order of memory accesses in a way that will change the
+/// correctness of the program.
+/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
+/// checks for a number of different conditions, such as the availability of a
+/// single induction variable, that all types are supported and vectorize-able,
+/// etc. This code reflects the capabilities of InnerLoopVectorizer.
+/// This class is also used by InnerLoopVectorizer for identifying
+/// induction variable and the different reduction variables.
+class LoopVectorizationLegality {
+public:
+ LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
+ DominatorTree *DT, TargetTransformInfo* TTI,
+ AliasAnalysis *AA, TargetLibraryInfo *TLI)
+ : TheLoop(L), SE(SE), DL(DL), DT(DT), TTI(TTI), AA(AA), TLI(TLI),
+ Induction(0) {}
+
+ /// This enum represents the kinds of reductions that we support.
+ enum ReductionKind {
+ RK_NoReduction, ///< Not a reduction.
+ RK_IntegerAdd, ///< Sum of integers.
+ RK_IntegerMult, ///< Product of integers.
+ RK_IntegerOr, ///< Bitwise or logical OR of numbers.
+ RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
+ RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
+ RK_FloatAdd, ///< Sum of floats.
+ RK_FloatMult ///< Product of floats.
+ };
+
+ /// This enum represents the kinds of inductions that we support.
+ enum InductionKind {
+ IK_NoInduction, ///< Not an induction variable.
+ IK_IntInduction, ///< Integer induction variable. Step = 1.
+ IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
+ IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
+ IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
+ };
+
+ /// This POD struct holds information about reduction variables.
+ struct ReductionDescriptor {
+ ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
+ Kind(RK_NoReduction) {}
+
+ ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
+ : StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
+
+ // The starting value of the reduction.
+ // It does not have to be zero!
+ Value *StartValue;
+ // The instruction who's value is used outside the loop.
+ Instruction *LoopExitInstr;
+ // The kind of the reduction.
+ ReductionKind Kind;
+ };
+
+ // This POD struct holds information about the memory runtime legality
+ // check that a group of pointers do not overlap.
+ struct RuntimePointerCheck {
+ RuntimePointerCheck() : Need(false) {}
+
+ /// Reset the state of the pointer runtime information.
+ void reset() {
+ Need = false;
+ Pointers.clear();
+ Starts.clear();
+ Ends.clear();
+ }
+
+ /// Insert a pointer and calculate the start and end SCEVs.
+ void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
+
+ /// This flag indicates if we need to add the runtime check.
+ bool Need;
+ /// Holds the pointers that we need to check.
+ SmallVector<Value*, 2> Pointers;
+ /// Holds the pointer value at the beginning of the loop.
+ SmallVector<const SCEV*, 2> Starts;
+ /// Holds the pointer value at the end of the loop.
+ SmallVector<const SCEV*, 2> Ends;
+ };
+
+ /// A POD for saving information about induction variables.
+ struct InductionInfo {
+ InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
+ InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
+ /// Start value.
+ Value *StartValue;
+ /// Induction kind.
+ InductionKind IK;
+ };
+
+ /// ReductionList contains the reduction descriptors for all
+ /// of the reductions that were found in the loop.
+ typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
+
+ /// InductionList saves induction variables and maps them to the
+ /// induction descriptor.
+ typedef MapVector<PHINode*, InductionInfo> InductionList;
+
+ /// Alias(Multi)Map stores the values (GEPs or underlying objects and their
+ /// respective Store/Load instruction(s) to calculate aliasing.
+ typedef MapVector<Value*, Instruction* > AliasMap;
+ typedef DenseMap<Value*, std::vector<Instruction*> > AliasMultiMap;
+
+ /// Returns true if it is legal to vectorize this loop.
+ /// This does not mean that it is profitable to vectorize this
+ /// loop, only that it is legal to do so.
+ bool canVectorize();
+
+ /// Returns the Induction variable.
+ PHINode *getInduction() { return Induction; }
+
+ /// Returns the reduction variables found in the loop.
+ ReductionList *getReductionVars() { return &Reductions; }
+
+ /// Returns the induction variables found in the loop.
+ InductionList *getInductionVars() { return &Inductions; }
+
+ /// Returns True if V is an induction variable in this loop.
+ bool isInductionVariable(const Value *V);
+
+ /// Return true if the block BB needs to be predicated in order for the loop
+ /// to be vectorized.
+ bool blockNeedsPredication(BasicBlock *BB);
+
+ /// Check if this pointer is consecutive when vectorizing. This happens
+ /// when the last index of the GEP is the induction variable, or that the
+ /// pointer itself is an induction variable.
+ /// This check allows us to vectorize A[idx] into a wide load/store.
+ /// Returns:
+ /// 0 - Stride is unknown or non consecutive.
+ /// 1 - Address is consecutive.
+ /// -1 - Address is consecutive, and decreasing.
+ int isConsecutivePtr(Value *Ptr);
+
+ /// Returns true if the value V is uniform within the loop.
+ bool isUniform(Value *V);
+
+ /// Returns true if this instruction will remain scalar after vectorization.
+ bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
+
+ /// Returns the information that we collected about runtime memory check.
+ RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
+private:
+ /// Check if a single basic block loop is vectorizable.
+ /// At this point we know that this is a loop with a constant trip count
+ /// and we only need to check individual instructions.
+ bool canVectorizeInstrs();
+
+ /// When we vectorize loops we may change the order in which
+ /// we read and write from memory. This method checks if it is
+ /// legal to vectorize the code, considering only memory constrains.
+ /// Returns true if the loop is vectorizable
+ bool canVectorizeMemory();
+
+ /// Return true if we can vectorize this loop using the IF-conversion
+ /// transformation.
+ bool canVectorizeWithIfConvert();
+
+ /// Collect the variables that need to stay uniform after vectorization.
+ void collectLoopUniforms();
+
+ /// Return true if all of the instructions in the block can be speculatively
+ /// executed.
+ bool blockCanBePredicated(BasicBlock *BB);
+
+ /// Returns True, if 'Phi' is the kind of reduction variable for type
+ /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
+ bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
+ /// Returns true if the instruction I can be a reduction variable of type
+ /// 'Kind'.
+ bool isReductionInstr(Instruction *I, ReductionKind Kind);
+ /// Returns the induction kind of Phi. This function may return NoInduction
+ /// if the PHI is not an induction variable.
+ InductionKind isInductionVariable(PHINode *Phi);
+ /// Return true if can compute the address bounds of Ptr within the loop.
+ bool hasComputableBounds(Value *Ptr);
+ /// Return true if there is the chance of write reorder.
+ bool hasPossibleGlobalWriteReorder(Value *Object,
+ Instruction *Inst,
+ AliasMultiMap &WriteObjects,
+ unsigned MaxByteWidth);
+ /// Return the AA location for a load or a store.
+ AliasAnalysis::Location getLoadStoreLocation(Instruction *Inst);
+
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// DataLayout analysis.
+ DataLayout *DL;
+ /// Dominators.
+ DominatorTree *DT;
+ /// Target Info.
+ TargetTransformInfo *TTI;
+ /// Alias Analysis.
+ AliasAnalysis *AA;
+ /// Target Library Info.
+ TargetLibraryInfo *TLI;
+
+ // --- vectorization state --- //
+
+ /// Holds the integer induction variable. This is the counter of the
+ /// loop.
+ PHINode *Induction;
+ /// Holds the reduction variables.
+ ReductionList Reductions;
+ /// Holds all of the induction variables that we found in the loop.
+ /// Notice that inductions don't need to start at zero and that induction
+ /// variables can be pointers.
+ InductionList Inductions;
+
+ /// Allowed outside users. This holds the reduction
+ /// vars which can be accessed from outside the loop.
+ SmallPtrSet<Value*, 4> AllowedExit;
+ /// This set holds the variables which are known to be uniform after
+ /// vectorization.
+ SmallPtrSet<Instruction*, 4> Uniforms;
+ /// We need to check that all of the pointers in this list are disjoint
+ /// at runtime.
+ RuntimePointerCheck PtrRtCheck;
+};
+
+/// LoopVectorizationCostModel - estimates the expected speedups due to
+/// vectorization.
+/// In many cases vectorization is not profitable. This can happen because of
+/// a number of reasons. In this class we mainly attempt to predict the
+/// expected speedup/slowdowns due to the supported instruction set. We use the
+/// TargetTransformInfo to query the different backends for the cost of
+/// different operations.
+class LoopVectorizationCostModel {
+public:
+ LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
+ LoopVectorizationLegality *Legal,
+ const TargetTransformInfo &TTI,
+ DataLayout *DL, const TargetLibraryInfo *TLI)
+ : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
+
+ /// Information about vectorization costs
+ struct VectorizationFactor {
+ unsigned Width; // Vector width with best cost
+ unsigned Cost; // Cost of the loop with that width
+ };
+ /// \return The most profitable vectorization factor and the cost of that VF.
+ /// This method checks every power of two up to VF. If UserVF is not ZERO
+ /// then this vectorization factor will be selected if vectorization is
+ /// possible.
+ VectorizationFactor selectVectorizationFactor(bool OptForSize,
+ unsigned UserVF);
+
+ /// \return The size (in bits) of the widest type in the code that
+ /// needs to be vectorized. We ignore values that remain scalar such as
+ /// 64 bit loop indices.
+ unsigned getWidestType();
+
+ /// \return The most profitable unroll factor.
+ /// If UserUF is non-zero then this method finds the best unroll-factor
+ /// based on register pressure and other parameters.
+ /// VF and LoopCost are the selected vectorization factor and the cost of the
+ /// selected VF.
+ unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
+ unsigned LoopCost);
+
+ /// \brief A struct that represents some properties of the register usage
+ /// of a loop.
+ struct RegisterUsage {
+ /// Holds the number of loop invariant values that are used in the loop.
+ unsigned LoopInvariantRegs;
+ /// Holds the maximum number of concurrent live intervals in the loop.
+ unsigned MaxLocalUsers;
+ /// Holds the number of instructions in the loop.
+ unsigned NumInstructions;
+ };
+
+ /// \return information about the register usage of the loop.
+ RegisterUsage calculateRegisterUsage();
+
+private:
+ /// Returns the expected execution cost. The unit of the cost does
+ /// not matter because we use the 'cost' units to compare different
+ /// vector widths. The cost that is returned is *not* normalized by
+ /// the factor width.
+ unsigned expectedCost(unsigned VF);
+
+ /// Returns the execution time cost of an instruction for a given vector
+ /// width. Vector width of one means scalar.
+ unsigned getInstructionCost(Instruction *I, unsigned VF);
+
+ /// A helper function for converting Scalar types to vector types.
+ /// If the incoming type is void, we return void. If the VF is 1, we return
+ /// the scalar type.
+ static Type* ToVectorTy(Type *Scalar, unsigned VF);
+
+ /// Returns whether the instruction is a load or store and will be a emitted
+ /// as a vector operation.
+ bool isConsecutiveLoadOrStore(Instruction *I);
+
+ /// The loop that we evaluate.
+ Loop *TheLoop;
+ /// Scev analysis.
+ ScalarEvolution *SE;
+ /// Loop Info analysis.
+ LoopInfo *LI;
+ /// Vectorization legality.
+ LoopVectorizationLegality *Legal;
+ /// Vector target information.
+ const TargetTransformInfo &TTI;
+ /// Target data layout information.
+ DataLayout *DL;
+ /// Target Library Info.
+ const TargetLibraryInfo *TLI;
+};
+
/// The LoopVectorize Pass.
struct LoopVectorize : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
+ /// Pass identification, replacement for typeid
+ static char ID;
- LoopVectorize() : LoopPass(ID) {
+ explicit LoopVectorize() : LoopPass(ID) {
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
}
@@ -62,6 +646,8 @@ struct LoopVectorize : public LoopPass {
LoopInfo *LI;
TargetTransformInfo *TTI;
DominatorTree *DT;
+ AliasAnalysis *AA;
+ TargetLibraryInfo *TLI;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
// We only vectorize innermost loops.
@@ -71,45 +657,57 @@ struct LoopVectorize : public LoopPass {
SE = &getAnalysis<ScalarEvolution>();
DL = getAnalysisIfAvailable<DataLayout>();
LI = &getAnalysis<LoopInfo>();
- TTI = getAnalysisIfAvailable<TargetTransformInfo>();
+ TTI = &getAnalysis<TargetTransformInfo>();
DT = &getAnalysis<DominatorTree>();
+ AA = getAnalysisIfAvailable<AliasAnalysis>();
+ TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
DEBUG(dbgs() << "LV: Checking a loop in \"" <<
L->getHeader()->getParent()->getName() << "\"\n");
// Check if it is legal to vectorize the loop.
- LoopVectorizationLegality LVL(L, SE, DL, DT);
+ LoopVectorizationLegality LVL(L, SE, DL, DT, TTI, AA, TLI);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing.\n");
return false;
}
- // Select the preffered vectorization factor.
- unsigned VF = 1;
- if (VectorizationFactor == 0) {
- const VectorTargetTransformInfo *VTTI = 0;
- if (TTI)
- VTTI = TTI->getVectorTargetTransformInfo();
- // Use the cost model.
- LoopVectorizationCostModel CM(L, SE, &LVL, VTTI);
- VF = CM.findBestVectorizationFactor();
-
- if (VF == 1) {
- DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- return false;
- }
+ // Use the cost model.
+ LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
+
+ // Check the function attributes to find out if this function should be
+ // optimized for size.
+ Function *F = L->getHeader()->getParent();
+ Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
+ Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
+ unsigned FnIndex = AttributeSet::FunctionIndex;
+ bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
+ bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
+
+ if (NoFloat) {
+ DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
+ "attribute is used.\n");
+ return false;
+ }
- } else {
- // Use the user command flag.
- VF = VectorizationFactor;
+ // Select the optimal vectorization factor.
