diff options
author | Alexander Kornienko <alexfh@google.com> | 2013-03-14 10:51:38 +0000 |
---|---|---|
committer | Alexander Kornienko <alexfh@google.com> | 2013-03-14 10:51:38 +0000 |
commit | 647735c781c5b37061ee03d6e9e6c7dda92218e2 (patch) | |
tree | 5a5e56606d41060263048b5a5586b3d2380898ba /lib/Transforms/ObjCARC/ObjCARCOpts.cpp | |
parent | 6aed25d93d1cfcde5809a73ffa7dc1b0d6396f66 (diff) | |
parent | f635ef401786c84df32090251a8cf45981ecca33 (diff) |
Updating branches/google/stable to r176857
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/google/stable@177040 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/ObjCARC/ObjCARCOpts.cpp')
-rw-r--r-- | lib/Transforms/ObjCARC/ObjCARCOpts.cpp | 2691 |
1 files changed, 2691 insertions, 0 deletions
diff --git a/lib/Transforms/ObjCARC/ObjCARCOpts.cpp b/lib/Transforms/ObjCARC/ObjCARCOpts.cpp new file mode 100644 index 0000000000..9c14949877 --- /dev/null +++ b/lib/Transforms/ObjCARC/ObjCARCOpts.cpp @@ -0,0 +1,2691 @@ +//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// This file defines ObjC ARC optimizations. ARC stands for Automatic +/// Reference Counting and is a system for managing reference counts for objects +/// in Objective C. +/// +/// The optimizations performed include elimination of redundant, partially +/// redundant, and inconsequential reference count operations, elimination of +/// redundant weak pointer operations, and numerous minor simplifications. +/// +/// WARNING: This file knows about certain library functions. It recognizes them +/// by name, and hardwires knowledge of their semantics. +/// +/// WARNING: This file knows about how certain Objective-C library functions are +/// used. Naive LLVM IR transformations which would otherwise be +/// behavior-preserving may break these assumptions. +/// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "objc-arc-opts" +#include "ObjCARC.h" +#include "DependencyAnalysis.h" +#include "ObjCARCAliasAnalysis.h" +#include "ProvenanceAnalysis.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; +using namespace llvm::objcarc; + +/// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific. +/// @{ + +namespace { + /// \brief An associative container with fast insertion-order (deterministic) + /// iteration over its elements. Plus the special blot operation. + template<class KeyT, class ValueT> + class MapVector { + /// Map keys to indices in Vector. + typedef DenseMap<KeyT, size_t> MapTy; + MapTy Map; + + typedef std::vector<std::pair<KeyT, ValueT> > VectorTy; + /// Keys and values. + VectorTy Vector; + + public: + typedef typename VectorTy::iterator iterator; + typedef typename VectorTy::const_iterator const_iterator; + iterator begin() { return Vector.begin(); } + iterator end() { return Vector.end(); } + const_iterator begin() const { return Vector.begin(); } + const_iterator end() const { return Vector.end(); } + +#ifdef XDEBUG + ~MapVector() { + assert(Vector.size() >= Map.size()); // May differ due to blotting. + for (typename MapTy::const_iterator I = Map.begin(), E = Map.end(); + I != E; ++I) { + assert(I->second < Vector.size()); + assert(Vector[I->second].first == I->first); + } + for (typename VectorTy::const_iterator I = Vector.begin(), + E = Vector.end(); I != E; ++I) + assert(!I->first || + (Map.count(I->first) && + Map[I->first] == size_t(I - Vector.begin()))); + } +#endif + + ValueT &operator[](const KeyT &Arg) { + std::pair<typename MapTy::iterator, bool> Pair = + Map.insert(std::make_pair(Arg, size_t(0))); + if (Pair.second) { + size_t Num = Vector.size(); + Pair.first->second = Num; + Vector.push_back(std::make_pair(Arg, ValueT())); + return Vector[Num].second; + } + return Vector[Pair.first->second].second; + } + + std::pair<iterator, bool> + insert(const std::pair<KeyT, ValueT> &InsertPair) { + std::pair<typename MapTy::iterator, bool> Pair = + Map.insert(std::make_pair(InsertPair.first, size_t(0))); + if (Pair.second) { + size_t Num = Vector.size(); + Pair.first->second = Num; + Vector.push_back(InsertPair); + return std::make_pair(Vector.begin() + Num, true); + } + return std::make_pair(Vector.begin() + Pair.first->second, false); + } + + const_iterator find(const KeyT &Key) const { + typename MapTy::const_iterator It = Map.find(Key); + if (It == Map.end()) return Vector.end(); + return Vector.begin() + It->second; + } + + /// This is similar to erase, but instead of removing the element from the + /// vector, it just zeros out the key in the vector. This leaves iterators + /// intact, but clients must be prepared for zeroed-out keys when iterating. + void blot(const KeyT &Key) { + typename MapTy::iterator It = Map.find(Key); + if (It == Map.end()) return; + Vector[It->second].first = KeyT(); + Map.erase(It); + } + + void clear() { + Map.clear(); + Vector.clear(); + } + }; +} + +/// @} +/// +/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC. +/// @{ + +/// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon +/// as it finds a value with multiple uses. +static const Value *FindSingleUseIdentifiedObject(const Value *Arg) { + if (Arg->hasOneUse()) { + if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg)) + return FindSingleUseIdentifiedObject(BC->getOperand(0)); + if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg)) + if (GEP->hasAllZeroIndices()) + return FindSingleUseIdentifiedObject(GEP->getPointerOperand()); + if (IsForwarding(GetBasicInstructionClass(Arg))) + return FindSingleUseIdentifiedObject( + cast<CallInst>(Arg)->getArgOperand(0)); + if (!IsObjCIdentifiedObject(Arg)) + return 0; + return Arg; + } + + // If we found an identifiable object but it has multiple uses, but they are + // trivial uses, we can still consider this to be a single-use value. + if (IsObjCIdentifiedObject(Arg)) { + for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end(); + UI != UE; ++UI) { + const User *U = *UI; + if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg) + return 0; + } + + return Arg; + } + + return 0; +} + +/// \brief Test whether the given retainable object pointer escapes. +/// +/// This differs from regular escape analysis in that a use as an +/// argument to a call is not considered an escape. +/// +static bool DoesRetainableObjPtrEscape(const User *Ptr) { + DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Target: " << *Ptr << "\n"); + + // Walk the def-use chains. + SmallVector<const Value *, 4> Worklist; + Worklist.push_back(Ptr); + // If Ptr has any operands add them as well. + for (User::const_op_iterator I = Ptr->op_begin(), E = Ptr->op_end(); I != E; + ++I) { + Worklist.push_back(*I); + } + + // Ensure we do not visit any value twice. + SmallPtrSet<const Value *, 8> VisitedSet; + + do { + const Value *V = Worklist.pop_back_val(); + + DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Visiting: " << *V << "\n"); + + for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); + UI != UE; ++UI) { + const User *UUser = *UI; + + DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User: " << *UUser << "\n"); + + // Special - Use by a call (callee or argument) is not considered + // to be an escape. + switch (GetBasicInstructionClass(UUser)) { + case IC_StoreWeak: + case IC_InitWeak: + case IC_StoreStrong: + case IC_Autorelease: + case IC_AutoreleaseRV: { + DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User copies pointer " + "arguments. Pointer Escapes!\n"); + // These special functions make copies of their pointer arguments. + return true; + } + case IC_User: + case IC_None: + // Use by an instruction which copies the value is an escape if the + // result is an escape. + if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) || + isa<PHINode>(UUser) || isa<SelectInst>(UUser)) { + + if (VisitedSet.insert(UUser)) { + DEBUG(dbgs() << "DoesRetainableObjPtrEscape: User copies value. " + "Ptr escapes if result escapes. Adding to list.\n"); + Worklist.push_back(UUser); + } else { + DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Already visited node." + "\n"); + } + continue; + } + // Use by a load is not an escape. + if (isa<LoadInst>(UUser)) + continue; + // Use by a store is not an escape if the use is the address. + if (const StoreInst *SI = dyn_cast<StoreInst>(UUser)) + if (V != SI->getValueOperand()) + continue; + break; + default: + // Regular calls and other stuff are not considered escapes. + continue; + } + // Otherwise, conservatively assume an escape. + DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Assuming ptr escapes.\n"); + return true; + } + } while (!Worklist.empty()); + + // No escapes found. + DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Ptr does not escape.\n"); + return false; +} + +/// @} +/// +/// \defgroup ARCOpt ARC Optimization. +/// @{ + +// TODO: On code like this: +// +// objc_retain(%x) +// stuff_that_cannot_release() +// objc_autorelease(%x) +// stuff_that_cannot_release() +// objc_retain(%x) +// stuff_that_cannot_release() +// objc_autorelease(%x) +// +// The second retain and autorelease can be deleted. + +// TODO: It should be possible to delete +// objc_autoreleasePoolPush and objc_autoreleasePoolPop +// pairs if nothing is actually autoreleased between them. Also, autorelease +// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code +// after inlining) can be turned into plain release calls. + +// TODO: Critical-edge splitting. If the optimial insertion point is +// a critical edge, the current algorithm has to fail, because it doesn't +// know how to split edges. It should be possible to make the optimizer +// think in terms of edges, rather than blocks, and then split critical +// edges on demand. + +// TODO: OptimizeSequences could generalized to be Interprocedural. + +// TODO: Recognize that a bunch of other objc runtime calls have +// non-escaping arguments and non-releasing arguments, and may be +// non-autoreleasing. + +// TODO: Sink autorelease calls as far as possible. Unfortunately we +// usually can't sink them past other calls, which would be the main +// case where it would be useful. + +// TODO: The pointer returned from objc_loadWeakRetained is retained. + +// TODO: Delete release+retain pairs (rare). + +STATISTIC(NumNoops, "Number of no-op objc calls eliminated"); +STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated"); +STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases"); +STATISTIC(NumRets, "Number of return value forwarding " + "retain+autoreleaes eliminated"); +STATISTIC(NumRRs, "Number of retain+release paths eliminated"); +STATISTIC(NumPeeps, "Number of calls peephole-optimized"); + +namespace { + /// \enum Sequence + /// + /// \brief A sequence of states that a pointer may go through in which an + /// objc_retain and objc_release are actually needed. + enum Sequence { + S_None, + S_Retain, ///< objc_retain(x). + S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement. + S_Use, ///< any use of x. + S_Stop, ///< like S_Release, but code motion is stopped. + S_Release, ///< objc_release(x). + S_MovableRelease ///< objc_release(x), !clang.imprecise_release. + }; + + raw_ostream &operator<<(raw_ostream &OS, const Sequence S) + LLVM_ATTRIBUTE_UNUSED; + raw_ostream &operator<<(raw_ostream &OS, const Sequence S) { + switch (S) { + case S_None: + return OS << "S_None"; + case S_Retain: + return OS << "S_Retain"; + case S_CanRelease: + return OS << "S_CanRelease"; + case S_Use: + return OS << "S_Use"; + case S_Release: + return OS << "S_Release"; + case S_MovableRelease: + return OS << "S_MovableRelease"; + case S_Stop: + return OS << "S_Stop"; + } + llvm_unreachable("Unknown sequence type."); + } +} + +static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) { + // The easy cases. + if (A == B) + return A; + if (A == S_None || B == S_None) + return S_None; + + if (A > B) std::swap(A, B); + if (TopDown) { + // Choose the side which is further along in the sequence. + if ((A == S_Retain || A == S_CanRelease) && + (B == S_CanRelease || B == S_Use)) + return B; + } else { + // Choose the side which is further along in the sequence. + if ((A == S_Use || A == S_CanRelease) && + (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease)) + return A; + // If both sides are releases, choose the more conservative one. + if (A == S_Stop && (B == S_Release || B == S_MovableRelease)) + return A; + if (A == S_Release && B == S_MovableRelease) + return A; + } + + return S_None; +} + +namespace { + /// \brief Unidirectional information about either a + /// retain-decrement-use-release sequence or release-use-decrement-retain + /// reverese sequence. + struct RRInfo { + /// After an objc_retain, the reference count of the referenced + /// object is known to be positive. Similarly, before an objc_release, the + /// reference count of the referenced object is known to be positive. If + /// there are retain-release pairs in code regions where the retain count + /// is known to be positive, they can be eliminated, regardless of any side + /// effects between them. + /// + /// Also, a retain+release pair nested within another retain+release + /// pair all on the known same pointer value can be eliminated, regardless + /// of any intervening side effects. + /// + /// KnownSafe is true when either of these conditions is satisfied. + bool KnownSafe; + + /// True if the Calls are objc_retainBlock calls (as opposed to objc_retain + /// calls). + bool IsRetainBlock; + + /// True of the objc_release calls are all marked with the "tail" keyword. + bool IsTailCallRelease; + + /// If the Calls are objc_release calls and they all have a + /// clang.imprecise_release tag, this is the metadata tag. + MDNode *ReleaseMetadata; + + /// For a top-down sequence, the set of objc_retains or + /// objc_retainBlocks. For bottom-up, the set of objc_releases. + SmallPtrSet<Instruction *, 2> Calls; + + /// The set of optimal insert positions for moving calls in the opposite + /// sequence. + SmallPtrSet<Instruction *, 2> ReverseInsertPts; + + RRInfo() : + KnownSafe(false), IsRetainBlock(false), + IsTailCallRelease(false), + ReleaseMetadata(0) {} + + void clear(); + }; +} + +void RRInfo::clear() { + KnownSafe = false; + IsRetainBlock = false; + IsTailCallRelease = false; + ReleaseMetadata = 0; + Calls.clear(); + ReverseInsertPts.clear(); +} + +namespace { + /// \brief This class summarizes several per-pointer runtime properties which + /// are propogated through the flow graph. + class PtrState { + /// True if the reference count is known to be incremented. + bool KnownPositiveRefCount; + + /// True of we've seen an opportunity for partial RR elimination, such as + /// pushing calls into a CFG triangle or into one side of a CFG diamond. + bool Partial; + + /// The current position in the sequence. + Sequence Seq : 8; + + public: + /// Unidirectional information about the current sequence. + /// + /// TODO: Encapsulate this better. + RRInfo RRI; + + PtrState() : KnownPositiveRefCount(false), Partial(false), + Seq(S_None) {} + + void SetKnownPositiveRefCount() { + KnownPositiveRefCount = true; + } + + void ClearRefCount() { + KnownPositiveRefCount = false; + } + + bool IsKnownIncremented() const { + return KnownPositiveRefCount; + } + + void SetSeq(Sequence NewSeq) { + Seq = NewSeq; + } + + Sequence GetSeq() const { + return Seq; + } + + void ClearSequenceProgress() { + ResetSequenceProgress(S_None); + } + + void ResetSequenceProgress(Sequence NewSeq) { + Seq = NewSeq; + Partial = false; + RRI.clear(); + } + + void Merge(const PtrState &Other, bool TopDown); + }; +} + +void +PtrState::Merge(const PtrState &Other, bool TopDown) { + Seq = MergeSeqs(Seq, Other.Seq, TopDown); + KnownPositiveRefCount = KnownPositiveRefCount && Other.KnownPositiveRefCount; + + // We can't merge a plain objc_retain with an objc_retainBlock. + if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock) + Seq = S_None; + + // If we're not in a sequence (anymore), drop all associated state. + if (Seq == S_None) { + Partial = false; + RRI.clear(); + } else if (Partial || Other.Partial) { + // If we're doing a merge on a path that's previously seen a partial + // merge, conservatively drop the sequence, to avoid doing partial + // RR elimination. If the branch predicates for the two merge differ, + // mixing them is unsafe. + ClearSequenceProgress(); + } else { + // Conservatively merge the ReleaseMetadata information. + if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata) + RRI.ReleaseMetadata = 0; + + RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe; + RRI.IsTailCallRelease = RRI.IsTailCallRelease && + Other.RRI.IsTailCallRelease; + RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end()); + + // Merge the insert point sets. If there are any differences, + // that makes this a partial merge. + Partial = RRI.ReverseInsertPts.size() != Other.RRI.ReverseInsertPts.size(); + for (SmallPtrSet<Instruction *, 2>::const_iterator + I = Other.RRI.ReverseInsertPts.begin(), + E = Other.RRI.ReverseInsertPts.end(); I != E; ++I) + Partial |= RRI.ReverseInsertPts.insert(*I); + } +} + +namespace { + /// \brief Per-BasicBlock state. + class BBState { + /// The number of unique control paths from the entry which can reach this + /// block. + unsigned TopDownPathCount; + + /// The number of unique control paths to exits from this block. + unsigned BottomUpPathCount; + + /// A type for PerPtrTopDown and PerPtrBottomUp. + typedef MapVector<const Value *, PtrState> MapTy; + + /// The top-down traversal uses this to record information known about a + /// pointer at the bottom of each block. + MapTy PerPtrTopDown; + + /// The bottom-up traversal uses this to record information known about a + /// pointer at the top of each block. + MapTy PerPtrBottomUp; + + /// Effective predecessors of the current block ignoring ignorable edges and + /// ignored backedges. + SmallVector<BasicBlock *, 2> Preds; + /// Effective successors of the current block ignoring ignorable edges and + /// ignored backedges. + SmallVector<BasicBlock *, 2> Succs; + + public: + BBState() : TopDownPathCount(0), BottomUpPathCount(0) {} + + typedef MapTy::iterator ptr_iterator; + typedef MapTy::const_iterator ptr_const_iterator; + + ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); } + ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); } + ptr_const_iterator top_down_ptr_begin() const { + return PerPtrTopDown.begin(); + } + ptr_const_iterator top_down_ptr_end() const { + return PerPtrTopDown.end(); + } + + ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); } + ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); } + ptr_const_iterator bottom_up_ptr_begin() const { + return PerPtrBottomUp.begin(); + } + ptr_const_iterator bottom_up_ptr_end() const { + return PerPtrBottomUp.end(); + } + + /// Mark this block as being an entry block, which has one path from the + /// entry by definition. + void SetAsEntry() { TopDownPathCount = 1; } + + /// Mark this block as being