+ LoopVectorizationCostModel::VectorizationFactor VF;
+ VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
+ // Select the unroll factor.
+ unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
+ VF.Width, VF.Cost);
+
+ if (VF.Width == 1) {
+ DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
+ return false;
}
- DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
- L->getHeader()->getParent()->getParent()->getModuleIdentifier()<<
- "\n");
+ DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
+ F->getParent()->getModuleIdentifier()<<"\n");
+ DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
- // If we decided that it is *legal* to vectorizer the loop then do it.
- InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF);
+ // If we decided that it is *legal* to vectorize the loop then do it.
+ InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
LB.vectorize(&LVL);
DEBUG(verifyFunction(*L->getHeader()->getParent()));
@@ -120,16 +718,17 @@ struct LoopVectorize : public LoopPass {
LoopPass::getAnalysisUsage(AU);
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
+ AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
- AU.addRequired<DominatorTree>();
+ AU.addRequired<TargetTransformInfo>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTree>();
}
};
-}// namespace
+} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
@@ -150,11 +749,6 @@ LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
}
Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
- // Create the types.
- LLVMContext &C = V->getContext();
- Type *VTy = VectorType::get(V->getType(), VF);
- Type *I32 = IntegerType::getInt32Ty(C);
-
// Save the current insertion location.
Instruction *Loc = Builder.GetInsertPoint();
@@ -167,14 +761,8 @@ Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
if (Invariant)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- Constant *Zero = ConstantInt::get(I32, 0);
- Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
- Value *UndefVal = UndefValue::get(VTy);
- // Insert the value into a new vector.
- Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
// Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
- "broadcast");
+ Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
// Restore the builder insertion point.
if (Invariant)
@@ -183,7 +771,8 @@ Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
return Shuf;
}
-Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) {
+Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
+ bool Negate) {
assert(Val->getType()->isVectorTy() && "Must be a vector");
assert(Val->getType()->getScalarType()->isIntegerTy() &&
"Elem must be an integer");
@@ -194,8 +783,10 @@ Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) {
SmallVector<Constant*, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i)
- Indices.push_back(ConstantInt::get(ITy, Negate ? (-i): i ));
+ for (int i = 0; i < VLen; ++i) {
+ int Idx = Negate ? (-i): i;
+ Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
+ }
// Add the consecutive indices to the vector value.
Constant *Cv = ConstantVector::get(Indices);
@@ -203,28 +794,56 @@ Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) {
return Builder.CreateAdd(Val, Cv, "induction");
}
-bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
+int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
+ // Make sure that the pointer does not point to structs.
+ if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
+ return 0;
// If this value is a pointer induction variable we know it is consecutive.
PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
if (Phi && Inductions.count(Phi)) {
InductionInfo II = Inductions[Phi];
- if (PtrInduction == II.IK)
- return true;
+ if (IK_PtrInduction == II.IK)
+ return 1;
+ else if (IK_ReversePtrInduction == II.IK)
+ return -1;
}
GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
if (!Gep)
- return false;
+ return 0;
unsigned NumOperands = Gep->getNumOperands();
Value *LastIndex = Gep->getOperand(NumOperands - 1);
+ Value *GpPtr = Gep->getPointerOperand();
+ // If this GEP value is a consecutive pointer induction variable and all of
+ // the indices are constant then we know it is consecutive. We can
+ Phi = dyn_cast<PHINode>(GpPtr);
+ if (Phi && Inductions.count(Phi)) {
+
+ // Make sure that the pointer does not point to structs.
+ PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
+ if (GepPtrType->getElementType()->isAggregateType())
+ return 0;
+
+ // Make sure that all of the index operands are loop invariant.
+ for (unsigned i = 1; i < NumOperands; ++i)
+ if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
+ return 0;
+
+ InductionInfo II = Inductions[Phi];
+ if (IK_PtrInduction == II.IK)
+ return 1;
+ else if (IK_ReversePtrInduction == II.IK)
+ return -1;
+ }
+
// Check that all of the gep indices are uniform except for the last.
for (unsigned i = 0; i < NumOperands - 1; ++i)
if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
- return false;
+ return 0;
// We can emit wide load/stores only if the last index is the induction
// variable.
@@ -235,39 +854,153 @@ bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
// The memory is consecutive because the last index is consecutive
// and all other indices are loop invariant.
if (Step->isOne())
- return true;
+ return 1;
+ if (Step->isAllOnesValue())
+ return -1;
}
- return false;
+ return 0;
}
bool LoopVectorizationLegality::isUniform(Value *V) {
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}
-Value *InnerLoopVectorizer::getVectorValue(Value *V) {
+InnerLoopVectorizer::VectorParts&
+InnerLoopVectorizer::getVectorValue(Value *V) {
assert(V != Induction && "The new induction variable should not be used.");
assert(!V->getType()->isVectorTy() && "Can't widen a vector");
- // If we saved a vectorized copy of V, use it.
- Value *&MapEntry = WidenMap[V];
- if (MapEntry)
- return MapEntry;
- // Broadcast V and save the value for future uses.
+ // If we have this scalar in the map, return it.
+ if (WidenMap.has(V))
+ return WidenMap.get(V);
+
+ // If this scalar is unknown, assume that it is a constant or that it is
+ // loop invariant. Broadcast V and save the value for future uses.
Value *B = getBroadcastInstrs(V);
- MapEntry = B;
- return B;
+ return WidenMap.splat(V, B);
}
-Constant*
-InnerLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
- return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true));
+Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
+ assert(Vec->getType()->isVectorTy() && "Invalid type");
+ SmallVector<Constant*, 8> ShuffleMask;
+ for (unsigned i = 0; i < VF; ++i)
+ ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
+
+ return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "reverse");
+}
+
+
+void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
+ LoopVectorizationLegality *Legal) {
+ // Attempt to issue a wide load.
+ LoadInst *LI = dyn_cast<LoadInst>(Instr);
+ StoreInst *SI = dyn_cast<StoreInst>(Instr);
+
+ assert((LI || SI) && "Invalid Load/Store instruction");
+
+ Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
+ Type *DataTy = VectorType::get(ScalarDataTy, VF);
+ Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
+ unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
+
+ // If the pointer is loop invariant or if it is non consecutive,
+ // scalarize the load.
+ int Stride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = Stride < 0;
+ bool UniformLoad = LI && Legal->isUniform(Ptr);
+ if (Stride == 0 || UniformLoad)
+ return scalarizeInstruction(Instr);
+
+ Constant *Zero = Builder.getInt32(0);
+ VectorParts &Entry = WidenMap.get(Instr);
+
+ // Handle consecutive loads/stores.
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+ if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
+ Value *PtrOperand = Gep->getPointerOperand();
+ Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
+ FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(0, FirstBasePtr);
+ Gep2->setName("gep.indvar.base");
+ Ptr = Builder.Insert(Gep2);
+ } else if (Gep) {
+ assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
+ OrigLoop) && "Base ptr must be invariant");
+
+ // The last index does not have to be the induction. It can be
+ // consecutive and be a function of the index. For example A[I+1];
+ unsigned NumOperands = Gep->getNumOperands();
+
+ Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
+ VectorParts &GEPParts = getVectorValue(LastGepOperand);
+ Value *LastIndex = GEPParts[0];
+ LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
+
+ // Create the new GEP with the new induction variable.
+ GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
+ Gep2->setOperand(NumOperands - 1, LastIndex);
+ Gep2->setName("gep.indvar.idx");
+ Ptr = Builder.Insert(Gep2);
+ } else {
+ // Use the induction element ptr.
+ assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
+ VectorParts &PtrVal = getVectorValue(Ptr);
+ Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
+ }
+
+ // Handle Stores:
+ if (SI) {
+ assert(!Legal->isUniform(SI->getPointerOperand()) &&
+ "We do not allow storing to uniform addresses");
+
+ VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If we store to reverse consecutive memory locations then we need
+ // to reverse the order of elements in the stored value.
+ StoredVal[Part] = reverseVector(StoredVal[Part]);
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
+ Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
+ }
+ }
+
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ // Calculate the pointer for the specific unroll-part.
+ Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
+
+ if (Reverse) {
+ // If the address is consecutive but reversed, then the
+ // wide store needs to start at the last vector element.
+ PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
+ PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
+ }
+
+ Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
+ Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
+ cast<LoadInst>(LI)->setAlignment(Alignment);
+ Entry[Part] = Reverse ? reverseVector(LI) : LI;
+ }
}
void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
// Holds vector parameters or scalars, in case of uniform vals.
- SmallVector<Value*, 8> Params;
+ SmallVector<VectorParts, 4> Params;
// Find all of the vectorized parameters.
for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
@@ -284,13 +1017,15 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// If the src is an instruction that appeared earlier in the basic block
// then it should already be vectorized.
- if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
- assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
+ if (SrcInst && OrigLoop->contains(SrcInst)) {
+ assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
// The parameter is a vector value from earlier.
- Params.push_back(WidenMap[SrcInst]);
+ Params.push_back(WidenMap.get(SrcInst));
} else {
// The parameter is a scalar from outside the loop. Maybe even a constant.
- Params.push_back(SrcOp);
+ VectorParts Scalars;
+ Scalars.append(UF, SrcOp);
+ Params.push_back(Scalars);
}
}
@@ -299,42 +1034,41 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *VecResults = 0;
- // If we have a return value, create an empty vector. We place the scalarized
- // instructions in this vector.
- if (!IsVoidRetTy)
- VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
+ Value *UndefVec = IsVoidRetTy ? 0 :
+ UndefValue::get(VectorType::get(Instr->getType(), VF));
+ // Create a new entry in the WidenMap and initialize it to Undef or Null.
+ VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
// For each scalar that we create:
- for (unsigned i = 0; i < VF; ++i) {
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instrucions with extracted scalars.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *Op = Params[op];
- // Param is a vector. Need to extract the right lane.
- if (Op->getType()->isVectorTy())
- Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
- Cloned->setOperand(op, Op);
- }
+ for (unsigned Width = 0; Width < VF; ++Width) {
+ // For each vector unroll 'part':
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Instruction *Cloned = Instr->clone();
+ if (!IsVoidRetTy)
+ Cloned->setName(Instr->getName() + ".cloned");
+ // Replace the operands of the cloned instrucions with extracted scalars.
+ for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
+ Value *Op = Params[op][Part];
+ // Param is a vector. Need to extract the right lane.
+ if (Op->getType()->isVectorTy())
+ Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
+ Cloned->setOperand(op, Op);
+ }
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
+ // Place the cloned scalar in the new loop.
+ Builder.Insert(Cloned);
- // If the original scalar returns a value we need to place it in a vector
- // so that future users will be able to use it.
- if (!IsVoidRetTy)
- VecResults = Builder.CreateInsertElement(VecResults, Cloned,
- Builder.getInt32(i));
+ // If the original scalar returns a value we need to place it in a vector
+ // so that future users will be able to use it.
+ if (!IsVoidRetTy)
+ VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
+ Builder.getInt32(Width));
+ }
}
-
- if (!IsVoidRetTy)
- WidenMap[Instr] = VecResults;
}
-Value*
+Instruction *
InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
Instruction *Loc) {
LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
@@ -343,7 +1077,7 @@ InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
if (!PtrRtCheck->Need)
return NULL;
- Value *MemoryRuntimeCheck = 0;
+ Instruction *MemoryRuntimeCheck = 0;
unsigned NumPointers = PtrRtCheck->Pointers.size();
SmallVector<Value* , 2> Starts;
SmallVector<Value* , 2> Ends;
@@ -372,28 +1106,23 @@ InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
}
}
+ IRBuilder<> ChkBuilder(Loc);
+
for (unsigned i = 0; i < NumPointers; ++i) {
for (unsigned j = i+1; j < NumPointers; ++j) {
- Instruction::CastOps Op = Instruction::BitCast;
- Value *Start0 = CastInst::Create(Op, Starts[i], PtrArithTy, "bc", Loc);
- Value *Start1 = CastInst::Create(Op, Starts[j], PtrArithTy, "bc", Loc);
- Value *End0 = CastInst::Create(Op, Ends[i], PtrArithTy, "bc", Loc);
- Value *End1 = CastInst::Create(Op, Ends[j], PtrArithTy, "bc", Loc);
-
- Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Start0, End1, "bound0", Loc);
- Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Start1, End0, "bound1", Loc);
- Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
- "found.conflict", Loc);
+ Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
+ Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
+ Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy, "bc");
+ Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy, "bc");
+
+ Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
+ Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
+ Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
if (MemoryRuntimeCheck)
- MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
- MemoryRuntimeCheck,
- IsConflict,
- "conflict.rdx", Loc);
- else
- MemoryRuntimeCheck = IsConflict;
+ IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
+ "conflict.rdx");
+ MemoryRuntimeCheck = cast<Instruction>(IsConflict);
}
}
@@ -407,27 +1136,27 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
the vectorized instructions while the old loop will continue to run the
scalar remainder.
- [ ] <-- vector loop bypass.
- / |
- / v
+ [ ] <-- vector loop bypass (may consist of multiple blocks).
+ / |
+ / v
| [ ] <-- vector pre header.
| |
| v
| [ ] \
| [ ]_| <-- vector loop.
| |
- \ v
- >[ ] <--- middle-block.
- / |
- / v
+ \ v
+ >[ ] <--- middle-block.
+ / |
+ / v
| [ ] <--- new preheader.
| |
| v
| [ ] \
| [ ]_| <-- old scalar loop to handle remainder.
- \ |
- \ v
- >[ ] <-- exit block.
+ \ |
+ \ v
+ >[ ] <-- exit block.
...
*/
@@ -436,6 +1165,11 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
BasicBlock *ExitBlock = OrigLoop->getExitBlock();
assert(ExitBlock && "Must have an exit block");
+ // Mark the old scalar loop with metadata that tells us not to vectorize this
+ // loop again if we run into it.