an exit block, which has one path to an exit by + /// definition. + void SetAsExit() { BottomUpPathCount = 1; } + + PtrState &getPtrTopDownState(const Value *Arg) { + return PerPtrTopDown[Arg]; + } + + PtrState &getPtrBottomUpState(const Value *Arg) { + return PerPtrBottomUp[Arg]; + } + + void clearBottomUpPointers() { + PerPtrBottomUp.clear(); + } + + void clearTopDownPointers() { + PerPtrTopDown.clear(); + } + + void InitFromPred(const BBState &Other); + void InitFromSucc(const BBState &Other); + void MergePred(const BBState &Other); + void MergeSucc(const BBState &Other); + + /// Return the number of possible unique paths from an entry to an exit + /// which pass through this block. This is only valid after both the + /// top-down and bottom-up traversals are complete. + unsigned GetAllPathCount() const { + assert(TopDownPathCount != 0); + assert(BottomUpPathCount != 0); + return TopDownPathCount * BottomUpPathCount; + } + + // Specialized CFG utilities. + typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator; + edge_iterator pred_begin() { return Preds.begin(); } + edge_iterator pred_end() { return Preds.end(); } + edge_iterator succ_begin() { return Succs.begin(); } + edge_iterator succ_end() { return Succs.end(); } + + void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); } + void addPred(BasicBlock *Pred) { Preds.push_back(Pred); } + + bool isExit() const { return Succs.empty(); } + }; +} + +void BBState::InitFromPred(const BBState &Other) { + PerPtrTopDown = Other.PerPtrTopDown; + TopDownPathCount = Other.TopDownPathCount; +} + +void BBState::InitFromSucc(const BBState &Other) { + PerPtrBottomUp = Other.PerPtrBottomUp; + BottomUpPathCount = Other.BottomUpPathCount; +} + +/// The top-down traversal uses this to merge information about predecessors to +/// form the initial state for a new block. +void BBState::MergePred(const BBState &Other) { + // Other.TopDownPathCount can be 0, in which case it is either dead or a + // loop backedge. Loop backedges are special. + TopDownPathCount += Other.TopDownPathCount; + + // Check for overflow. If we have overflow, fall back to conservative + // behavior. + if (TopDownPathCount < Other.TopDownPathCount) { + clearTopDownPointers(); + return; + } + + // For each entry in the other set, if our set has an entry with the same key, + // merge the entries. Otherwise, copy the entry and merge it with an empty + // entry. + for (ptr_const_iterator MI = Other.top_down_ptr_begin(), + ME = Other.top_down_ptr_end(); MI != ME; ++MI) { + std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI); + Pair.first->second.Merge(Pair.second ? PtrState() : MI->second, + /*TopDown=*/true); + } + + // For each entry in our set, if the other set doesn't have an entry with the + // same key, force it to merge with an empty entry. + for (ptr_iterator MI = top_down_ptr_begin(), + ME = top_down_ptr_end(); MI != ME; ++MI) + if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end()) + MI->second.Merge(PtrState(), /*TopDown=*/true); +} + +/// The bottom-up traversal uses this to merge information about successors to +/// form the initial state for a new block. +void BBState::MergeSucc(const BBState &Other) { + // Other.BottomUpPathCount can be 0, in which case it is either dead or a + // loop backedge. Loop backedges are special. + BottomUpPathCount += Other.BottomUpPathCount; + + // Check for overflow. If we have overflow, fall back to conservative + // behavior. + if (BottomUpPathCount < Other.BottomUpPathCount) { + clearBottomUpPointers(); + return; + } + + // For each entry in the other set, if our set has an entry with the + // same key, merge the entries. Otherwise, copy the entry and merge + // it with an empty entry. + for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(), + ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) { + std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI); + Pair.first->second.Merge(Pair.second ? PtrState() : MI->second, + /*TopDown=*/false); + } + + // For each entry in our set, if the other set doesn't have an entry + // with the same key, force it to merge with an empty entry. + for (ptr_iterator MI = bottom_up_ptr_begin(), + ME = bottom_up_ptr_end(); MI != ME; ++MI) + if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end()) + MI->second.Merge(PtrState(), /*TopDown=*/false); +} + +namespace { + /// \brief The main ARC optimization pass. + class ObjCARCOpt : public FunctionPass { + bool Changed; + ProvenanceAnalysis PA; + + /// A flag indicating whether this optimization pass should run. + bool Run; + + /// Declarations for ObjC runtime functions, for use in creating calls to + /// them. These are initialized lazily to avoid cluttering up the Module + /// with unused declarations. + + /// Declaration for ObjC runtime function + /// objc_retainAutoreleasedReturnValue. + Constant *RetainRVCallee; + /// Declaration for ObjC runtime function objc_autoreleaseReturnValue. + Constant *AutoreleaseRVCallee; + /// Declaration for ObjC runtime function objc_release. + Constant *ReleaseCallee; + /// Declaration for ObjC runtime function objc_retain. + Constant *RetainCallee; + /// Declaration for ObjC runtime function objc_retainBlock. + Constant *RetainBlockCallee; + /// Declaration for ObjC runtime function objc_autorelease. + Constant *AutoreleaseCallee; + + /// Flags which determine whether each of the interesting runtine functions + /// is in fact used in the current function. + unsigned UsedInThisFunction; + + /// The Metadata Kind for clang.imprecise_release metadata. + unsigned ImpreciseReleaseMDKind; + + /// The Metadata Kind for clang.arc.copy_on_escape metadata. + unsigned CopyOnEscapeMDKind; + + /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata. + unsigned NoObjCARCExceptionsMDKind; + + Constant *getRetainRVCallee(Module *M); + Constant *getAutoreleaseRVCallee(Module *M); + Constant *getReleaseCallee(Module *M); + Constant *getRetainCallee(Module *M); + Constant *getRetainBlockCallee(Module *M); + Constant *getAutoreleaseCallee(Module *M); + + bool IsRetainBlockOptimizable(const Instruction *Inst); + + void OptimizeRetainCall(Function &F, Instruction *Retain); + bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV); + void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, + InstructionClass &Class); + void OptimizeIndividualCalls(Function &F); + + void CheckForCFGHazards(const BasicBlock *BB, + DenseMap<const BasicBlock *, BBState> &BBStates, + BBState &MyStates) const; + bool VisitInstructionBottomUp(Instruction *Inst, + BasicBlock *BB, + MapVector<Value *, RRInfo> &Retains, + BBState &MyStates); + bool VisitBottomUp(BasicBlock *BB, + DenseMap<const BasicBlock *, BBState> &BBStates, + MapVector<Value *, RRInfo> &Retains); + bool VisitInstructionTopDown(Instruction *Inst, + DenseMap<Value *, RRInfo> &Releases, + BBState &MyStates); + bool VisitTopDown(BasicBlock *BB, + DenseMap<const BasicBlock *, BBState> &BBStates, + DenseMap<Value *, RRInfo> &Releases); + bool Visit(Function &F, + DenseMap<const BasicBlock *, BBState> &BBStates, + MapVector<Value *, RRInfo> &Retains, + DenseMap<Value *, RRInfo> &Releases); + + void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove, + MapVector<Value *, RRInfo> &Retains, + DenseMap<Value *, RRInfo> &Releases, + SmallVectorImpl<Instruction *> &DeadInsts, + Module *M); + + bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates, + MapVector<Value *, RRInfo> &Retains, + DenseMap<Value *, RRInfo> &Releases, + Module *M, + SmallVector<Instruction *, 4> &NewRetains, + SmallVector<Instruction *, 4> &NewReleases, + SmallVector<Instruction *, 8> &DeadInsts, + RRInfo &RetainsToMove, + RRInfo &ReleasesToMove, + Value *Arg, + bool KnownSafe, + bool &AnyPairsCompletelyEliminated); + + bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates, + MapVector<Value *, RRInfo> &Retains, + DenseMap<Value *, RRInfo> &Releases, + Module *M); + + void OptimizeWeakCalls(Function &F); + + bool OptimizeSequences(Function &F); + + void OptimizeReturns(Function &F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const; + virtual bool doInitialization(Module &M); + virtual bool runOnFunction(Function &F); + virtual void releaseMemory(); + + public: + static char ID; + ObjCARCOpt() : FunctionPass(ID) { + initializeObjCARCOptPass(*PassRegistry::getPassRegistry()); + } + }; +} + +char ObjCARCOpt::ID = 0; +INITIALIZE_PASS_BEGIN(ObjCARCOpt, + "objc-arc", "ObjC ARC optimization", false, false) +INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis) +INITIALIZE_PASS_END(ObjCARCOpt, + "objc-arc", "ObjC ARC optimization", false, false) + +Pass *llvm::createObjCARCOptPass() { + return new ObjCARCOpt(); +} + +void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<ObjCARCAliasAnalysis>(); + AU.addRequired<AliasAnalysis>(); + // ARC optimization doesn't currently split critical edges. + AU.setPreservesCFG(); +} + +bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) { + // Without the magic metadata tag, we have to assume this might be an + // objc_retainBlock call inserted to convert a block pointer to an id, + // in which case it really is needed. + if (!Inst->getMetadata(CopyOnEscapeMDKind)) + return false; + + // If the pointer "escapes" (not including being used in a call), + // the copy may be needed. + if (DoesRetainableObjPtrEscape(Inst)) + return false; + + // Otherwise, it's not needed. + return true; +} + +Constant *ObjCARCOpt::getRetainRVCallee(Module *M) { + if (!RetainRVCallee) { + LLVMContext &C = M->getContext(); + Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); + Type *Params[] = { I8X }; + FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false); + AttributeSet Attribute = + AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex, + Attribute::NoUnwind); + RetainRVCallee = + M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy, + Attribute); + } + return RetainRVCallee; +} + +Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) { + if (!AutoreleaseRVCallee) { + LLVMContext &C = M->getContext(); + Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C)); + Type *Params[] = { I8X }; + FunctionType *FTy = FunctionType::get(I8X, Params, /*isVarArg=*/false); + AttributeSet Attribute = + AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex, + Attribute::NoUnwind); + AutoreleaseRVCallee = + M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy, + Attribute); + } + return AutoreleaseRVCallee; +} + +Constant *ObjCARCOpt::getReleaseCallee(Module *M) { + if (!ReleaseCallee) { + LLVMContext &C = M->getContext(); + Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) }; + AttributeSet Attribute = + AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex, + Attribute::NoUnwind); + ReleaseCallee = + M->getOrInsertFunction( + "objc_release", + FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false), + Attribute); + } + return ReleaseCallee; +} + +Constant *ObjCARCOpt::getRetainCallee(Module *M) { + if (!RetainCallee) { + LLVMContext &C = M->getContext(); + Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) }; + AttributeSet Attribute = + AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex, + Attribute::NoUnwind); + RetainCallee = + M->getOrInsertFunction( + "objc_retain", + FunctionType::get(Params[0], Params, /*isVarArg=*/false), + Attribute); + } + return RetainCallee; +} + +Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) { + if (!RetainBlockCallee) { + LLVMContext &C = M->getContext(); + Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) }; + // objc_retainBlock is not nounwind because it calls user copy constructors + // which could theoretically throw. + RetainBlockCallee = + M->getOrInsertFunction( + "objc_retainBlock", + FunctionType::get(Params[0], Params, /*isVarArg=*/false), + AttributeSet()); + } + return RetainBlockCallee; +} + +Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) { + if (!AutoreleaseCallee) { + LLVMContext &C = M->getContext(); + Type *Params[] = { PointerType::getUnqual(Type::getInt8Ty(C)) }; + AttributeSet Attribute = + AttributeSet().addAttribute(M->getContext(), AttributeSet::FunctionIndex, + Attribute::NoUnwind); + AutoreleaseCallee = + M->getOrInsertFunction( + "objc_autorelease", + FunctionType::get(Params[0], Params, /*isVarArg=*/false), + Attribute); + } + return AutoreleaseCallee; +} + +/// Turn objc_retain into objc_retainAutoreleasedReturnValue if the operand is a +/// return value. +void +ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) { + ImmutableCallSite CS(GetObjCArg(Retain)); + const Instruction *Call = CS.getInstruction(); + if (!Call) return; + if (Call->getParent() != Retain->getParent()) return; + + // Check that the call is next to the retain. + BasicBlock::const_iterator I = Call; + ++I; + while (isNoopInstruction(I)) ++I; + if (&*I != Retain) + return; + + // Turn it to an objc_retainAutoreleasedReturnValue.. + Changed = true; + ++NumPeeps; + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainCall: Transforming " + "objc_retain => objc_retainAutoreleasedReturnValue" + " since the operand is a return value.\n" + " Old: " + << *Retain << "\n"); + + cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent())); + + DEBUG(dbgs() << " New: " + << *Retain << "\n"); +} + +/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is +/// not a return value. Or, if it can be paired with an +/// objc_autoreleaseReturnValue, delete the pair and return true. +bool +ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) { + // Check for the argument being from an immediately preceding call or invoke. + const Value *Arg = GetObjCArg(RetainRV); + ImmutableCallSite CS(Arg); + if (const Instruction *Call = CS.getInstruction()) { + if (Call->getParent() == RetainRV->getParent()) { + BasicBlock::const_iterator I = Call; + ++I; + while (isNoopInstruction(I)) ++I; + if (&*I == RetainRV) + return false; + } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) { + BasicBlock *RetainRVParent = RetainRV->getParent(); + if (II->getNormalDest() == RetainRVParent) { + BasicBlock::const_iterator I = RetainRVParent->begin(); + while (isNoopInstruction(I)) ++I; + if (&*I == RetainRV) + return false; + } + } + } + + // Check for being preceded by an objc_autoreleaseReturnValue on the same + // pointer. In this case, we can delete the pair. + BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin(); + if (I != Begin) { + do --I; while (I != Begin && isNoopInstruction(I)); + if (GetBasicInstructionClass(I) == IC_AutoreleaseRV && + GetObjCArg(I) == Arg) { + Changed = true; + ++NumPeeps; + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Erasing " << *I << "\n" + << " Erasing " << *RetainRV + << "\n"); + + EraseInstruction(I); + EraseInstruction(RetainRV); + return true; + } + } + + // Turn it to a plain objc_retain. + Changed = true; + ++NumPeeps; + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeRetainRVCall: Transforming " + "objc_retainAutoreleasedReturnValue => " + "objc_retain since the operand is not a return value.\n" + " Old: " + << *RetainRV << "\n"); + + cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent())); + + DEBUG(dbgs() << " New: " + << *RetainRV << "\n"); + + return false; +} + +/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not +/// used as a return value. +void +ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV, + InstructionClass &Class) { + // Check for a return of the pointer value. + const Value *Ptr = GetObjCArg(AutoreleaseRV); + SmallVector<const Value *, 2> Users; + Users.push_back(Ptr); + do { + Ptr = Users.pop_back_val(); + for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end(); + UI != UE; ++UI) { + const User *I = *UI; + if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV) + return; + if (isa<BitCastInst>(I)) + Users.push_back(I); + } + } while (!Users.empty()); + + Changed = true; + ++NumPeeps; + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeAutoreleaseRVCall: Transforming " + "objc_autoreleaseReturnValue => " + "objc_autorelease since its operand is not used as a return " + "value.\n" + " Old: " + << *AutoreleaseRV << "\n"); + + CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV); + AutoreleaseRVCI-> + setCalledFunction(getAutoreleaseCallee(F.getParent())); + AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease. + Class = IC_Autorelease; + + DEBUG(dbgs() << " New: " + << *AutoreleaseRV << "\n"); + +} + +/// Visit each call, one at a time, and make simplifications without doing any +/// additional analysis. +void ObjCARCOpt::OptimizeIndividualCalls(Function &F) { + // Reset all the flags in preparation for recomputing them. + UsedInThisFunction = 0; + + // Visit all objc_* calls in F. + for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { + Instruction *Inst = &*I++; + + InstructionClass Class = GetBasicInstructionClass(Inst); + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Visiting: Class: " + << Class << "; " << *Inst << "\n"); + + switch (Class) { + default: break; + + // Delete no-op casts. These function calls have special semantics, but + // the semantics are entirely implemented via lowering in the front-end, + // so by the time they reach the optimizer, they are just no-op calls + // which return their argument. + // + // There are gray areas here, as the ability to cast reference-counted + // pointers to raw void* and back allows code to break ARC assumptions, + // however these are currently considered to be unimportant. + case IC_NoopCast: + Changed = true; + ++NumNoops; + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Erasing no-op cast:" + " " << *Inst << "\n"); + EraseInstruction(Inst); + continue; + + // If the pointer-to-weak-pointer is null, it's undefined behavior. + case IC_StoreWeak: + case IC_LoadWeak: + case IC_LoadWeakRetained: + case IC_InitWeak: + case IC_DestroyWeak: { + CallInst *CI = cast<CallInst>(Inst); + if (isNullOrUndef(CI->getArgOperand(0))) { + Changed = true; + Type *Ty = CI->getArgOperand(0)->getType(); + new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), + Constant::getNullValue(Ty), + CI); + llvm::Value *NewValue = UndefValue::get(CI->getType()); + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null " + "pointer-to-weak-pointer is undefined behavior.\n" + " Old = " << *CI << + "\n New = " << + *NewValue << "\n"); + CI->replaceAllUsesWith(NewValue); + CI->eraseFromParent(); + continue; + } + break; + } + case IC_CopyWeak: + case IC_MoveWeak: { + CallInst *CI = cast<CallInst>(Inst); + if (isNullOrUndef(CI->getArgOperand(0)) || + isNullOrUndef(CI->getArgOperand(1))) { + Changed = true; + Type *Ty = CI->getArgOperand(0)->getType(); + new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()), + Constant::getNullValue(Ty), + CI); + + llvm::Value *NewValue = UndefValue::get(CI->getType()); + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: A null " + "pointer-to-weak-pointer is undefined behavior.