+ MDNode *MD = MDNode::get(OldBasicBlock->getContext(), ArrayRef<Value*>());
+ OldBasicBlock->getTerminator()->setMetadata(AlreadyVectorizedMDName, MD);
+
// Some loops have a single integer induction variable, while other loops
// don't. One example is c++ iterators that often have multiple pointer
// induction variables. In the code below we also support a case where we
@@ -468,10 +1202,7 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
ConstantInt::get(IdxTy, 0);
assert(BypassBlock && "Invalid loop structure");
-
- // Generate the code that checks in runtime if arrays overlap.
- Value *MemoryRuntimeCheck = addRuntimeCheck(Legal,
- BypassBlock->getTerminator());
+ LoopBypassBlocks.push_back(BypassBlock);
// Split the single block loop into the two loop structure described above.
BasicBlock *VectorPH =
@@ -483,17 +1214,19 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
BasicBlock *ScalarPH =
MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
- // This is the location in which we add all of the logic for bypassing
- // the new vector loop.
- Instruction *Loc = BypassBlock->getTerminator();
-
// Use this IR builder to create the loop instructions (Phi, Br, Cmp)
// inside the loop.
Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
// Generate the induction variable.
Induction = Builder.CreatePHI(IdxTy, 2, "index");
- Constant *Step = ConstantInt::get(IdxTy, VF);
+ // The loop step is equal to the vectorization factor (num of SIMD elements)
+ // times the unroll factor (num of SIMD instructions).
+ Constant *Step = ConstantInt::get(IdxTy, VF * UF);
+
+ // This is the IR builder that we use to add all of the logic for bypassing
+ // the new vector loop.
+ IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
// We may need to extend the index in case there is a type mismatch.
// We know that the count starts at zero and does not overflow.
@@ -501,37 +1234,52 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// The exit count can be of pointer type. Convert it to the correct
// integer type.
if (ExitCount->getType()->isPointerTy())
- Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
+ Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
else
- Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
+ Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
}
// Add the start index to the loop count to get the new end index.
- Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
+ Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
// Now we need to generate the expression for N - (N % VF), which is
// the part that the vectorized body will execute.
- Constant *CIVF = ConstantInt::get(IdxTy, VF);
- Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
- Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
- Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
- "end.idx.rnd.down", Loc);
+ Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
+ Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
+ Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
+ "end.idx.rnd.down");
// Now, compare the new count to zero. If it is zero skip the vector loop and
// jump to the scalar loop.
- Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
- IdxEndRoundDown,
- StartIdx,
- "cmp.zero", Loc);
-
- // If we are using memory runtime checks, include them in.
- if (MemoryRuntimeCheck)
- Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
- "CntOrMem", Loc);
+ Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
+ "cmp.zero");
+
+ BasicBlock *LastBypassBlock = BypassBlock;
+
+ // Generate the code that checks in runtime if arrays overlap. We put the
+ // checks into a separate block to make the more common case of few elements
+ // faster.
+ Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
+ BypassBlock->getTerminator());
+ if (MemRuntimeCheck) {
+ // Create a new block containing the memory check.
+ BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
+ "vector.memcheck");
+ LoopBypassBlocks.push_back(CheckBlock);
+
+ // Replace the branch into the memory check block with a conditional branch
+ // for the "few elements case".
+ Instruction *OldTerm = BypassBlock->getTerminator();
+ BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
+ OldTerm->eraseFromParent();
+
+ Cmp = MemRuntimeCheck;
+ LastBypassBlock = CheckBlock;
+ }
- BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
- // Remove the old terminator.
- Loc->eraseFromParent();
+ LastBypassBlock->getTerminator()->eraseFromParent();
+ BranchInst::Create(MiddleBlock, VectorPH, Cmp,
+ LastBypassBlock);
// We are going to resume the execution of the scalar loop.
// Go over all of the induction variables that we found and fix the
@@ -552,9 +1300,9 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
MiddleBlock->getTerminator());
Value *EndValue = 0;
switch (II.IK) {
- case LoopVectorizationLegality::NoInduction:
+ case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
- case LoopVectorizationLegality::IntInduction: {
+ case LoopVectorizationLegality::IK_IntInduction: {
// Handle the integer induction counter:
assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
assert(OrigPhi == OldInduction && "Unknown integer PHI");
@@ -564,37 +1312,52 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
ResumeIndex = ResumeVal;
break;
}
- case LoopVectorizationLegality::ReverseIntInduction: {
+ case LoopVectorizationLegality::IK_ReverseIntInduction: {
// Convert the CountRoundDown variable to the PHI size.
unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
Value *CRD = CountRoundDown;
if (CRDSize > IISize)
CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
- II.StartValue->getType(),
- "tr.crd", BypassBlock->getTerminator());
+ II.StartValue->getType(), "tr.crd",
+ LoopBypassBlocks.back()->getTerminator());
else if (CRDSize < IISize)
CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
II.StartValue->getType(),
- "sext.crd", BypassBlock->getTerminator());
+ "sext.crd",
+ LoopBypassBlocks.back()->getTerminator());
// Handle reverse integer induction counter:
- EndValue = BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
- BypassBlock->getTerminator());
+ EndValue =
+ BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
+ LoopBypassBlocks.back()->getTerminator());
break;
}
- case LoopVectorizationLegality::PtrInduction: {
+ case LoopVectorizationLegality::IK_PtrInduction: {
// For pointer induction variables, calculate the offset using
// the end index.
- EndValue = GetElementPtrInst::Create(II.StartValue, CountRoundDown,
- "ptr.ind.end",
- BypassBlock->getTerminator());
+ EndValue =
+ GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end",
+ LoopBypassBlocks.back()->getTerminator());
+ break;
+ }
+ case LoopVectorizationLegality::IK_ReversePtrInduction: {
+ // The value at the end of the loop for the reverse pointer is calculated
+ // by creating a GEP with a negative index starting from the start value.
+ Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
+ Value *NegIdx = BinaryOperator::CreateSub(Zero, CountRoundDown,
+ "rev.ind.end",
+ LoopBypassBlocks.back()->getTerminator());
+ EndValue = GetElementPtrInst::Create(II.StartValue, NegIdx,
+ "rev.ptr.ind.end",
+ LoopBypassBlocks.back()->getTerminator());
break;
}
}// end of case
// The new PHI merges the original incoming value, in case of a bypass,
// or the value at the end of the vectorized loop.
- ResumeVal->addIncoming(II.StartValue, BypassBlock);
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
ResumeVal->addIncoming(EndValue, VecBody);
// Fix the scalar body counter (PHI node).
@@ -610,7 +1373,8 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
assert(!ResumeIndex && "Unexpected resume value found");
ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
MiddleBlock->getTerminator());
- ResumeIndex->addIncoming(StartIdx, BypassBlock);
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
}
@@ -650,6 +1414,8 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
// Insert the new loop into the loop nest and register the new basic blocks.
if (ParentLoop) {
ParentLoop->addChildLoop(Lp);
+ for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
+ ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
@@ -666,57 +1432,160 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
LoopExitBlock = ExitBlock;
LoopVectorBody = VecBody;
LoopScalarBody = OldBasicBlock;
- LoopBypassBlock = BypassBlock;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
-static unsigned
-getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
+static Constant*
+getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
switch (K) {
- case LoopVectorizationLegality::IntegerXor:
- case LoopVectorizationLegality::IntegerAdd:
- case LoopVectorizationLegality::IntegerOr:
+ case LoopVectorizationLegality:: RK_IntegerXor:
+ case LoopVectorizationLegality:: RK_IntegerAdd:
+ case LoopVectorizationLegality:: RK_IntegerOr:
// Adding, Xoring, Oring zero to a number does not change it.
- return 0;
- case LoopVectorizationLegality::IntegerMult:
+ return ConstantInt::get(Tp, 0);
+ case LoopVectorizationLegality:: RK_IntegerMult:
// Multiplying a number by 1 does not change it.
- return 1;
- case LoopVectorizationLegality::IntegerAnd:
+ return ConstantInt::get(Tp, 1);
+ case LoopVectorizationLegality:: RK_IntegerAnd:
// AND-ing a number with an all-1 value does not change it.
- return -1;
+ return ConstantInt::get(Tp, -1, true);
+ case LoopVectorizationLegality:: RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case LoopVectorizationLegality:: RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
default:
llvm_unreachable("Unknown reduction kind");
}
}
-static bool
-isTriviallyVectorizableIntrinsic(Instruction *Inst) {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
- if (!II)
- return false;
- switch (II->getIntrinsicID()) {
- case Intrinsic::sqrt:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- case Intrinsic::fabs:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::pow:
- case Intrinsic::fma:
- return true;
+static Intrinsic::ID
+getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
+ // If we have an intrinsic call, check if it is trivially vectorizable.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::sqrt:
+ case Intrinsic::sin:
+ case Intrinsic::cos:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::log:
+ case Intrinsic::log10:
+ case Intrinsic::log2:
+ case Intrinsic::fabs:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::pow:
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ return II->getIntrinsicID();
+ default:
+ return Intrinsic::not_intrinsic;
+ }
+ }
+
+ if (!TLI)
+ return Intrinsic::not_intrinsic;
+
+ LibFunc::Func Func;
+ Function *F = CI->getCalledFunction();
+ // We're going to make assumptions on the semantics of the functions, check
+ // that the target knows that it's available in this environment.
+ if (!F || !TLI->getLibFunc(F->getName(), Func))
+ return Intrinsic::not_intrinsic;
+
+ // Otherwise check if we have a call to a function that can be turned into a
+ // vector intrinsic.
+ switch (Func) {
default:
- return false;
+ break;
+ case LibFunc::sin:
+ case LibFunc::sinf:
+ case LibFunc::sinl:
+ return Intrinsic::sin;
+ case LibFunc::cos:
+ case LibFunc::cosf:
+ case LibFunc::cosl:
+ return Intrinsic::cos;
+ case LibFunc::exp:
+ case LibFunc::expf:
+ case LibFunc::expl:
+ return Intrinsic::exp;
+ case LibFunc::exp2:
+ case LibFunc::exp2f:
+ case LibFunc::exp2l:
+ return Intrinsic::exp2;
+ case LibFunc::log:
+ case LibFunc::logf:
+ case LibFunc::logl:
+ return Intrinsic::log;
+ case LibFunc::log10:
+ case LibFunc::log10f:
+ case LibFunc::log10l:
+ return Intrinsic::log10;
+ case LibFunc::log2:
+ case LibFunc::log2f:
+ case LibFunc::log2l:
+ return Intrinsic::log2;
+ case LibFunc::fabs:
+ case LibFunc::fabsf:
+ case LibFunc::fabsl:
+ return Intrinsic::fabs;
+ case LibFunc::floor:
+ case LibFunc::floorf:
+ case LibFunc::floorl:
+ return Intrinsic::floor;
+ case LibFunc::ceil:
+ case LibFunc::ceilf:
+ case LibFunc::ceill:
+ return Intrinsic::ceil;
+ case LibFunc::trunc:
+ case LibFunc::truncf:
+ case LibFunc::truncl:
+ return Intrinsic::trunc;
+ case LibFunc::rint:
+ case LibFunc::rintf:
+ case LibFunc::rintl:
+ return Intrinsic::rint;
+ case LibFunc::nearbyint:
+ case LibFunc::nearbyintf:
+ case LibFunc::nearbyintl:
+ return Intrinsic::nearbyint;
+ case LibFunc::pow:
+ case LibFunc::powf:
+ case LibFunc::powl:
+ return Intrinsic::pow;
+ }
+
+ return Intrinsic::not_intrinsic;
+}
+
+/// This function translates the reduction kind to an LLVM binary operator.
+static Instruction::BinaryOps
+getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
+ switch (Kind) {
+ case LoopVectorizationLegality::RK_IntegerAdd:
+ return Instruction::Add;
+ case LoopVectorizationLegality::RK_IntegerMult:
+ return Instruction::Mul;
+ case LoopVectorizationLegality::RK_IntegerOr:
+ return Instruction::Or;
+ case LoopVectorizationLegality::RK_IntegerAnd:
+ return Instruction::And;
+ case LoopVectorizationLegality::RK_IntegerXor:
+ return Instruction::Xor;
+ case LoopVectorizationLegality::RK_FloatMult:
+ return Instruction::FMul;
+ case LoopVectorizationLegality::RK_FloatAdd:
+ return Instruction::FAdd;
+ default:
+ llvm_unreachable("Unknown reduction operation");
}
- return false;
}
void
@@ -728,9 +1597,7 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// the cost-model.
//
//===------------------------------------------------===//
- BasicBlock &BB = *OrigLoop->getHeader();
- Constant *Zero =
- ConstantInt::get(IntegerType::getInt32Ty(BB.getContext()), 0);
+ Constant *Zero = Builder.getInt32(0);
// In order to support reduction variables we need to be able to vectorize
// Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
@@ -764,7 +1631,6 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
it != e; ++it) {
PHINode *RdxPhi = *it;
- PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
assert(RdxPhi && "Unable to recover vectorized PHI");
// Find the reduction variable descriptor.
@@ -777,16 +1643,16 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// To do so, we need to generate the 'identity' vector and overide
// one of the elements with the incoming scalar reduction. We need
// to do it in the vector-loop preheader.
- Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
+ Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
// This is the vector-clone of the value that leaves the loop.
- Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
- Type *VecTy = VectorExit->getType();
+ VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
+ Type *VecTy = VectorExit[0]->getType();
// Find the reduction identity variable. Zero for addition, or, xor,
// one for multiplication, -1 for And.
- Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind),
- VecTy->getScalarType());
+ Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
+ Constant *Identity = ConstantVector::getSplat(VF, Iden);
// This vector is the Identity vector where the first element is the
// incoming scalar reduction.
@@ -800,10 +1666,17 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// Reductions do not have to start at zero. They can start with
// any loop invariant values.
- VecRdxPhi->addIncoming(VectorStart, VecPreheader);
- Value *Val =
- getVectorValue(RdxPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
- VecRdxPhi->addIncoming(Val, LoopVectorBody);
+ VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
+ BasicBlock *Latch = OrigLoop->getLoopLatch();
+ Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
+ VectorParts &Val = getVectorValue(LoopVal);
+ for (unsigned part = 0; part < UF; ++part) {
+ // Make sure to add the reduction stat value only to the
+ // first unroll part.
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
+ cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
+ }
// Before each round, move the insertion point right between
// the PHIs and the values we are going to write.
@@ -811,40 +1684,56 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// instructions.
Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
- // This PHINode contains the vectorized reduction variable, or
- // the initial value vector, if we bypass the vector loop.
- PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
- NewPhi->addIncoming(VectorStart, LoopBypassBlock);
- NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);
-
- // Extract the first scalar.
- Value *Scalar0 =
- Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
- // Extract and reduce the remaining vector elements.
- for (unsigned i=1; i < VF; ++i) {
- Value *Scalar1 =
- Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
- switch (RdxDesc.Kind) {
- case LoopVectorizationLegality::IntegerAdd:
- Scalar0 = Builder.CreateAdd(Scalar0, Scalar1, "add.rdx");
- break;
- case LoopVectorizationLegality::IntegerMult:
- Scalar0 = Builder.CreateMul(Scalar0, Scalar1, "mul.rdx");
- break;
- case LoopVectorizationLegality::IntegerOr:
- Scalar0 = Builder.CreateOr(Scalar0, Scalar1, "or.rdx");
- break;
- case LoopVectorizationLegality::IntegerAnd:
- Scalar0 = Builder.CreateAnd(Scalar0, Scalar1, "and.rdx");
- break;
- case LoopVectorizationLegality::IntegerXor:
- Scalar0 = Builder.CreateXor(Scalar0, Scalar1, "xor.rdx");
- break;
- default:
- llvm_unreachable("Unknown reduction operation");
- }
+ VectorParts RdxParts;
+ for (unsigned part = 0; part < UF; ++part) {
+ // This PHINode contains the vectorized reduction variable, or
+ // the initial value vector, if we bypass the vector loop.
+ VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
+ Value *StartVal = (part == 0) ? VectorStart : Identity;
+ for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
+ NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
+ NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
+ RdxParts.push_back(NewPhi);
+ }
+
+ // Reduce all of the unrolled parts into a single vector.
+ Value *ReducedPartRdx = RdxParts[0];
+ for (unsigned part = 1; part < UF; ++part) {
+ Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
+ ReducedPartRdx = Builder.CreateBinOp(Op, RdxParts[part], ReducedPartRdx,
+ "bin.rdx");
}
+ // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+ // and vector ops, reducing the set of values being computed by half each
+ // round.
+ assert(isPowerOf2_32(VF) &&
+ "Reduction emission only supported for pow2 vectors!");
+ Value *TmpVec = ReducedPartRdx;
+ SmallVector<Constant*, 32> ShuffleMask(VF, 0);
+ for (unsigned i = VF; i != 1; i >>= 1) {
+ // Move the upper half of the vector to the lower half.
+ for (unsigned j = 0; j != i/2; ++j)
+ ShuffleMask[j] = Builder.getInt32(i/2 + j);
+
+ // Fill the rest of the mask with undef.
+ std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
+ UndefValue::get(Builder.getInt32Ty()));
+
+ Value *Shuf =
+ Builder.CreateShuffleVector(TmpVec,
+ UndefValue::get(TmpVec->getType()),
+ ConstantVector::get(ShuffleMask),
+ "rdx.shuf");
+
+ Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
+ TmpVec = Builder.CreateBinOp(Op, TmpVec, Shuf, "bin.rdx");
+ }
+
+ // The result is in the first element of the vector.
+ Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+
// Now, we need to fix the users of the reduction variable
// inside and outside of the scalar remainder loop.
// We know that the loop is in LCSSA form. We need to update the
@@ -877,29 +1766,49 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
(RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
(RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
}// end of for each redux variable.
+
+ // The Loop exit block may have single value PHI nodes where the incoming
+ // value is 'undef'. While vectorizing we only handled real values that
+ // were defined inside the loop. Here we handle the 'undef case'.
+ // See PR14725.
+ for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
+ LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
+ PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
+ if (!LCSSAPhi) continue;
+ if (LCSSAPhi->getNumIncomingValues() == 1)
+ LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
+ LoopMiddleBlock);
+ }
}
-Value *InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
"Invalid edge");
- Value *SrcMask = createBlockInMask(Src);
+ VectorParts SrcMask = createBlockInMask(Src);
// The terminator has to be a branch inst!
BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
assert(BI && "Unexpected terminator found");
- Value *EdgeMask = SrcMask;
if (BI->isConditional()) {
- EdgeMask = getVectorValue(BI->getCondition());
+ VectorParts EdgeMask = getVectorValue(BI->getCondition());
+
if (BI->getSuccessor(0) != Dst)
- EdgeMask = Builder.CreateNot(EdgeMask);
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
+
+ for (unsigned part = 0; part < UF; ++part)
+ EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
+ return EdgeMask;
}
- return Builder.CreateAnd(EdgeMask, SrcMask);
+ return SrcMask;
}
-Value *InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
+InnerLoopVectorizer::VectorParts
+InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
// Loop incoming mask is all-one.
@@ -910,11 +1819,14 @@ Value *InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
// This is the block mask. We OR all incoming edges, and with zero.
Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
- Value *BlockMask = getVectorValue(Zero);
+ VectorParts BlockMask = getVectorValue(Zero);
// For each pred:
- for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it)
- BlockMask = Builder.CreateOr(BlockMask, createEdgeMask(*it, BB));
+ for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
+ VectorParts EM = createEdgeMask(*it, BB);
+ for (unsigned part = 0; part < UF; ++part)
+ BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
+ }
return BlockMask;
}
@@ -922,11 +1834,9 @@ Value *InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
void
InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
BasicBlock *BB, PhiVector *PV) {
- Constant *Zero =
- ConstantInt::get(IntegerType::getInt32Ty(BB->getContext()), 0);
-
// For each instruction in the old loop.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ VectorParts &Entry = WidenMap.get(it);
switch (it->getOpcode()) {
case Instruction::Br:
// Nothing to do for PHIs and BR, since we already took care of the
@@ -936,11 +1846,12 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
PHINode* P = cast<PHINode>(it);
// Handle reduction variables:
if (Legal->getReductionVars()->count(P)) {
- // This is phase one of vectorizing PHIs.
- Type *VecTy = VectorType::get(it->getType(), VF);
- WidenMap[it] =
- PHINode::Create(VecTy, 2, "vec.phi",
- LoopVectorBody->getFirstInsertionPt());
+ for (unsigned part = 0; part < UF; ++part) {
+ // This is phase one of vectorizing PHIs.
+ Type *VecTy = VectorType::get(it->getType(), VF);
+ Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
+ LoopVectorBody-> getFirstInsertionPt());
+ }
PV->push_back(P);
continue;
}
@@ -954,12 +1865,15 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
// At this point we generate the predication tree. There may be
// duplications since this is a simple recursive scan, but future
// optimizations will clean it up.
- Value *Cond = createBlockInMask(P->getIncomingBlock(0));
- WidenMap[P] =
- Builder.CreateSelect(Cond,
- getVectorValue(P->getIncomingValue(0)),
- getVectorValue(P->getIncomingValue(1)),
- "predphi");
+ VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
+ P->getParent());
+
+ for (unsigned part = 0; part < UF; ++part) {
+ VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
+ VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
+ Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
+ "predphi");
+ }
continue;
}
@@ -972,19 +1886,20 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
Legal->getInductionVars()->lookup(P);
switch (II.IK) {
- case LoopVectorizationLegality::NoInduction:
+ case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
- case LoopVectorizationLegality::IntInduction: {
+ case LoopVectorizationLegality::IK_IntInduction: {
assert(P == OldInduction && "Unexpected PHI");
Value *Broadcasted = getBroadcastInstrs(Induction);
// After broadcasting the induction variable we need to make the
// vector consecutive by adding 0, 1, 2 ...
- Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted);
- WidenMap[OldInduction] = ConsecutiveInduction;
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
continue;
}
- case LoopVectorizationLegality::ReverseIntInduction:
- case LoopVectorizationLegality::PtrInduction:
+ case LoopVectorizationLegality::IK_ReverseIntInduction:
+ case LoopVectorizationLegality::IK_PtrInduction:
+ case LoopVectorizationLegality::IK_ReversePtrInduction:
// Handle reverse integer and pointer inductions.
Value *StartIdx = 0;
// If we have a single integer induction variable then use it.
@@ -1001,7 +1916,7 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
"normalized.idx");
// Handle the reverse integer induction variable case.
- if (LoopVectorizationLegality::ReverseIntInduction == II.IK) {
+ if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
"resize.norm.idx");
@@ -1012,30 +1927,39 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
Value *Broadcasted = getBroadcastInstrs(ReverseInd);
// After broadcasting the induction variable we need to make the
// vector consecutive by adding ... -3, -2, -1, 0.
- Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted,
- true);
- WidenMap[it] = ConsecutiveInduction;
+ for (unsigned part = 0; part < UF; ++part)
+ Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
continue;
}
// Handle the pointer induction variable case.
assert(P->getType()->isPointerTy() && "Unexpected type.");
+ // Is this a reverse induction ptr or a consecutive induction ptr.
+ bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
+ II.IK);
+
// This is the vector of results. Notice that we don't generate
// vector geps because scalar geps result in better code.
- Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
- for (unsigned int i = 0; i < VF; ++i) {
- Constant *Idx = ConstantInt::get(Induction->getType(), i);
- Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx,
- "gep.idx");
- Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
- "next.gep");
- VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
- Builder.getInt32(i),
- "insert.gep");
+ for (unsigned part = 0; part < UF; ++part) {
+ Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
+ for (unsigned int i = 0; i < VF; ++i) {
+ int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
+ Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
+ Value *GlobalIdx;
+ if (!Reverse)
+ GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
+ else
+ GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
+
+ Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
+ "next.gep");
+ VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
+ Builder.getInt32(i),
+ "insert.gep");
+ }
+ Entry[part] = VecVal;
}
-
- WidenMap[it] = VecVal;
continue;
}
@@ -1061,41 +1985,48 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
case Instruction::Xor: {
// Just widen binops.
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
- Value *A = getVectorValue(it->getOperand(0));
- Value *B = getVectorValue(it->getOperand(1));
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
// Use this vector value for all users of the original instruction.
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
- WidenMap[it] = V;
-
- // Update the NSW, NUW and Exact flags.
- BinaryOperator *VecOp = cast<BinaryOperator>(V);
- if (isa<OverflowingBinaryOperator>(BinOp)) {
- VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
- VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
+
+ // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
+ BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
+ if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
+ VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
+ VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
+ }
+ if (VecOp && isa<PossiblyExactOperator>(VecOp))
+ VecOp->setIsExact(BinOp->isExact());
+
+ Entry[Part] = V;
}
- if (isa<PossiblyExactOperator>(VecOp))
- VecOp->setIsExact(BinOp->isExact());
break;
}
case Instruction::Select: {
// Widen selects.
// If the selector is loop invariant we can create a select
// instruction with a scalar condition. Otherwise, use vector-select.
- Value *Cond = it->getOperand(0);
- bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);
+ bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
+ OrigLoop);
// The condition can be loop invariant but still defined inside the
// loop. This means that we can't just use the original 'cond' value.
// We have to take the 'vectorized' value and pick the first lane.
// Instcombine will make this a no-op.
- Cond = getVectorValue(Cond);
- if (InvariantCond)
- Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));
-
- Value *Op0 = getVectorValue(it->getOperand(1));
- Value *Op1 = getVectorValue(it->getOperand(2));
- WidenMap[it] = Builder.CreateSelect(Cond, Op0, Op1);
+ VectorParts &Cond = getVectorValue(it->getOperand(0));
+ VectorParts &Op0 = getVectorValue(it->getOperand(1));
+ VectorParts &Op1 = getVectorValue(it->getOperand(2));
+ Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
+ Builder.getInt32(0));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Entry[Part] = Builder.CreateSelect(
+ InvariantCond ? ScalarCond : Cond[Part],
+ Op0[Part],
+ Op1[Part]);
+ }
break;
}
@@ -1104,94 +2035,23 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
// Widen compares. Generate vector compares.
bool FCmp = (it->getOpcode() == Instruction::FCmp);
CmpInst *Cmp = dyn_cast<CmpInst>(it);
- Value *A = getVectorValue(it->getOperand(0));
- Value *B = getVectorValue(it->getOperand(1));
- if (FCmp)
- WidenMap[it] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
- else
- WidenMap[it] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
- break;
- }
-
- case Instruction::Store: {
- // Attempt to issue a wide store.
- StoreInst *SI = dyn_cast<StoreInst>(it);
- Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
- Value *Ptr = SI->getPointerOperand();
- unsigned Alignment = SI->getAlignment();
-
- assert(!Legal->isUniform(Ptr) &&
- "We do not allow storing to uniform addresses");
-
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
-
- // This store does not use GEPs.
- if (!Legal->isConsecutivePtr(Ptr)) {
- scalarizeInstruction(it);
- break;
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ VectorParts &B = getVectorValue(it->getOperand(1));
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ Value *C = 0;
+ if (FCmp)
+ C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
+ else
+ C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
+ Entry[Part] = C;
}
-
- if (Gep) {
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
-
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
- } else {
- // Use the induction element ptr.
- assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
- Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
- }
- Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
- Value *Val = getVectorValue(SI->getValueOperand());
- Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
break;
}
- case Instruction::Load: {
- // Attempt to issue a wide load.
- LoadInst *LI = dyn_cast<LoadInst>(it);
- Type *RetTy = VectorType::get(LI->getType(), VF);
- Value *Ptr = LI->getPointerOperand();
- unsigned Alignment = LI->getAlignment();
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
-
- // If the pointer is loop invariant or if it is non consecutive,
- // scalarize the load.