\n" + " Old = " << *CI << + "\n New = " << + *NewValue << "\n"); + + CI->replaceAllUsesWith(NewValue); + CI->eraseFromParent(); + continue; + } + break; + } + case IC_Retain: + OptimizeRetainCall(F, Inst); + break; + case IC_RetainRV: + if (OptimizeRetainRVCall(F, Inst)) + continue; + break; + case IC_AutoreleaseRV: + OptimizeAutoreleaseRVCall(F, Inst, Class); + break; + } + + // objc_autorelease(x) -> objc_release(x) if x is otherwise unused. + if (IsAutorelease(Class) && Inst->use_empty()) { + CallInst *Call = cast<CallInst>(Inst); + const Value *Arg = Call->getArgOperand(0); + Arg = FindSingleUseIdentifiedObject(Arg); + if (Arg) { + Changed = true; + ++NumAutoreleases; + + // Create the declaration lazily. + LLVMContext &C = Inst->getContext(); + CallInst *NewCall = + CallInst::Create(getReleaseCallee(F.getParent()), + Call->getArgOperand(0), "", Call); + NewCall->setMetadata(ImpreciseReleaseMDKind, + MDNode::get(C, ArrayRef<Value *>())); + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Replacing " + "objc_autorelease(x) with objc_release(x) since x is " + "otherwise unused.\n" + " Old: " << *Call << + "\n New: " << + *NewCall << "\n"); + + EraseInstruction(Call); + Inst = NewCall; + Class = IC_Release; + } + } + + // For functions which can never be passed stack arguments, add + // a tail keyword. + if (IsAlwaysTail(Class)) { + Changed = true; + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Adding tail keyword" + " to function since it can never be passed stack args: " << *Inst << + "\n"); + cast<CallInst>(Inst)->setTailCall(); + } + + // Ensure that functions that can never have a "tail" keyword due to the + // semantics of ARC truly do not do so. + if (IsNeverTail(Class)) { + Changed = true; + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Removing tail " + "keyword from function: " << *Inst << + "\n"); + cast<CallInst>(Inst)->setTailCall(false); + } + + // Set nounwind as needed. + if (IsNoThrow(Class)) { + Changed = true; + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Found no throw" + " class. Setting nounwind on: " << *Inst << "\n"); + cast<CallInst>(Inst)->setDoesNotThrow(); + } + + if (!IsNoopOnNull(Class)) { + UsedInThisFunction |= 1 << Class; + continue; + } + + const Value *Arg = GetObjCArg(Inst); + + // ARC calls with null are no-ops. Delete them. + if (isNullOrUndef(Arg)) { + Changed = true; + ++NumNoops; + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: ARC calls with " + " null are no-ops. Erasing: " << *Inst << "\n"); + EraseInstruction(Inst); + continue; + } + + // Keep track of which of retain, release, autorelease, and retain_block + // are actually present in this function. + UsedInThisFunction |= 1 << Class; + + // If Arg is a PHI, and one or more incoming values to the + // PHI are null, and the call is control-equivalent to the PHI, and there + // are no relevant side effects between the PHI and the call, the call + // could be pushed up to just those paths with non-null incoming values. + // For now, don't bother splitting critical edges for this. + SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist; + Worklist.push_back(std::make_pair(Inst, Arg)); + do { + std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val(); + Inst = Pair.first; + Arg = Pair.second; + + const PHINode *PN = dyn_cast<PHINode>(Arg); + if (!PN) continue; + + // Determine if the PHI has any null operands, or any incoming + // critical edges. + bool HasNull = false; + bool HasCriticalEdges = false; + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *Incoming = + StripPointerCastsAndObjCCalls(PN->getIncomingValue(i)); + if (isNullOrUndef(Incoming)) + HasNull = true; + else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back()) + .getNumSuccessors() != 1) { + HasCriticalEdges = true; + break; + } + } + // If we have null operands and no critical edges, optimize. + if (!HasCriticalEdges && HasNull) { + SmallPtrSet<Instruction *, 4> DependingInstructions; + SmallPtrSet<const BasicBlock *, 4> Visited; + + // Check that there is nothing that cares about the reference + // count between the call and the phi. + switch (Class) { + case IC_Retain: + case IC_RetainBlock: + // These can always be moved up. + break; + case IC_Release: + // These can't be moved across things that care about the retain + // count. + FindDependencies(NeedsPositiveRetainCount, Arg, + Inst->getParent(), Inst, + DependingInstructions, Visited, PA); + break; + case IC_Autorelease: + // These can't be moved across autorelease pool scope boundaries. + FindDependencies(AutoreleasePoolBoundary, Arg, + Inst->getParent(), Inst, + DependingInstructions, Visited, PA); + break; + case IC_RetainRV: + case IC_AutoreleaseRV: + // Don't move these; the RV optimization depends on the autoreleaseRV + // being tail called, and the retainRV being immediately after a call + // (which might still happen if we get lucky with codegen layout, but + // it's not worth taking the chance). + continue; + default: + llvm_unreachable("Invalid dependence flavor"); + } + + if (DependingInstructions.size() == 1 && + *DependingInstructions.begin() == PN) { + Changed = true; + ++NumPartialNoops; + // Clone the call into each predecessor that has a non-null value. + CallInst *CInst = cast<CallInst>(Inst); + Type *ParamTy = CInst->getArgOperand(0)->getType(); + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *Incoming = + StripPointerCastsAndObjCCalls(PN->getIncomingValue(i)); + if (!isNullOrUndef(Incoming)) { + CallInst *Clone = cast<CallInst>(CInst->clone()); + Value *Op = PN->getIncomingValue(i); + Instruction *InsertPos = &PN->getIncomingBlock(i)->back(); + if (Op->getType() != ParamTy) + Op = new BitCastInst(Op, ParamTy, "", InsertPos); + Clone->setArgOperand(0, Op); + Clone->insertBefore(InsertPos); + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Cloning " + << *CInst << "\n" + " And inserting " + "clone at " << *InsertPos << "\n"); + Worklist.push_back(std::make_pair(Clone, Incoming)); + } + } + // Erase the original call. + DEBUG(dbgs() << "Erasing: " << *CInst << "\n"); + EraseInstruction(CInst); + continue; + } + } + } while (!Worklist.empty()); + } + DEBUG(dbgs() << "ObjCARCOpt::OptimizeIndividualCalls: Finished List.\n"); +} + +/// Check for critical edges, loop boundaries, irreducible control flow, or +/// other CFG structures where moving code across the edge would result in it +/// being executed more. +void +ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB, + DenseMap<const BasicBlock *, BBState> &BBStates, + BBState &MyStates) const { + // If any top-down local-use or possible-dec has a succ which is earlier in + // the sequence, forget it. + for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(), + E = MyStates.top_down_ptr_end(); I != E; ++I) + switch (I->second.GetSeq()) { + default: break; + case S_Use: { + const Value *Arg = I->first; + const TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); + bool SomeSuccHasSame = false; + bool AllSuccsHaveSame = true; + PtrState &S = I->second; + succ_const_iterator SI(TI), SE(TI, false); + + for (; SI != SE; ++SI) { + Sequence SuccSSeq = S_None; + bool SuccSRRIKnownSafe = false; + // If VisitBottomUp has pointer information for this successor, take + // what we know about it. + DenseMap<const BasicBlock *, BBState>::iterator BBI = + BBStates.find(*SI); + assert(BBI != BBStates.end()); + const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); + SuccSSeq = SuccS.GetSeq(); + SuccSRRIKnownSafe = SuccS.RRI.KnownSafe; + switch (SuccSSeq) { + case S_None: + case S_CanRelease: { + if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) { + S.ClearSequenceProgress(); + break; + } + continue; + } + case S_Use: + SomeSuccHasSame = true; + break; + case S_Stop: + case S_Release: + case S_MovableRelease: + if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) + AllSuccsHaveSame = false; + break; + case S_Retain: + llvm_unreachable("bottom-up pointer in retain state!"); + } + } + // If the state at the other end of any of the successor edges + // matches the current state, require all edges to match. This + // guards against loops in the middle of a sequence. + if (SomeSuccHasSame && !AllSuccsHaveSame) + S.ClearSequenceProgress(); + break; + } + case S_CanRelease: { + const Value *Arg = I->first; + const TerminatorInst *TI = cast<TerminatorInst>(&BB->back()); + bool SomeSuccHasSame = false; + bool AllSuccsHaveSame = true; + PtrState &S = I->second; + succ_const_iterator SI(TI), SE(TI, false); + + for (; SI != SE; ++SI) { + Sequence SuccSSeq = S_None; + bool SuccSRRIKnownSafe = false; + // If VisitBottomUp has pointer information for this successor, take + // what we know about it. + DenseMap<const BasicBlock *, BBState>::iterator BBI = + BBStates.find(*SI); + assert(BBI != BBStates.end()); + const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg); + SuccSSeq = SuccS.GetSeq(); + SuccSRRIKnownSafe = SuccS.RRI.KnownSafe; + switch (SuccSSeq) { + case S_None: { + if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) { + S.ClearSequenceProgress(); + break; + } + continue; + } + case S_CanRelease: + SomeSuccHasSame = true; + break; + case S_Stop: + case S_Release: + case S_MovableRelease: + case S_Use: + if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) + AllSuccsHaveSame = false; + break; + case S_Retain: + llvm_unreachable("bottom-up pointer in retain state!"); + } + } + // If the state at the other end of any