- bool Con = Legal->isConsecutivePtr(Ptr);
- if (Legal->isUniform(Ptr) || !Con) {
- scalarizeInstruction(it);
- break;
- }
-
- if (Gep) {
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
-
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
- } else {
- // Use the induction element ptr.
- assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
- Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
- }
- Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
- LI = Builder.CreateLoad(Ptr);
- LI->setAlignment(Alignment);
- // Use this vector value for all users of the load.
- WidenMap[it] = LI;
- break;
- }
+ case Instruction::Store:
+ case Instruction::Load:
+ vectorizeMemoryInstruction(it, Legal);
+ break;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
@@ -1204,25 +2064,48 @@ InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
- /// Vectorize bitcasts.
CastInst *CI = dyn_cast<CastInst>(it);
- Value *A = getVectorValue(it->getOperand(0));
+ /// Optimize the special case where the source is the induction
+ /// variable. Notice that we can only optimize the 'trunc' case
+ /// because: a. FP conversions lose precision, b. sext/zext may wrap,
+ /// c. other casts depend on pointer size.
+ if (CI->getOperand(0) == OldInduction &&
+ it->getOpcode() == Instruction::Trunc) {
+ Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
+ CI->getType());
+ Value *Broadcasted = getBroadcastInstrs(ScalarCast);
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
+ break;
+ }
+ /// Vectorize casts.
Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
- WidenMap[it] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
+
+ VectorParts &A = getVectorValue(it->getOperand(0));
+ for (unsigned Part = 0; Part < UF; ++Part)
+ Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
break;
}
case Instruction::Call: {
- assert(isTriviallyVectorizableIntrinsic(it));
+ // Ignore dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(it))
+ break;
+
Module *M = BB->getParent()->getParent();
- IntrinsicInst *II = cast<IntrinsicInst>(it);
- Intrinsic::ID ID = II->getIntrinsicID();
- SmallVector<Value*, 4> Args;
- for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
- Args.push_back(getVectorValue(II->getArgOperand(i)));
- Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
- Function *F = Intrinsic::getDeclaration(M, ID, Tys);
- WidenMap[it] = Builder.CreateCall(F, Args);
+ CallInst *CI = cast<CallInst>(it);
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ assert(ID && "Not an intrinsic call!");
+ for (unsigned Part = 0; Part < UF; ++Part) {
+ SmallVector<Value*, 4> Args;
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
+ VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
+ Args.push_back(Arg[Part]);
+ }
+ Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
+ Function *F = Intrinsic::getDeclaration(M, ID, Tys);
+ Entry[Part] = Builder.CreateCall(F, Args);
+ }
break;
}
@@ -1239,12 +2122,14 @@ void InnerLoopVectorizer::updateAnalysis() {
SE->forgetLoop(OrigLoop);
// Update the dominator tree information.
- assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
+ assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
"Entry does not dominate exit.");
- DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
+ for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
+ DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
+ DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
- DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
+ DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
@@ -1263,6 +2148,10 @@ bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
BasicBlock *BB = LoopBlocks[i];
+ // We don't support switch statements inside loops.
+ if (!isa<BranchInst>(BB->getTerminator()))
+ return false;
+
// We must have at most two predecessors because we need to convert
// all PHIs to selects.
unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
@@ -1315,7 +2204,7 @@ bool LoopVectorizationLegality::canVectorize() {
// Do not loop-vectorize loops with a tiny trip count.
unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
- if (TC > 0u && TC < TinyTripCountThreshold) {
+ if (TC > 0u && TC < TinyTripCountVectorThreshold) {
DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
"This loop is not worth vectorizing.\n");
return false;
@@ -1350,6 +2239,13 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
BasicBlock *PreHeader = TheLoop->getLoopPreheader();
BasicBlock *Header = TheLoop->getHeader();
+ // If we marked the scalar loop as "already vectorized" then no need
+ // to vectorize it again.
+ if (Header->getTerminator()->getMetadata(AlreadyVectorizedMDName)) {
+ DEBUG(dbgs() << "LV: This loop was vectorized before\n");
+ return false;
+ }
+
// For each block in the loop.
for (Loop::block_iterator bb = TheLoop->block_begin(),
be = TheLoop->block_end(); bb != be; ++bb) {
@@ -1367,6 +2263,7 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Check that this PHI type is allowed.
if (!Phi->getType()->isIntegerTy() &&
+ !Phi->getType()->isFloatingPointTy() &&
!Phi->getType()->isPointerTy()) {
DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
return false;
@@ -1383,9 +2280,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
// Check if this is an induction variable.
InductionKind IK = isInductionVariable(Phi);
- if (NoInduction != IK) {
+ if (IK_NoInduction != IK) {
// Int inductions are special because we only allow one IV.
- if (IK == IntInduction) {
+ if (IK == IK_IntInduction) {
if (Induction) {
DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
return false;
@@ -1398,45 +2295,61 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
continue;
}
- if (AddReductionVar(Phi, IntegerAdd)) {
+ if (AddReductionVar(Phi, RK_IntegerAdd)) {
DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
continue;
}
- if (AddReductionVar(Phi, IntegerMult)) {
+ if (AddReductionVar(Phi, RK_IntegerMult)) {
DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
continue;
}
- if (AddReductionVar(Phi, IntegerOr)) {
+ if (AddReductionVar(Phi, RK_IntegerOr)) {
DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
continue;
}
- if (AddReductionVar(Phi, IntegerAnd)) {
+ if (AddReductionVar(Phi, RK_IntegerAnd)) {
DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
continue;
}
- if (AddReductionVar(Phi, IntegerXor)) {
+ if (AddReductionVar(Phi, RK_IntegerXor)) {
DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
continue;
}
+ if (AddReductionVar(Phi, RK_FloatMult)) {
+ DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd)) {
+ DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
+ continue;
+ }
DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
return false;
}// end of PHI handling
- // We still don't handle functions.
+ // We still don't handle functions. However, we can ignore dbg intrinsic
+ // calls and we do handle certain intrinsic and libm functions.
CallInst *CI = dyn_cast<CallInst>(it);
- if (CI && !isTriviallyVectorizableIntrinsic(it)) {
+ if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
DEBUG(dbgs() << "LV: Found a call site.\n");
return false;
}
- // We do not re-vectorize vectors.
+ // Check that the instruction return type is vectorizable.
if (!VectorType::isValidElementType(it->getType()) &&
!it->getType()->isVoidTy()) {
DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
return false;
}
+ // Check that the stored type is vectorizable.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
+ Type *T = ST->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(T))
+ return false;
+ }
+
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
if (!AllowedExit.count(it))
@@ -1491,7 +2404,51 @@ void LoopVectorizationLegality::collectLoopUniforms() {
}
}
+AliasAnalysis::Location
+LoopVectorizationLegality::getLoadStoreLocation(Instruction *Inst) {
+ if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
+ return AA->getLocation(Store);
+ else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
+ return AA->getLocation(Load);
+
+ llvm_unreachable("Should be either load or store instruction");
+}
+
+bool
+LoopVectorizationLegality::hasPossibleGlobalWriteReorder(
+ Value *Object,
+ Instruction *Inst,
+ AliasMultiMap& WriteObjects,
+ unsigned MaxByteWidth) {
+
+ AliasAnalysis::Location ThisLoc = getLoadStoreLocation(Inst);
+
+ std::vector<Instruction*>::iterator
+ it = WriteObjects[Object].begin(),
+ end = WriteObjects[Object].end();
+
+ for (; it != end; ++it) {
+ Instruction* I = *it;
+ if (I == Inst)
+ continue;
+
+ AliasAnalysis::Location ThatLoc = getLoadStoreLocation(I);
+ if (AA->alias(ThisLoc.getWithNewSize(MaxByteWidth),
+ ThatLoc.getWithNewSize(MaxByteWidth)))
+ return true;
+ }
+ return false;
+}
+
bool LoopVectorizationLegality::canVectorizeMemory() {
+
+ if (TheLoop->isAnnotatedParallel()) {
+ DEBUG(dbgs()
+ << "LV: A loop annotated parallel, ignore memory dependency "
+ << "checks.\n");
+ return true;
+ }
+
typedef SmallVector<Value*, 16> ValueVector;
typedef SmallPtrSet<Value*, 16> ValueSet;
// Holds the Load and Store *instructions*.
@@ -1545,9 +2502,10 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
return true;
}
- // Holds the read and read-write *pointers* that we find.
- ValueVector Reads;
- ValueVector ReadWrites;
+ // Holds the read and read-write *pointers* that we find. These maps hold
+ // unique values for pointers (so no need for multi-map).
+ AliasMap Reads;
+ AliasMap ReadWrites;
// Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
// multiple times on the same object. If the ptr is accessed twice, once
@@ -1558,8 +2516,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
ValueVector::iterator I, IE;
for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
- StoreInst *ST = dyn_cast<StoreInst>(*I);
- assert(ST && "Bad StoreInst");
+ StoreInst *ST = cast<StoreInst>(*I);
Value* Ptr = ST->getPointerOperand();
if (isUniform(Ptr)) {
@@ -1570,12 +2527,11 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// If we did *not* see this pointer before, insert it to
// the read-write list. At this phase it is only a 'write' list.
if (Seen.insert(Ptr))
- ReadWrites.push_back(Ptr);
+ ReadWrites.insert(std::make_pair(Ptr, ST));
}
for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
- LoadInst *LD = dyn_cast<LoadInst>(*I);
- assert(LD && "Bad LoadInst");
+ LoadInst *LD = cast<LoadInst>(*I);
Value* Ptr = LD->getPointerOperand();
// If we did *not* see this pointer before, insert it to the
// read list. If we *did* see it before, then it is already in
@@ -1585,8 +2541,8 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// If the address of i is unknown (for example A[B[i]]) then we may
// read a few words, modify, and write a few words, and some of the
// words may be written to the same address.
- if (Seen.insert(Ptr) || !isConsecutivePtr(Ptr))
- Reads.push_back(Ptr);
+ if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
+ Reads.insert(std::make_pair(Ptr, LD));
}
// If we write (or read-write) to a single destination and there are no
@@ -1598,83 +2554,156 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
// Find pointers with computable bounds. We are going to use this information
// to place a runtime bound check.
- bool RT = true;
- for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
- if (hasComputableBounds(*I)) {
- PtrRtCheck.insert(SE, TheLoop, *I);
- DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
+ bool CanDoRT = true;
+ AliasMap::iterator MI, ME;
+ for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
+ Value *V = (*MI).first;
+ if (hasComputableBounds(V)) {
+ PtrRtCheck.insert(SE, TheLoop, V);
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
} else {
- RT = false;
+ CanDoRT = false;
break;
}
- for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
- if (hasComputableBounds(*I)) {
- PtrRtCheck.insert(SE, TheLoop, *I);
- DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
+ }
+ for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
+ Value *V = (*MI).first;
+ if (hasComputableBounds(V)) {
+ PtrRtCheck.insert(SE, TheLoop, V);
+ DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
} else {
- RT = false;
+ CanDoRT = false;
break;
}
+ }
// Check that we did not collect too many pointers or found a
// unsizeable pointer.
- if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
+ if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
PtrRtCheck.reset();
- RT = false;
+ CanDoRT = false;
}
- PtrRtCheck.Need = RT;
-
- if (RT) {
+ if (CanDoRT) {
DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
}
+ bool NeedRTCheck = false;
+
+ // Biggest vectorized access possible, vector width * unroll factor.
+ // TODO: We're being very pessimistic here, find a way to know the
+ // real access width before getting here.
+ unsigned MaxByteWidth = (TTI->getRegisterBitWidth(true) / 8) *
+ TTI->getMaximumUnrollFactor();
// Now that the pointers are in two lists (Reads and ReadWrites), we
// can check that there are no conflicts between each of the writes and
// between the writes to the reads.
- ValueSet WriteObjects;
+ // Note that WriteObjects duplicates the stores (indexed now by underlying
+ // objects) to avoid pointing to elements inside ReadWrites.
+ // TODO: Maybe create a new type where they can interact without duplication.
+ AliasMultiMap WriteObjects;
ValueVector TempObjects;
// Check that the read-writes do not conflict with other read-write
// pointers.
- for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
- GetUnderlyingObjects(*I, TempObjects, DL);
- for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
- it != e; ++it) {
- if (!isIdentifiedObject(*it)) {
- DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
- return RT;
+ bool AllWritesIdentified = true;
+ for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
+ Value *Val = (*MI).first;
+ Instruction *Inst = (*MI).second;
+
+ GetUnderlyingObjects(Val, TempObjects, DL);
+ for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
+ UI != UE; ++UI) {
+ if (!isIdentifiedObject(*UI)) {
+ DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **UI <<"\n");
+ NeedRTCheck = true;
+ AllWritesIdentified = false;
}
- if (!WriteObjects.insert(*it)) {
+
+ // Never seen it before, can't alias.
+ if (WriteObjects[*UI].empty()) {
+ DEBUG(dbgs() << "LV: Adding Underlying value:" << **UI <<"\n");
+ WriteObjects[*UI].push_back(Inst);
+ continue;
+ }
+ // Direct alias found.
+ if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
- << **it <<"\n");
- return RT;
+ << **UI <<"\n");
+ return false;
}
+ DEBUG(dbgs() << "LV: Found a conflicting global value:"
+ << **UI <<"\n");
+ DEBUG(dbgs() << "LV: While examining store:" << *Inst <<"\n");
+ DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
+
+ // If global alias, make sure they do alias.
+ if (hasPossibleGlobalWriteReorder(*UI,
+ Inst,
+ WriteObjects,
+ MaxByteWidth)) {
+ DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
+ << *UI <<"\n");
+ return false;
+ }
+
+ // Didn't alias, insert into map for further reference.
+ WriteObjects[*UI].push_back(Inst);
}
TempObjects.clear();
}
/// Check that the reads don't conflict with the read-writes.
- for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
- GetUnderlyingObjects(*I, TempObjects, DL);
- for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
- it != e; ++it) {
- if (!isIdentifiedObject(*it)) {
- DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
- return RT;
+ for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
+ Value *Val = (*MI).first;
+ GetUnderlyingObjects(Val, TempObjects, DL);
+ for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
+ UI != UE; ++UI) {
+ // If all of the writes are identified then we don't care if the read
+ // pointer is identified or not.
+ if (!AllWritesIdentified && !isIdentifiedObject(*UI)) {
+ DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **UI <<"\n");
+ NeedRTCheck = true;
+ }
+
+ // Never seen it before, can't alias.
+ if (WriteObjects[*UI].empty())
+ continue;
+ // Direct alias found.
+ if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
+ DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
+ << **UI <<"\n");
+ return false;
}
- if (WriteObjects.count(*it)) {
- DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
- << **it <<"\n");
- return RT;
+ DEBUG(dbgs() << "LV: Found a global value: "
+ << **UI <<"\n");
+ Instruction *Inst = (*MI).second;
+ DEBUG(dbgs() << "LV: While examining load:" << *Inst <<"\n");
+ DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
+
+ // If global alias, make sure they do alias.
+ if (hasPossibleGlobalWriteReorder(*UI,
+ Inst,
+ WriteObjects,
+ MaxByteWidth)) {
+ DEBUG(dbgs() << "LV: Found a possible read-write reorder:"
+ << *UI <<"\n");
+ return false;
}
}
TempObjects.clear();
}
- // It is safe to vectorize and we don't need any runtime checks.
- DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
- PtrRtCheck.reset();
+ PtrRtCheck.Need = NeedRTCheck;
+ if (NeedRTCheck && !CanDoRT) {
+ DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
+ "the array bounds.\n");
+ PtrRtCheck.reset();
+ return false;
+ }
+
+ DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
+ " need a runtime memory check.\n");
return true;
}
@@ -1696,12 +2725,13 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = 0;
+ // Indicates that we found a binary operation in our scan.
+ bool FoundBinOp = false;
// Iter is our iterator. We start with the PHI node and scan for all of the
- // users of this instruction. All users must be instructions which can be
+ // users of this instruction. All users must be instructions that can be
// used as reduction variables (such as ADD). We may have a single
- // out-of-block user. They cycle must end with the original PHI.
- // Also, we can't have multiple block-local users.
+ // out-of-block user. The cycle must end with the original PHI.
Instruction *Iter = Phi;
while (true) {
// If the instruction has no users then this is a broken
@@ -1709,15 +2739,17 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
if (Iter->use_empty())
return false;
- // Any reduction instr must be of one of the allowed kinds.
- if (!isReductionInstr(Iter, Kind))
- return false;
-
- // Did we find a user inside this block ?
+ // Did we find a user inside this loop already ?
bool FoundInBlockUser = false;
- // Did we reach the initial PHI node ?
+ // Did we reach the initial PHI node already ?
bool FoundStartPHI = false;
+ // Is this a bin op ?
+ FoundBinOp |= !isa<PHINode>(Iter);
+
+ // Remember the current instruction.
+ Instruction *OldIter = Iter;
+
// For each of the *users* of iter.
for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
it != e; ++it) {
@@ -1740,58 +2772,82 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// We allow in-loop PHINodes which are not the original reduction PHI
// node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
// structure) then don't skip this PHI.
- if (isa<PHINode>(U) && U->getParent() != TheLoop->getHeader() &&
- TheLoop->contains(U) && Iter->getNumUses() > 1)
+ if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
+ U->getParent() != TheLoop->getHeader() &&
+ TheLoop->contains(U) &&
+ Iter->hasNUsesOrMore(2))
continue;
// We can't have multiple inside users.
if (FoundInBlockUser)
return false;
FoundInBlockUser = true;
+
+ // Any reduction instr must be of one of the allowed kinds.
+ if (!isReductionInstr(U, Kind))
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only
+ // possible if the LHS is the reduction variable.
+ if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
+ return false;
+
Iter = U;
}
+ // If all uses were skipped this can't be a reduction variable.
+ if (Iter == OldIter)
+ return false;
+
// We found a reduction var if we have reached the original
// phi node and we only have a single instruction with out-of-loop
// users.
- if (FoundStartPHI && ExitInstruction) {
+ if (FoundStartPHI) {
// This instruction is allowed to have out-of-loop users.
AllowedExit.insert(ExitInstruction);
// Save the description of this reduction variable.
ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
Reductions[Phi] = RD;
- return true;
+ // We've ended the cycle. This is a reduction variable if we have an
+ // outside user and it has a binary op.
+ return FoundBinOp && ExitInstruction;
}
-
- // If we've reached the start PHI but did not find an outside user then
- // this is dead code. Abort.
- if (FoundStartPHI)
- return false;
}
}
bool
LoopVectorizationLegality::isReductionInstr(Instruction *I,
ReductionKind Kind) {
+ bool FP = I->getType()->isFloatingPointTy();
+ bool FastMath = (FP && I->isCommutative() && I->isAssociative());
+
switch (I->getOpcode()) {
default:
return false;
case Instruction::PHI:
+ if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
+ return false;
// possibly.
return true;
- case Instruction::Add:
case Instruction::Sub:
- return Kind == IntegerAdd;
+ case Instruction::Add:
+ return Kind == RK_IntegerAdd;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
case Instruction::Mul:
- return Kind == IntegerMult;
+ return Kind == RK_IntegerMult;
case Instruction::And:
- return Kind == IntegerAnd;
+ return Kind == RK_IntegerAnd;
case Instruction::Or:
- return Kind == IntegerOr;
+ return Kind == RK_IntegerOr;
case Instruction::Xor:
- return Kind == IntegerXor;
- }
+ return Kind == RK_IntegerXor;
+ case Instruction::FMul:
+ return Kind == RK_FloatMult && FastMath;
+ case Instruction::FAdd:
+ return Kind == RK_FloatAdd && FastMath;
+ }
}
LoopVectorizationLegality::InductionKind
@@ -1799,37 +2855,48 @@ LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
- return NoInduction;
+ return IK_NoInduction;
- // Check that the PHI is consecutive and starts at zero.
+ // Check that the PHI is consecutive.
const SCEV *PhiScev = SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
- return NoInduction;
+ return IK_NoInduction;
}
const SCEV *Step = AR->getStepRecurrence(*SE);
// Integer inductions need to have a stride of one.
if (PhiTy->isIntegerTy()) {
if (Step->isOne())
- return IntInduction;
+ return IK_IntInduction;
if (Step->isAllOnesValue())
- return ReverseIntInduction;
- return NoInduction;
+ return IK_ReverseIntInduction;
+ return IK_NoInduction;
}
// Calculate the pointer stride and check if it is consecutive.
const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
if (!C)
- return NoInduction;
+ return IK_NoInduction;
assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
if (C->getValue()->equalsInt(Size))
- return PtrInduction;
+ return IK_PtrInduction;
+ else if (C->getValue()->equalsInt(0 - Size))
+ return IK_ReversePtrInduction;
+
+ return IK_NoInduction;
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
+ Value *In0 = const_cast<Value*>(V);
+ PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+ if (!PN)
+ return false;
- return NoInduction;
+ return Inductions.count(PN);
}
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
@@ -1846,7 +2913,7 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
return false;
- // The isntructions below can trap.
+ // The instructions below can trap.
switch (it->getOpcode()) {
default: continue;
case Instruction::UDiv:
@@ -1869,11 +2936,64 @@ bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
return AR->isAffine();
}
-unsigned
-LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
- if (!VTTI) {
- DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
- return 1;
+LoopVectorizationCostModel::VectorizationFactor
+LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
+ unsigned UserVF) {
+ // Width 1 means no vectorize
+ VectorizationFactor Factor = { 1U, 0U };
+ if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
+ DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
+ return Factor;
+ }
+
+ // Find the trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
+ DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
+
+ unsigned WidestType = getWidestType();
+ unsigned WidestRegister = TTI.getRegisterBitWidth(true);
+ unsigned MaxVectorSize = WidestRegister / WidestType;
+ DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
+ DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
+
+ if (MaxVectorSize == 0) {
+ DEBUG(dbgs() << "LV: The target has no vector registers.\n");
+ MaxVectorSize = 1;
+ }
+
+ assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
+ " into one vector!");
+
+ unsigned VF = MaxVectorSize;
+
+ // If we optimize the program for size, avoid creating the tail loop.
+ if (OptForSize) {
+ // If we are unable to calculate the trip count then don't try to vectorize.
+ if (TC < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return Factor;
+ }
+
+ // Find the maximum SIMD width that can fit within the trip count.
+ VF = TC % MaxVectorSize;
+
+ if (VF == 0)
+ VF = MaxVectorSize;
+
+ // If the trip count that we found modulo the vectorization factor is not
+ // zero then we require a tail.
+ if (VF < 2) {
+ DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
+ return Factor;
+ }
+ }
+
+ if (UserVF != 0) {
+ assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
+ DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
+
+ Factor.Width = UserVF;
+ return Factor;
}
float Cost = expectedCost(1);
@@ -1893,7 +3013,248 @@ LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
}
DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
- return Width;
+ Factor.Width = Width;
+ Factor.Cost = Width * Cost;
+ return Factor;
+}
+
+unsigned LoopVectorizationCostModel::getWidestType() {
+ unsigned MaxWidth = 8;
+
+ // For each block.
+ for (Loop::block_iterator bb = TheLoop->block_begin(),
+ be = TheLoop->block_end(); bb != be; ++bb) {
+ BasicBlock *BB = *bb;
+
+ // For each instruction in the loop.
+ for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ Type *T = it->getType();
+
+ // Only examine Loads, Stores and PHINodes.
+ if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
+ continue;
+
+ // Examine PHI nodes that are reduction variables.
+ if (PHINode *PN = dyn_cast<PHINode>(it))
+ if (!Legal->getReductionVars()->count(PN))
+ continue;
+
+ // Examine the stored values.
+ if (StoreInst *ST = dyn_cast<StoreInst>(it))
+ T = ST->getValueOperand()->getType();
+
+ // Ignore loaded pointer types and stored pointer types that are not
+ // consecutive. However, we do want to take consecutive stores/loads of
+ // pointer vectors into account.
+ if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
+ continue;
+
+ MaxWidth = std::max(MaxWidth,
+ (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
+ }
+ }
+
+ return MaxWidth;
+}
+
+unsigned
+LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
+ unsigned UserUF,
+ unsigned VF,
+ unsigned LoopCost) {
+
+ // -- The unroll heuristics --
+ // We unroll the loop in order to expose ILP and reduce the loop overhead.
+ // There are many micro-architectural considerations that we can't predict
+ // at this level. For example frontend pressure (on decode or fetch) due to
+ // code size, or the number and capabilities of the execution ports.
+ //
+ // We use the following heuristics to select the unroll factor:
+ // 1. If the code has reductions the we unroll in order to break the cross
+ // iteration dependency.
+ // 2. If the loop is really small then we unroll in order to reduce the loop
+ // overhead.
+ // 3. We don't unroll if we think that we will spill registers to memory due
+ // to the increased register pressure.
+
+ // Use the user preference, unless 'auto' is selected.
+ if (UserUF != 0)
+ return UserUF;
+
+ // When we optimize for size we don't unroll.
+ if (OptForSize)
+ return 1;
+
+ // Do not unroll loops with a relatively small trip count.
+ unsigned TC = SE->getSmallConstantTripCount(TheLoop,
+ TheLoop->getLoopLatch());
+ if (TC > 1 && TC < TinyTripCountUnrollThreshold)
+ return 1;
+
+ unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
+ DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
+ " vector registers\n");
+
+ LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
+ // We divide by these constants so assume that we have at least one
+ // instruction that uses at least one register.
+ R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
+ R.NumInstructions = std::max(R.NumInstructions, 1U);
+
+ // We calculate the unroll factor using the following formula.
+ // Subtract the number of loop invariants from the number of available
+ // registers. These registers are used by all of the unrolled instances.
+ // Next, divide the remaining registers by the number of registers that is
+ // required by the loop, in order to estimate how many parallel instances
+ // fit without causing spills.
+ unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
+
+ // Clamp the unroll factor ranges to reasonable factors.
+ unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
+
+ // If we did not calculate the cost for VF (because the user selected the VF)
+ // then we calculate the cost of VF here.
+ if (LoopCost == 0)
+ LoopCost = expectedCost(VF);
+
+ // Clamp the calculated UF to be between the 1 and the max unroll factor
+ // that the target allows.
+ if (UF > MaxUnrollSize)
+ UF = MaxUnrollSize;
+ else if (UF < 1)
+ UF = 1;
+
+ if (Legal->getReductionVars()->size()) {
+ DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
+ return UF;
+ }
+
+ // We want to unroll tiny loops in order to reduce the loop overhead.
+ // We assume that the cost overhead is 1 and we use the cost model
+ // to estimate the cost of the loop and unroll until the cost of the
+ // loop overhead is about 5% of the cost of the loop.
+ DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
+ if (LoopCost < 20) {
+ DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
+ unsigned NewUF = 20/LoopCost + 1;
+ return std::min(NewUF, UF);
+ }
+
+ DEBUG(dbgs() << "LV: Not Unrolling. \n");
+ return 1;
+}
+
+LoopVectorizationCostModel::RegisterUsage
+LoopVectorizationCostModel::calculateRegisterUsage() {
+ // This function calculates the register usage by measuring the highest number
+ // of values that are alive at a single location. Obviously, this is a very
+ // rough estimation. We scan the loop in a topological order in order and
+ // assign a number to each instruction. We use RPO to ensure that defs are
+ // met before their users. We assume that each instruction that has in-loop
+ // users starts an interval. We record every time that an in-loop value is
+ // used, so we have a list of the first and last occurrences of each
+ // instruction. Next, we transpose this data structure into a multi map that
+ // holds the list of intervals that *end* at a specific location. This multi
+ // map allows us to perform a linear search. We scan the instructions linearly
+ // and record each time that a new interval starts, by placing it in a set.