of the successor edges + // matches the current state, require all edges to match. This + // guards against loops in the middle of a sequence. + if (SomeSuccHasSame && !AllSuccsHaveSame) + S.ClearSequenceProgress(); + break; + } + } +} + +bool +ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst, + BasicBlock *BB, + MapVector<Value *, RRInfo> &Retains, + BBState &MyStates) { + bool NestingDetected = false; + InstructionClass Class = GetInstructionClass(Inst); + const Value *Arg = 0; + + switch (Class) { + case IC_Release: { + Arg = GetObjCArg(Inst); + + PtrState &S = MyStates.getPtrBottomUpState(Arg); + + // If we see two releases in a row on the same pointer. If so, make + // a note, and we'll cicle back to revisit it after we've + // hopefully eliminated the second release, which may allow us to + // eliminate the first release too. + // Theoretically we could implement removal of nested retain+release + // pairs by making PtrState hold a stack of states, but this is + // simple and avoids adding overhead for the non-nested case. + if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) { + DEBUG(dbgs() << "ObjCARCOpt::VisitInstructionBottomUp: Found nested " + "releases (i.e. a release pair)\n"); + NestingDetected = true; + } + + MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); + S.ResetSequenceProgress(ReleaseMetadata ? S_MovableRelease : S_Release); + S.RRI.ReleaseMetadata = ReleaseMetadata; + S.RRI.KnownSafe = S.IsKnownIncremented(); + S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall(); + S.RRI.Calls.insert(Inst); + + S.SetKnownPositiveRefCount(); + break; + } + case IC_RetainBlock: + // An objc_retainBlock call with just a use may need to be kept, + // because it may be copying a block from the stack to the heap. + if (!IsRetainBlockOptimizable(Inst)) + break; + // FALLTHROUGH + case IC_Retain: + case IC_RetainRV: { + Arg = GetObjCArg(Inst); + + PtrState &S = MyStates.getPtrBottomUpState(Arg); + S.SetKnownPositiveRefCount(); + + switch (S.GetSeq()) { + case S_Stop: + case S_Release: + case S_MovableRelease: + case S_Use: + S.RRI.ReverseInsertPts.clear(); + // FALL THROUGH + case S_CanRelease: + // Don't do retain+release tracking for IC_RetainRV, because it's + // better to let it remain as the first instruction after a call. + if (Class != IC_RetainRV) { + S.RRI.IsRetainBlock = Class == IC_RetainBlock; + Retains[Inst] = S.RRI; + } + S.ClearSequenceProgress(); + break; + case S_None: + break; + case S_Retain: + llvm_unreachable("bottom-up pointer in retain state!"); + } + return NestingDetected; + } + case IC_AutoreleasepoolPop: + // Conservatively, clear MyStates for all known pointers. + MyStates.clearBottomUpPointers(); + return NestingDetected; + case IC_AutoreleasepoolPush: + case IC_None: + // These are irrelevant. + return NestingDetected; + default: + break; + } + + // Consider any other possible effects of this instruction on each + // pointer being tracked. + for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(), + ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) { + const Value *Ptr = MI->first; + if (Ptr == Arg) + continue; // Handled above. + PtrState &S = MI->second; + Sequence Seq = S.GetSeq(); + + // Check for possible releases. + if (CanAlterRefCount(Inst, Ptr, PA, Class)) { + S.ClearRefCount(); + switch (Seq) { + case S_Use: + S.SetSeq(S_CanRelease); + continue; + case S_CanRelease: + case S_Release: + case S_MovableRelease: + case S_Stop: + case S_None: + break; + case S_Retain: + llvm_unreachable("bottom-up pointer in retain state!"); + } + } + + // Check for possible direct uses. + switch (Seq) { + case S_Release: + case S_MovableRelease: + if (CanUse(Inst, Ptr, PA, Class)) { + assert(S.RRI.ReverseInsertPts.empty()); + // If this is an invoke instruction, we're scanning it as part of + // one of its successor blocks, since we can't insert code after it + // in its own block, and we don't want to split critical edges. + if (isa<InvokeInst>(Inst)) + S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt()); + else + S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst))); + S.SetSeq(S_Use); + } else if (Seq == S_Release && + (Class == IC_User || Class == IC_CallOrUser)) { + // Non-movable releases depend on any possible objc pointer use. + S.SetSeq(S_Stop); + assert(S.RRI.ReverseInsertPts.empty()); + // As above; handle invoke specially. + if (isa<InvokeInst>(Inst)) + S.RRI.ReverseInsertPts.insert(BB->getFirstInsertionPt()); + else + S.RRI.ReverseInsertPts.insert(llvm::next(BasicBlock::iterator(Inst))); + } + break; + case S_Stop: + if (CanUse(Inst, Ptr, PA, Class)) + S.SetSeq(S_Use); + break; + case S_CanRelease: + case S_Use: + case S_None: + break; + case S_Retain: + llvm_unreachable("bottom-up pointer in retain state!"); + } + } + + return NestingDetected; +} + +bool +ObjCARCOpt::VisitBottomUp(BasicBlock *BB, + DenseMap<const BasicBlock *, BBState> &BBStates, + MapVector<Value *, RRInfo> &Retains) { + bool NestingDetected = false; + BBState &MyStates = BBStates[BB]; + + // Merge the states from each successor to compute the initial state + // for the current block. + BBState::edge_iterator SI(MyStates.succ_begin()), + SE(MyStates.succ_end()); + if (SI != SE) { + const BasicBlock *Succ = *SI; + DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ); + assert(I != BBStates.end()); + MyStates.InitFromSucc(I->second); + ++SI; + for (; SI != SE; ++SI) { + Succ = *SI; + I = BBStates.find(Succ); + assert(I != BBStates.end()); + MyStates.MergeSucc(I->second); + } + } + + // Visit all the instructions, bottom-up. + for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) { + Instruction *Inst = llvm::prior(I); + + // Invoke instructions are visited as part of their successors (below). + if (isa<InvokeInst>(Inst)) + continue; + + DEBUG(dbgs() << "ObjCARCOpt::VisitButtonUp: Visiting " << *Inst << "\n"); + + NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates); + } + + // If there's a predecessor with an invoke, visit the invoke as if it were + // part of this block, since we can't insert code after an invoke in its own + // block, and we don't want to split critical edges. + for (BBState::edge_iterator PI(MyStates.pred_begin()), + PE(MyStates.pred_end()); PI != PE; ++PI) { + BasicBlock *Pred = *PI; + if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back())) + NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates); + } + + return NestingDetected; +} + +bool +ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst, + DenseMap<Value *, RRInfo> &Releases, + BBState &MyStates) { + bool NestingDetected = false; + InstructionClass Class = GetInstructionClass(Inst); + const Value *Arg = 0; + + switch (Class) { + case IC_RetainBlock: + // An objc_retainBlock call with just a use may need to be kept, + // because it may be copying a block from the stack to the heap. + if (!IsRetainBlockOptimizable(Inst)) + break; + // FALLTHROUGH + case IC_Retain: + case IC_RetainRV: { + Arg = GetObjCArg(Inst); + + PtrState &S = MyStates.getPtrTopDownState(Arg); + + // Don't do retain+release tracking for IC_RetainRV, because it's + // better to let it remain as the first instruction after a call. + if (Class != IC_RetainRV) { + // If we see two retains in a row on the same pointer. If so, make + // a note, and we'll cicle back to revisit it after we've + // hopefully eliminated the second retain, which may allow us to + // eliminate the first retain too. + // Theoretically we could implement removal of nested retain+release + // pairs by making PtrState hold a stack of states, but this is + // simple and avoids adding overhead for the non-nested case. + if (S.GetSeq() == S_Retain) + NestingDetected = true; + + S.ResetSequenceProgress(S_Retain); + S.RRI.IsRetainBlock = Class == IC_RetainBlock; + S.RRI.KnownSafe = S.IsKnownIncremented(); + S.RRI.Calls.insert(Inst); + } + + S.SetKnownPositiveRefCount(); + + // A retain can be a potential use; procede to the generic checking + // code below. + break; + } + case IC_Release: { + Arg = GetObjCArg(Inst); + + PtrState &S = MyStates.getPtrTopDownState(Arg); + S.ClearRefCount(); + + switch (S.GetSeq()) { + case S_Retain: + case S_CanRelease: + S.RRI.ReverseInsertPts.clear(); + // FALL THROUGH + case S_Use: + S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind); + S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall(); + Releases[Inst] = S.RRI; + S.ClearSequenceProgress(); + break; + case S_None: + break; + case S_Stop: + case S_Release: + case S_MovableRelease: + llvm_unreachable("top-down pointer in release state!"); + } + break; + } + case IC_AutoreleasepoolPop: + // Conservatively, clear MyStates for all known pointers. + MyStates.clearTopDownPointers(); + return NestingDetected; + case IC_AutoreleasepoolPush: + case IC_None: + // These are irrelevant. + return NestingDetected; + default: + break; + } + + // Consider any other possible effects of this instruction on each + // pointer being tracked. + for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(), + ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) { + const Value *Ptr = MI->first; + if (Ptr == Arg) + continue; // Handled above. + PtrState &S = MI->second; + Sequence Seq = S.GetSeq(); + + // Check for possible releases. + if (CanAlterRefCount(Inst, Ptr, PA, Class)) { + S.ClearRefCount(); + switch (Seq) { + case S_Retain: + S.SetSeq(S_CanRelease); + assert(S.RRI.ReverseInsertPts.empty()); + S.RRI.ReverseInsertPts.insert(Inst); + + // One