+ // If we find this value in the multi-map then we remove it from the set.
+ // The max register usage is the maximum size of the set.
+ // We also search for instructions that are defined outside the loop, but are
+ // used inside the loop. We need this number separately from the max-interval
+ // usage number because when we unroll, loop-invariant values do not take
+ // more register.
+ LoopBlocksDFS DFS(TheLoop);
+ DFS.perform(LI);
+
+ RegisterUsage R;
+ R.NumInstructions = 0;
+
+ // Each 'key' in the map opens a new interval. The values
+ // of the map are the index of the 'last seen' usage of the
+ // instruction that is the key.
+ typedef DenseMap<Instruction*, unsigned> IntervalMap;
+ // Maps instruction to its index.
+ DenseMap<unsigned, Instruction*> IdxToInstr;
+ // Marks the end of each interval.
+ IntervalMap EndPoint;
+ // Saves the list of instruction indices that are used in the loop.
+ SmallSet<Instruction*, 8> Ends;
+ // Saves the list of values that are used in the loop but are
+ // defined outside the loop, such as arguments and constants.
+ SmallPtrSet<Value*, 8> LoopInvariants;
+
+ unsigned Index = 0;
+ for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
+ be = DFS.endRPO(); bb != be; ++bb) {
+ R.NumInstructions += (*bb)->size();
+ for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
+ ++it) {
+ Instruction *I = it;
+ IdxToInstr[Index++] = I;
+
+ // Save the end location of each USE.
+ for (unsigned i = 0; i < I->getNumOperands(); ++i) {
+ Value *U = I->getOperand(i);
+ Instruction *Instr = dyn_cast<Instruction>(U);
+
+ // Ignore non-instruction values such as arguments, constants, etc.
+ if (!Instr) continue;
+
+ // If this instruction is outside the loop then record it and continue.
+ if (!TheLoop->contains(Instr)) {
+ LoopInvariants.insert(Instr);
+ continue;
+ }
+
+ // Overwrite previous end points.
+ EndPoint[Instr] = Index;
+ Ends.insert(Instr);
+ }
+ }
+ }
+
+ // Saves the list of intervals that end with the index in 'key'.
+ typedef SmallVector<Instruction*, 2> InstrList;
+ DenseMap<unsigned, InstrList> TransposeEnds;
+
+ // Transpose the EndPoints to a list of values that end at each index.
+ for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
+ it != e; ++it)
+ TransposeEnds[it->second].push_back(it->first);
+
+ SmallSet<Instruction*, 8> OpenIntervals;
+ unsigned MaxUsage = 0;
+
+
+ DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
+ for (unsigned int i = 0; i < Index; ++i) {
+ Instruction *I = IdxToInstr[i];
+ // Ignore instructions that are never used within the loop.
+ if (!Ends.count(I)) continue;
+
+ // Remove all of the instructions that end at this location.
+ InstrList &List = TransposeEnds[i];
+ for (unsigned int j=0, e = List.size(); j < e; ++j)
+ OpenIntervals.erase(List[j]);
+
+ // Count the number of live interals.
+ MaxUsage = std::max(MaxUsage, OpenIntervals.size());
+
+ DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
+ OpenIntervals.size() <<"\n");
+
+ // Add the current instruction to the list of open intervals.
+ OpenIntervals.insert(I);
+ }
+
+ unsigned Invariant = LoopInvariants.size();
+ DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
+ DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
+ DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
+
+ R.LoopInvariantRegs = Invariant;
+ R.MaxLocalUsers = MaxUsage;
+ return R;
}
unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
@@ -1907,6 +3268,10 @@ unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
// For each instruction in the old loop.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
+ // Skip dbg intrinsics.
+ if (isa<DbgInfoIntrinsic>(it))
+ continue;
+
unsigned C = getInstructionCost(it, VF);
Cost += C;
DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
@@ -1927,8 +3292,6 @@ unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
unsigned
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
- assert(VTTI && "Invalid vector target transformation info");
-
// If we know that this instruction will remain uniform, check the cost of
// the scalar version.
if (Legal->isUniformAfterVectorization(I))
@@ -1940,12 +3303,13 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// TODO: We need to estimate the cost of intrinsic calls.
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
- // We mark this instruction as zero-cost because scalar GEPs are usually
- // lowered to the intruction addressing mode. At the moment we don't
- // generate vector geps.
+ // We mark this instruction as zero-cost because the cost of GEPs in
+ // vectorized code depends on whether the corresponding memory instruction
+ // is scalarized or not. Therefore, we handle GEPs with the memory
+ // instruction cost.
return 0;
case Instruction::Br: {
- return VTTI->getCFInstrCost(I->getOpcode());
+ return TTI.getCFInstrCost(I->getOpcode());
}
case Instruction::PHI:
//TODO: IF-converted IFs become selects.
@@ -1968,7 +3332,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
- return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
+ return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
case Instruction::Select: {
SelectInst *SI = cast<SelectInst>(I);
const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
@@ -1977,68 +3341,66 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
if (ScalarCond)
CondTy = VectorType::get(CondTy, VF);
- return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
VectorTy = ToVectorTy(ValTy, VF);
- return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
+ return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
}
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(I);
- Type *ValTy = SI->getValueOperand()->getType();
+ case Instruction::Store:
+ case Instruction::Load: {
+ StoreInst *SI = dyn_cast<StoreInst>(I);
+ LoadInst *LI = dyn_cast<LoadInst>(I);
+ Type *ValTy = (SI ? SI->getValueOperand()->getType() :
+ LI->getType());
VectorTy = ToVectorTy(ValTy, VF);
+ unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
+ unsigned AS = SI ? SI->getPointerAddressSpace() :
+ LI->getPointerAddressSpace();
+ Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
+ // We add the cost of address computation here instead of with the gep
+ // instruction because only here we know whether the operation is
+ // scalarized.
if (VF == 1)
- return VTTI->getMemoryOpCost(I->getOpcode(), ValTy,
- SI->getAlignment(),
- SI->getPointerAddressSpace());
+ return TTI.getAddressComputationCost(VectorTy) +
+ TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
- // Scalarized stores.
- if (!Legal->isConsecutivePtr(SI->getPointerOperand())) {
+ // Scalarized loads/stores.
+ int Stride = Legal->isConsecutivePtr(Ptr);
+ bool Reverse = Stride < 0;
+ if (0 == Stride) {
unsigned Cost = 0;
- unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
- ValTy);
- // The cost of extracting from the value vector.
- Cost += VF * (ExtCost);
- // The cost of the scalar stores.
- Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
- ValTy->getScalarType(),
- SI->getAlignment(),
- SI->getPointerAddressSpace());
- return Cost;
- }
-
- // Wide stores.
- return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(),
- SI->getPointerAddressSpace());
- }
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(I);
-
- if (VF == 1)
- return VTTI->getMemoryOpCost(I->getOpcode(), RetTy,
- LI->getAlignment(),
- LI->getPointerAddressSpace());
+ // The cost of extracting from the value vector and pointer vector.
+ Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
+ for (unsigned i = 0; i < VF; ++i) {
+ // The cost of extracting the pointer operand.
+ Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
+ // In case of STORE, the cost of ExtractElement from the vector.
+ // In case of LOAD, the cost of InsertElement into the returned
+ // vector.
+ Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
+ Instruction::InsertElement,
+ VectorTy, i);
+ }
- // Scalarized loads.
- if (!Legal->isConsecutivePtr(LI->getPointerOperand())) {
- unsigned Cost = 0;
- unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
- // The cost of inserting the loaded value into the result vector.
- Cost += VF * (InCost);
- // The cost of the scalar stores.
- Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
- RetTy->getScalarType(),
- LI->getAlignment(),
- LI->getPointerAddressSpace());
+ // The cost of the scalar loads/stores.
+ Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType());
+ Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
+ Alignment, AS);
return Cost;
}
- // Wide loads.
- return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
- LI->getPointerAddressSpace());
+ // Wide load/stores.
+ unsigned Cost = TTI.getAddressComputationCost(VectorTy);
+ Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
+
+ if (Reverse)
+ Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
+ VectorTy, 0);
+ return Cost;
}
case Instruction::ZExt:
case Instruction::SExt:
@@ -2052,17 +3414,25 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast: {
+ // We optimize the truncation of induction variable.
+ // The cost of these is the same as the scalar operation.
+ if (I->getOpcode() == Instruction::Trunc &&
+ Legal->isInductionVariable(I->getOperand(0)))
+ return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
+ I->getOperand(0)->getType());
+
Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
- return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
+ return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
}
case Instruction::Call: {
- assert(isTriviallyVectorizableIntrinsic(I));
- IntrinsicInst *II = cast<IntrinsicInst>(I);
- Type *RetTy = ToVectorTy(II->getType(), VF);
+ CallInst *CI = cast<CallInst>(I);
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ assert(ID && "Not an intrinsic call!");
+ Type *RetTy = ToVectorTy(CI->getType(), VF);
SmallVector<Type*, 4> Tys;
- for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
- Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
- return VTTI->getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
+ for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
+ Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
+ return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
}
default: {
// We are scalarizing the instruction. Return the cost of the scalar
@@ -2070,21 +3440,20 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
// elements, times the vector width.
unsigned Cost = 0;
- bool IsVoid = RetTy->isVoidTy();
-
- unsigned InsCost = (IsVoid ? 0 :
- VTTI->getInstrCost(Instruction::InsertElement,
- VectorTy));
+ if (!RetTy->isVoidTy() && VF != 1) {
+ unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
+ VectorTy);
+ unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
+ VectorTy);
- unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
- VectorTy);
-
- // The cost of inserting the results plus extracting each one of the
- // operands.
- Cost += VF * (InsCost + ExtCost * I->getNumOperands());
+ // The cost of inserting the results plus extracting each one of the
+ // operands.
+ Cost += VF * (InsCost + ExtCost * I->getNumOperands());
+ }
- // The cost of executing VF copies of the scalar instruction.
- Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy);
+ // The cost of executing VF copies of the scalar instruction. This opcode
+ // is unknown. Assume that it is the same as 'mul'.
+ Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
return Cost;
}
}// end of switch.
@@ -2100,6 +3469,7 @@ char LoopVectorize::ID = 0;
static const char lv_name[] = "Loop Vectorization";
INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
@@ -2110,4 +3480,14 @@ namespace llvm {
}
}
+bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
+ // Check for a store.
+ if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
+ return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
+
+ // Check for a load.
+ if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
+ return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
+ return false;
+}
diff --git a/lib/Transforms/Vectorize/LoopVectorize.h b/lib/Transforms/Vectorize/LoopVectorize.h
deleted file mode 100644
index 9d6d80e22b..0000000000
--- a/lib/Transforms/Vectorize/LoopVectorize.h
+++ /dev/null
@@ -1,458 +0,0 @@
-//===- LoopVectorize.h --- A Loop Vectorizer ------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
-// and generates target-independent LLVM-IR. Legalization of the IR is done
-// in the codegen. However, the vectorizes uses (will use) the codegen
-// interfaces to generate IR that is likely to result in an optimal binary.
-//
-// The loop vectorizer combines consecutive loop iteration into a single
-// 'wide' iteration. After this transformation the index is incremented
-// by the SIMD vector width, and not by one.
-//
-// This pass has three parts:
-// 1. The main loop pass that drives the different parts.
-// 2. LoopVectorizationLegality - A unit that checks for the legality
-// of the vectorization.
-// 3. InnerLoopVectorizer - A unit that performs the actual
-// widening of instructions.
-// 4. LoopVectorizationCostModel - A unit that checks for the profitability
-// of vectorization. It decides on the optimal vector width, which
-// can be one, if vectorization is not profitable.
-//
-//===----------------------------------------------------------------------===//
-//
-// The reduction-variable vectorization is based on the paper:
-// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
-//
-// Variable uniformity checks are inspired by:
-// Karrenberg, R. and Hack, S. Whole Function Vectorization.
-//
-// Other ideas/concepts are from:
-// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
-//
-// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
-// Vectorizing Compilers.
-//
-//===----------------------------------------------------------------------===//
-#ifndef LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H
-#define LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H
-
-#define LV_NAME "loop-vectorize"
-#define DEBUG_TYPE LV_NAME
-
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/IRBuilder.h"
-
-#include <algorithm>
-using namespace llvm;
-
-/// We don't vectorize loops with a known constant trip count below this number.
-const unsigned TinyTripCountThreshold = 16;
-
-/// When performing a runtime memory check, do not check more than this
-/// number of pointers. Notice that the check is quadratic!
-const unsigned RuntimeMemoryCheckThreshold = 4;
-
-/// This is the highest vector width that we try to generate.
-const unsigned MaxVectorSize = 8;
-
-namespace llvm {
-
-// Forward declarations.
-class LoopVectorizationLegality;
-class LoopVectorizationCostModel;
-class VectorTargetTransformInfo;
-
-/// InnerLoopVectorizer vectorizes loops which contain only one basic
-/// block to a specified vectorization factor (VF).
-/// This class performs the widening of scalars into vectors, or multiple
-/// scalars. This class also implements the following features:
-/// * It inserts an epilogue loop for handling loops that don't have iteration
-/// counts that are known to be a multiple of the vectorization factor.
-/// * It handles the code generation for reduction variables.
-/// * Scalarization (implementation using scalars) of un-vectorizable
-/// instructions.