call can't cause a transition from S_Retain to S_CanRelease + // and S_CanRelease to S_Use. If we've made the first transition, + // we're done. + continue; + case S_Use: + case S_CanRelease: + case S_None: + break; + case S_Stop: + case S_Release: + case S_MovableRelease: + llvm_unreachable("top-down pointer in release state!"); + } + } + + // Check for possible direct uses. + switch (Seq) { + case S_CanRelease: + if (CanUse(Inst, Ptr, PA, Class)) + S.SetSeq(S_Use); + break; + case S_Retain: + case S_Use: + case S_None: + break; + case S_Stop: + case S_Release: + case S_MovableRelease: + llvm_unreachable("top-down pointer in release state!"); + } + } + + return NestingDetected; +} + +bool +ObjCARCOpt::VisitTopDown(BasicBlock *BB, + DenseMap<const BasicBlock *, BBState> &BBStates, + DenseMap<Value *, RRInfo> &Releases) { + bool NestingDetected = false; + BBState &MyStates = BBStates[BB]; + + // Merge the states from each predecessor to compute the initial state + // for the current block. + BBState::edge_iterator PI(MyStates.pred_begin()), + PE(MyStates.pred_end()); + if (PI != PE) { + const BasicBlock *Pred = *PI; + DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred); + assert(I != BBStates.end()); + MyStates.InitFromPred(I->second); + ++PI; + for (; PI != PE; ++PI) { + Pred = *PI; + I = BBStates.find(Pred); + assert(I != BBStates.end()); + MyStates.MergePred(I->second); + } + } + + // Visit all the instructions, top-down. + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { + Instruction *Inst = I; + + DEBUG(dbgs() << "ObjCARCOpt::VisitTopDown: Visiting " << *Inst << "\n"); + + NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates); + } + + CheckForCFGHazards(BB, BBStates, MyStates); + return NestingDetected; +} + +static void +ComputePostOrders(Function &F, + SmallVectorImpl<BasicBlock *> &PostOrder, + SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder, + unsigned NoObjCARCExceptionsMDKind, + DenseMap<const BasicBlock *, BBState> &BBStates) { + /// The visited set, for doing DFS walks. + SmallPtrSet<BasicBlock *, 16> Visited; + + // Do DFS, computing the PostOrder. + SmallPtrSet<BasicBlock *, 16> OnStack; + SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack; + + // Functions always have exactly one entry block, and we don't have + // any other block that we treat like an entry block. + BasicBlock *EntryBB = &F.getEntryBlock(); + BBState &MyStates = BBStates[EntryBB]; + MyStates.SetAsEntry(); + TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back()); + SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI))); + Visited.insert(EntryBB); + OnStack.insert(EntryBB); + do { + dfs_next_succ: + BasicBlock *CurrBB = SuccStack.back().first; + TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back()); + succ_iterator SE(TI, false); + + while (SuccStack.back().second != SE) { + BasicBlock *SuccBB = *SuccStack.back().second++; + if (Visited.insert(SuccBB)) { + TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back()); + SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI))); + BBStates[CurrBB].addSucc(SuccBB); + BBState &SuccStates = BBStates[SuccBB]; + SuccStates.addPred(CurrBB); + OnStack.insert(SuccBB); + goto dfs_next_succ; + } + + if (!OnStack.count(SuccBB)) { + BBStates[CurrBB].addSucc(SuccBB); + BBStates[SuccBB].addPred(CurrBB); + } + } + OnStack.erase(CurrBB); + PostOrder.push_back(CurrBB); + SuccStack.pop_back(); + } while (!SuccStack.empty()); + + Visited.clear(); + + // Do reverse-CFG DFS, computing the reverse-CFG PostOrder. + // Functions may have many exits, and there also blocks which we treat + // as exits due to ignored edges. + SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack; + for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { + BasicBlock *ExitBB = I; + BBState &MyStates = BBStates[ExitBB]; + if (!MyStates.isExit()) + continue; + + MyStates.SetAsExit(); + + PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin())); + Visited.insert(ExitBB); + while (!PredStack.empty()) { + reverse_dfs_next_succ: + BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end(); + while (PredStack.back().second != PE) { + BasicBlock *BB = *PredStack.back().second++; + if (Visited.insert(BB)) { + PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin())); + goto reverse_dfs_next_succ; + } + } + ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first); + } + } +} + +// Visit the function both top-down and bottom-up. +bool +ObjCARCOpt::Visit(Function &F, + DenseMap<const BasicBlock *, BBState> &BBStates, + MapVector<Value *, RRInfo> &Retains, + DenseMap<Value *, RRInfo> &Releases) { + + // Use reverse-postorder traversals, because we magically know that loops + // will be well behaved, i.e. they won't repeatedly call retain on a single + // pointer without doing a release. We can't use the ReversePostOrderTraversal + // class here because we want the reverse-CFG postorder to consider each + // function exit point, and we want to ignore selected cycle edges. + SmallVector<BasicBlock *, 16> PostOrder; + SmallVector<BasicBlock *, 16> ReverseCFGPostOrder; + ComputePostOrders(F, PostOrder, ReverseCFGPostOrder, + NoObjCARCExceptionsMDKind, + BBStates); + + // Use reverse-postorder on the reverse CFG for bottom-up. + bool BottomUpNestingDetected = false; + for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I = + ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend(); + I != E; ++I) + BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains); + + // Use reverse-postorder for top-down. + bool TopDownNestingDetected = false; + for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I = + PostOrder.rbegin(), E = PostOrder.rend(); + I != E; ++I) + TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases); + + return TopDownNestingDetected && BottomUpNestingDetected; +} + +/// Move the calls in RetainsToMove and ReleasesToMove. +void ObjCARCOpt::MoveCalls(Value *Arg, + RRInfo &RetainsToMove, + RRInfo &ReleasesToMove, + MapVector<Value *, RRInfo> &Retains, + DenseMap<Value *, RRInfo> &Releases, + SmallVectorImpl<Instruction *> &DeadInsts, + Module *M) { + Type *ArgTy = Arg->getType(); + Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext())); + + // Insert the new retain and release calls. + for (SmallPtrSet<Instruction *, 2>::const_iterator + PI = ReleasesToMove.ReverseInsertPts.begin(), + PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) { + Instruction *InsertPt = *PI; + Value *MyArg = ArgTy == ParamTy ? Arg : + new BitCastInst(Arg, ParamTy, "", InsertPt); + CallInst *Call = + CallInst::Create(RetainsToMove.IsRetainBlock ? + getRetainBlockCallee(M) : getRetainCallee(M), + MyArg, "", InsertPt); + Call->setDoesNotThrow(); + if (RetainsToMove.IsRetainBlock) + Call->setMetadata(CopyOnEscapeMDKind, + MDNode::get(M->getContext(), ArrayRef<Value *>())); + else + Call->setTailCall(); + + DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Inserting new Release: " << *Call + << "\n" + " At insertion point: " << *InsertPt + << "\n"); + } + for (SmallPtrSet<Instruction *, 2>::const_iterator + PI = RetainsToMove.ReverseInsertPts.begin(), + PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) { + Instruction *InsertPt = *PI; + Value *MyArg = ArgTy == ParamTy ? Arg : + new BitCastInst(Arg, ParamTy, "", InsertPt); + CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg, + "", InsertPt); + // Attach a clang.imprecise_release metadata tag, if appropriate. + if (MDNode *M = ReleasesToMove.ReleaseMetadata) + Call->setMetadata(ImpreciseReleaseMDKind, M); + Call->setDoesNotThrow(); + if (ReleasesToMove.IsTailCallRelease) + Call->setTailCall(); + + DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Inserting new Retain: " << *Call + << "\n" + " At insertion point: " << *InsertPt + << "\n"); + } + + // Delete the original retain and release calls. + for (SmallPtrSet<Instruction *, 2>::const_iterator + AI = RetainsToMove.Calls.begin(), + AE = RetainsToMove.Calls.end(); AI != AE; ++AI) { + Instruction *OrigRetain = *AI; + Retains.blot(OrigRetain); + DeadInsts.push_back(OrigRetain); + DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Deleting retain: " << *OrigRetain << + "\n"); + } + for (SmallPtrSet<Instruction *, 2>::const_iterator + AI = ReleasesToMove.Calls.begin(), + AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) { + Instruction *OrigRelease = *AI; + Releases.erase(OrigRelease); + DeadInsts.push_back(OrigRelease); + DEBUG(dbgs() << "ObjCARCOpt::MoveCalls: Deleting release: " << *OrigRelease + << "\n"); + } +} + +bool +ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> + &BBStates, + MapVector<Value *, RRInfo> &Retains, + DenseMap<Value *, RRInfo> &Releases, + Module *M, + SmallVector<Instruction *, 4> &NewRetains, + SmallVector<Instruction *, 4> &NewReleases, + SmallVector<Instruction *, 8> &DeadInsts, + RRInfo &RetainsToMove, + RRInfo &ReleasesToMove, + Value *Arg, + bool KnownSafe, + bool &AnyPairsCompletelyEliminated) { + // If a pair happens in a region where it is known that the reference count + // is already incremented, we can similarly ignore possible decrements. + bool KnownSafeTD = true, KnownSafeBU = true; + + // Connect the dots between the top-down-collected RetainsToMove and + // bottom-up-collected ReleasesToMove to form sets of related calls. + // This is an iterative process so that we connect multiple releases + // to multiple retains if needed. + unsigned