-/// InnerLoopVectorizer does not perform any vectorization-legality
-/// checks, and relies on the caller to check for the different legality
-/// aspects. The InnerLoopVectorizer relies on the
-/// LoopVectorizationLegality class to provide information about the induction
-/// and reduction variables that were found to a given vectorization factor.
-class InnerLoopVectorizer {
-public:
- /// Ctor.
- InnerLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
- DominatorTree *Dt, DataLayout *Dl, unsigned VecWidth):
- OrigLoop(Orig), SE(Se), LI(Li), DT(Dt), DL(Dl), VF(VecWidth),
- Builder(Se->getContext()), Induction(0), OldInduction(0) { }
-
- // Perform the actual loop widening (vectorization).
- void vectorize(LoopVectorizationLegality *Legal) {
- // Create a new empty loop. Unlink the old loop and connect the new one.
- createEmptyLoop(Legal);
- // Widen each instruction in the old loop to a new one in the new loop.
- // Use the Legality module to find the induction and reduction variables.
- vectorizeLoop(Legal);
- // Register the new loop and update the analysis passes.
- updateAnalysis();
- }
-
-private:
- /// A small list of PHINodes.
- typedef SmallVector<PHINode*, 4> PhiVector;
-
- /// Add code that checks at runtime if the accessed arrays overlap.
- /// Returns the comparator value or NULL if no check is needed.
- Value *addRuntimeCheck(LoopVectorizationLegality *Legal,
- Instruction *Loc);
- /// Create an empty loop, based on the loop ranges of the old loop.
- void createEmptyLoop(LoopVectorizationLegality *Legal);
- /// Copy and widen the instructions from the old loop.
- void vectorizeLoop(LoopVectorizationLegality *Legal);
-
- /// A helper function that computes the predicate of the block BB, assuming
- /// that the header block of the loop is set to True. It returns the *entry*
- /// mask for the block BB.
- Value *createBlockInMask(BasicBlock *BB);
- /// A helper function that computes the predicate of the edge between SRC
- /// and DST.
- Value *createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
-
- /// A helper function to vectorize a single BB within the innermost loop.
- void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
- PhiVector *PV);
-
- /// Insert the new loop to the loop hierarchy and pass manager
- /// and update the analysis passes.
- void updateAnalysis();
-
- /// This instruction is un-vectorizable. Implement it as a sequence
- /// of scalars.
- void scalarizeInstruction(Instruction *Instr);
-
- /// Create a broadcast instruction. This method generates a broadcast
- /// instruction (shuffle) for loop invariant values and for the induction
- /// value. If this is the induction variable then we extend it to N, N+1, ...
- /// this is needed because each iteration in the loop corresponds to a SIMD
- /// element.
- Value *getBroadcastInstrs(Value *V);
-
- /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
- /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
- Value *getConsecutiveVector(Value* Val, bool Negate = false);
-
- /// When we go over instructions in the basic block we rely on previous
- /// values within the current basic block or on loop invariant values.
- /// When we widen (vectorize) values we place them in the map. If the values
- /// are not within the map, they have to be loop invariant, so we simply
- /// broadcast them into a vector.
- Value *getVectorValue(Value *V);
-
- /// Get a uniform vector of constant integers. We use this to get
- /// vectors of ones and zeros for the reduction code.
- Constant* getUniformVector(unsigned Val, Type* ScalarTy);
-
- typedef DenseMap<Value*, Value*> ValueMap;
-
- /// The original loop.
- Loop *OrigLoop;
- // Scev analysis to use.
- ScalarEvolution *SE;
- // Loop Info.
- LoopInfo *LI;
- // Dominator Tree.
- DominatorTree *DT;
- // Data Layout.
- DataLayout *DL;
- // The vectorization factor to use.
- unsigned VF;
-
- // The builder that we use
- IRBuilder<> Builder;
-
- // --- Vectorization state ---
-
- /// The vector-loop preheader.
- BasicBlock *LoopVectorPreHeader;
- /// The scalar-loop preheader.
- BasicBlock *LoopScalarPreHeader;
- /// Middle Block between the vector and the scalar.
- BasicBlock *LoopMiddleBlock;
- ///The ExitBlock of the scalar loop.
- BasicBlock *LoopExitBlock;
- ///The vector loop body.
- BasicBlock *LoopVectorBody;
- ///The scalar loop body.
- BasicBlock *LoopScalarBody;
- ///The first bypass block.
- BasicBlock *LoopBypassBlock;
-
- /// The new Induction variable which was added to the new block.
- PHINode *Induction;
- /// The induction variable of the old basic block.
- PHINode *OldInduction;
- // Maps scalars to widened vectors.
- ValueMap WidenMap;
-};
-
-/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
-/// to what vectorization factor.
-/// This class does not look at the profitability of vectorization, only the
-/// legality. This class has two main kinds of checks:
-/// * Memory checks - The code in canVectorizeMemory checks if vectorization
-/// will change the order of memory accesses in a way that will change the
-/// correctness of the program.
-/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
-/// checks for a number of different conditions, such as the availability of a
-/// single induction variable, that all types are supported and vectorize-able,
-/// etc. This code reflects the capabilities of InnerLoopVectorizer.
-/// This class is also used by InnerLoopVectorizer for identifying
-/// induction variable and the different reduction variables.
-class LoopVectorizationLegality {
-public:
- LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl,
- DominatorTree *Dt):
- TheLoop(Lp), SE(Se), DL(Dl), DT(Dt), Induction(0) { }
-
- /// This enum represents the kinds of reductions that we support.
- enum ReductionKind {
- NoReduction, /// Not a reduction.
- IntegerAdd, /// Sum of numbers.
- IntegerMult, /// Product of numbers.
- IntegerOr, /// Bitwise or logical OR of numbers.
- IntegerAnd, /// Bitwise or logical AND of numbers.
- IntegerXor /// Bitwise or logical XOR of numbers.
- };
-
- /// This enum represents the kinds of inductions that we support.
- enum InductionKind {
- NoInduction, /// Not an induction variable.
- IntInduction, /// Integer induction variable. Step = 1.
- ReverseIntInduction, /// Reverse int induction variable. Step = -1.
- PtrInduction /// Pointer induction variable. Step = sizeof(elem).
- };
-
- /// This POD struct holds information about reduction variables.
- struct ReductionDescriptor {
- // Default C'tor
- ReductionDescriptor():
- StartValue(0), LoopExitInstr(0), Kind(NoReduction) {}
-
- // C'tor.
- ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K):
- StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
-
- // The starting value of the reduction.
- // It does not have to be zero!
- Value *StartValue;
- // The instruction who's value is used outside the loop.
- Instruction *LoopExitInstr;
- // The kind of the reduction.
- ReductionKind Kind;
- };
-
- // This POD struct holds information about the memory runtime legality
- // check that a group of pointers do not overlap.
- struct RuntimePointerCheck {
- RuntimePointerCheck(): Need(false) {}
-
- /// Reset the state of the pointer runtime information.
- void reset() {
- Need = false;
- Pointers.clear();
- Starts.clear();
- Ends.clear();
- }
-
- /// Insert a pointer and calculate the start and end SCEVs.
- void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
-
- /// This flag indicates if we need to add the runtime check.
- bool Need;
- /// Holds the pointers that we need to check.
- SmallVector<Value*, 2> Pointers;
- /// Holds the pointer value at the beginning of the loop.
- SmallVector<const SCEV*, 2> Starts;
- /// Holds the pointer value at the end of the loop.
- SmallVector<const SCEV*, 2> Ends;
- };
-
- /// A POD for saving information about induction variables.
- struct InductionInfo {
- /// Ctors.
- InductionInfo(Value *Start, InductionKind K):
- StartValue(Start), IK(K) {};
- InductionInfo(): StartValue(0), IK(NoInduction) {};
- /// Start value.
- Value *StartValue;
- /// Induction kind.
- InductionKind IK;
- };
-
- /// ReductionList contains the reduction descriptors for all
- /// of the reductions that were found in the loop.
- typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
-
- /// InductionList saves induction variables and maps them to the
- /// induction descriptor.
- typedef DenseMap<PHINode*, InductionInfo> InductionList;
-
- /// Returns true if it is legal to vectorize this loop.
- /// This does not mean that it is profitable to vectorize this
- /// loop, only that it is legal to do so.
- bool canVectorize();
-
- /// Returns the Induction variable.
- PHINode *getInduction() {return Induction;}
-
- /// Returns the reduction variables found in the loop.
- ReductionList *getReductionVars() { return &Reductions; }
-
- /// Returns the induction variables found in the loop.
- InductionList *getInductionVars() { return &Inductions; }
-
- /// Return true if the block BB needs to be predicated in order for the loop
- /// to be vectorized.
- bool blockNeedsPredication(BasicBlock *BB);
-
- /// Check if this pointer is consecutive when vectorizing. This happens
- /// when the last index of the GEP is the induction variable, or that the
- /// pointer itself is an induction variable.
- /// This check allows us to vectorize A[idx] into a wide load/store.
- bool isConsecutivePtr(Value *Ptr);
-
- /// Returns true if the value V is uniform within the loop.
- bool isUniform(Value *V);
-
- /// Returns true if this instruction will remain scalar after vectorization.
- bool isUniformAfterVectorization(Instruction* I) {return Uniforms.count(I);}
-
- /// Returns the information that we collected about runtime memory check.
- RuntimePointerCheck *getRuntimePointerCheck() {return &PtrRtCheck; }
-private:
- /// Check if a single basic block loop is vectorizable.
- /// At this point we know that this is a loop with a constant trip count
- /// and we only need to check individual instructions.
- bool canVectorizeInstrs();
-
- /// When we vectorize loops we may change the order in which
- /// we read and write from memory. This method checks if it is
- /// legal to vectorize the code, considering only memory constrains.
- /// Returns true if the loop is vectorizable
- bool canVectorizeMemory();
-
- /// Return true if we can vectorize this loop using the IF-conversion
- /// transformation.
- bool canVectorizeWithIfConvert();
-
- /// Collect the variables that need to stay uniform after vectorization.
- void collectLoopUniforms();
-
- /// Return true if all of the instructions in the block can be speculatively
- /// executed.
- bool blockCanBePredicated(BasicBlock *BB);
-
- /// Returns True, if 'Phi' is the kind of reduction variable for type
- /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
- bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
- /// Returns true if the instruction I can be a reduction variable of type
- /// 'Kind'.
- bool isReductionInstr(Instruction *I, ReductionKind Kind);
- /// Returns the induction kind of Phi. This function may return NoInduction
- /// if the PHI is not an induction variable.
- InductionKind isInductionVariable(PHINode *Phi);
- /// Return true if can compute the address bounds of Ptr within the loop.
- bool hasComputableBounds(Value *Ptr);
-
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// DataLayout analysis.
- DataLayout *DL;
- // Dominators.
- DominatorTree *DT;
-
- // --- vectorization state --- //
-
- /// Holds the integer induction variable. This is the counter of the
- /// loop.
- PHINode *Induction;
- /// Holds the reduction variables.
- ReductionList Reductions;
- /// Holds all of the induction variables that we found in the loop.
- /// Notice that inductions don't need to start at zero and that induction
- /// variables can be pointers.
- InductionList Inductions;
-
- /// Allowed outside users. This holds the reduction
- /// vars which can be accessed from outside the loop.
- SmallPtrSet<Value*, 4> AllowedExit;
- /// This set holds the variables which are known to be uniform after
- /// vectorization.
- SmallPtrSet<Instruction*, 4> Uniforms;
- /// We need to check that all of the pointers in this list are disjoint
- /// at runtime.
- RuntimePointerCheck PtrRtCheck;
-};
-
-/// LoopVectorizationCostModel - estimates the expected speedups due to
-/// vectorization.
-/// In many cases vectorization is not profitable. This can happen because
-/// of a number of reasons. In this class we mainly attempt to predict
-/// the expected speedup/slowdowns due to the supported instruction set.
-/// We use the VectorTargetTransformInfo to query the different backends
-/// for the cost of different operations.
-class LoopVectorizationCostModel {
-public:
- /// C'tor.
- LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se,
- LoopVectorizationLegality *Leg,
- const VectorTargetTransformInfo *Vtti):
- TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { }
-
- /// Returns the most profitable vectorization factor for the loop that is
- /// smaller or equal to the VF argument. This method checks every power
- /// of two up to VF.
- unsigned findBestVectorizationFactor(unsigned VF = MaxVectorSize);
-
-private:
- /// Returns the expected execution cost. The unit of the cost does
- /// not matter because we use the 'cost' units to compare different
- /// vector widths. The cost that is returned is *not* normalized by
- /// the factor width.
- unsigned expectedCost(unsigned VF);
-
- /// Returns the execution time cost of an instruction for a given vector
- /// width. Vector width of one means scalar.
- unsigned getInstructionCost(Instruction *I, unsigned VF);
-
- /// A helper function for converting Scalar types to vector types.
- /// If the incoming type is void, we return void. If the VF is 1, we return
- /// the scalar type.
- static Type* ToVectorTy(Type *Scalar, unsigned VF);
-
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
-
- /// Vectorization legality.
- LoopVectorizationLegality *Legal;
- /// Vector target information.
- const VectorTargetTransformInfo *VTTI;
-};
-
-}// namespace llvm
-
-#endif //LLVM_TRANSFORM_VECTORIZE_LOOP_VECTORIZE_H
-
diff --git a/lib/Transforms/Vectorize/Vectorize.cpp b/lib/Transforms/Vectorize/Vectorize.cpp
index 3fb36cadea..19eefd2f87 100644
--- a/lib/Transforms/Vectorize/Vectorize.cpp
+++ b/lib/Transforms/Vectorize/Vectorize.cpp
@@ -1,4 +1,4 @@
-//===-- Vectorize.cpp -----------------------------------------------------===//
+ //===-- Vectorize.cpp -----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//