OldDelta = 0; + unsigned NewDelta = 0; + unsigned OldCount = 0; + unsigned NewCount = 0; + bool FirstRelease = true; + bool FirstRetain = true; + for (;;) { + for (SmallVectorImpl<Instruction *>::const_iterator + NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) { + Instruction *NewRetain = *NI; + MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain); + assert(It != Retains.end()); + const RRInfo &NewRetainRRI = It->second; + KnownSafeTD &= NewRetainRRI.KnownSafe; + for (SmallPtrSet<Instruction *, 2>::const_iterator + LI = NewRetainRRI.Calls.begin(), + LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) { + Instruction *NewRetainRelease = *LI; + DenseMap<Value *, RRInfo>::const_iterator Jt = + Releases.find(NewRetainRelease); + if (Jt == Releases.end()) + return false; + const RRInfo &NewRetainReleaseRRI = Jt->second; + assert(NewRetainReleaseRRI.Calls.count(NewRetain)); + if (ReleasesToMove.Calls.insert(NewRetainRelease)) { + OldDelta -= + BBStates[NewRetainRelease->getParent()].GetAllPathCount(); + + // Merge the ReleaseMetadata and IsTailCallRelease values. + if (FirstRelease) { + ReleasesToMove.ReleaseMetadata = + NewRetainReleaseRRI.ReleaseMetadata; + ReleasesToMove.IsTailCallRelease = + NewRetainReleaseRRI.IsTailCallRelease; + FirstRelease = false; + } else { + if (ReleasesToMove.ReleaseMetadata != + NewRetainReleaseRRI.ReleaseMetadata) + ReleasesToMove.ReleaseMetadata = 0; + if (ReleasesToMove.IsTailCallRelease != + NewRetainReleaseRRI.IsTailCallRelease) + ReleasesToMove.IsTailCallRelease = false; + } + + // Collect the optimal insertion points. + if (!KnownSafe) + for (SmallPtrSet<Instruction *, 2>::const_iterator + RI = NewRetainReleaseRRI.ReverseInsertPts.begin(), + RE = NewRetainReleaseRRI.ReverseInsertPts.end(); + RI != RE; ++RI) { + Instruction *RIP = *RI; + if (ReleasesToMove.ReverseInsertPts.insert(RIP)) + NewDelta -= BBStates[RIP->getParent()].GetAllPathCount(); + } + NewReleases.push_back(NewRetainRelease); + } + } + } + NewRetains.clear(); + if (NewReleases.empty()) break; + + // Back the other way. + for (SmallVectorImpl<Instruction *>::const_iterator + NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) { + Instruction *NewRelease = *NI; + DenseMap<Value *, RRInfo>::const_iterator It = + Releases.find(NewRelease); + assert(It != Releases.end()); + const RRInfo &NewReleaseRRI = It->second; + KnownSafeBU &= NewReleaseRRI.KnownSafe; + for (SmallPtrSet<Instruction *, 2>::const_iterator + LI = NewReleaseRRI.Calls.begin(), + LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) { + Instruction *NewReleaseRetain = *LI; + MapVector<Value *, RRInfo>::const_iterator Jt = + Retains.find(NewReleaseRetain); + if (Jt == Retains.end()) + return false; + const RRInfo &NewReleaseRetainRRI = Jt->second; + assert(NewReleaseRetainRRI.Calls.count(NewRelease)); + if (RetainsToMove.Calls.insert(NewReleaseRetain)) { + unsigned PathCount = + BBStates[NewReleaseRetain->getParent()].GetAllPathCount(); + OldDelta += PathCount; + OldCount += PathCount; + + // Merge the IsRetainBlock values. + if (FirstRetain) { + RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock; + FirstRetain = false; + } else if (ReleasesToMove.IsRetainBlock != + NewReleaseRetainRRI.IsRetainBlock) + // It's not possible to merge the sequences if one uses + // objc_retain and the other uses objc_retainBlock. + return false; + + // Collect the optimal insertion points. + if (!KnownSafe) + for (SmallPtrSet<Instruction *, 2>::const_iterator + RI = NewReleaseRetainRRI.ReverseInsertPts.begin(), + RE = NewReleaseRetainRRI.ReverseInsertPts.end(); + RI != RE; ++RI) { + Instruction *RIP = *RI; + if (RetainsToMove.ReverseInsertPts.insert(RIP)) { + PathCount = BBStates[RIP->getParent()].GetAllPathCount(); + NewDelta += PathCount; + NewCount += PathCount; + } + } + NewRetains.push_back(NewReleaseRetain); + } + } + } + NewReleases.clear(); + if (NewRetains.empty()) break; + } + + // If the pointer is known incremented or nested, we can safely delete the + // pair regardless of what's between them. + if (KnownSafeTD || KnownSafeBU) { + RetainsToMove.ReverseInsertPts.clear(); + ReleasesToMove.ReverseInsertPts.clear(); + NewCount = 0; + } else { + // Determine whether the new insertion points we computed preserve the + // balance of retain and release calls through the program. + // TODO: If the fully aggressive solution isn't valid, try to find a + // less aggressive solution which is. + if (NewDelta != 0) + return false; + } + + // Determine whether the original call points are balanced in the retain and + // release calls through the program. If not, conservatively don't touch + // them. + // TODO: It's theoretically possible to do code motion in this case, as + // long as the existing imbalances are maintained. + if (OldDelta != 0) + return false; + + Changed = true; + assert(OldCount != 0 && "Unreachable code?"); + NumRRs += OldCount - NewCount; + // Set to true if we completely removed any RR pairs. + AnyPairsCompletelyEliminated = NewCount == 0; + + // We can move calls! + return true; +} + +/// Identify pairings between the retains and releases, and delete and/or move +/// them. +bool +ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState> + &BBStates, + MapVector<Value *, RRInfo> &Retains, + DenseMap<Value *, RRInfo> &Releases, + Module *M) { + bool AnyPairsCompletelyEliminated = false; + RRInfo RetainsToMove; + RRInfo ReleasesToMove; + SmallVector<Instruction *, 4> NewRetains; + SmallVector<Instruction *, 4> NewReleases; + SmallVector<Instruction *, 8> DeadInsts; + + // Visit each retain. + for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(), + E = Retains.end(); I != E; ++I) { + Value *V = I->first; + if (!V) continue; // blotted + + Instruction *Retain = cast<Instruction>(V); + + DEBUG(dbgs() << "ObjCARCOpt::PerformCodePlacement: Visiting: " << *Retain + << "\n"); + + Value *Arg = GetObjCArg(Retain); + + // If the object being released is in static or stack storage, we know it's + // not being managed by ObjC reference counting, so we can delete pairs + // regardless of what possible decrements or uses lie between them. + bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg); + + // A constant pointer can't be pointing to an object on the heap. It may + // be reference-counted, but it won't be deleted. + if (const LoadInst *LI = dyn_cast<LoadInst>(Arg)) + if (const GlobalVariable *GV = + dyn_cast<GlobalVariable>( + StripPointerCastsAndObjCCalls(LI->getPointerOperand()))) + if (GV->isConstant()) + KnownSafe = true; + + // Connect the dots between the top-down-collected RetainsToMove and + // bottom-up-collected ReleasesToMove to form sets of related calls. + NewRetains.push_back(Retain); + bool PerformMoveCalls = + ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains, + NewReleases, DeadInsts, RetainsToMove, + ReleasesToMove, Arg, KnownSafe, + AnyPairsCompletelyEliminated); + + if (PerformMoveCalls) { + // Ok, everything checks out and we're all set. Let's move/delete some + // code! + MoveCalls(Arg, RetainsToMove, ReleasesToMove, + Retains, Releases, DeadInsts, M); + } + + // Clean up state for next retain. + NewReleases.clear(); + NewRetains.clear(); + RetainsToMove.clear(); + ReleasesToMove.clear(); + } + + // Now that we're done moving everything, we can delete the newly dead + // instructions, as we no longer need them as insert points. + while (!DeadInsts.empty()) + EraseInstruction(DeadInsts.pop_back_val()); + + return AnyPairsCompletelyEliminated; +} + +/// Weak pointer optimizations. +void ObjCARCOpt::OptimizeWeakCalls(Function &F) { + // First, do memdep-style RLE and S2L optimizations. We can't use memdep + // itself because it uses AliasAnalysis and we need to do provenance + // queries instead. + for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { + Instruction *Inst = &*I++; + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Visiting: " << *Inst << + "\n"); + + InstructionClass Class = GetBasicInstructionClass(Inst); + if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained) + continue; + + // Delete objc_loadWeak calls with no users. + if (Class == IC_LoadWeak && Inst->use_empty()) { + Inst->eraseFromParent(); + continue; + } + + // TODO: For now, just look for an earlier available version of this value + // within the same block. Theoretically, we could do memdep-style non-local + // analysis too, but that would want caching. A better approach would be to + // use the technique that EarlyCSE uses. + inst_iterator Current = llvm::prior(I); + BasicBlock *CurrentBB = Current.getBasicBlockIterator(); + for (BasicBlock::iterator B = CurrentBB->begin(), + J = Current.getInstructionIterator(); + J != B; --J) { + Instruction *EarlierInst = &*llvm::prior(J); + InstructionClass EarlierClass = GetInstructionClass(EarlierInst); + switch (EarlierClass) { + case IC_LoadWeak: + case IC_LoadWeakRetained: { + // If this is loading from the same pointer, replace this load's value + // with that one. + CallInst *Call = cast<CallInst>(Inst); + CallInst *EarlierCall = cast<CallInst>(EarlierInst); + Value *Arg = Call->getArgOperand(0); + Value *EarlierArg = EarlierCall->getArgOperand(0); + switch (PA.getAA()->alias(Arg, EarlierArg)) { + case AliasAnalysis::MustAlias: + Changed = true; + // If the load has a builtin retain, insert a plain retain for it. + if (Class == IC_LoadWeakRetained) { + CallInst *CI = + CallInst::Create(getRetainCallee(F.getParent()), EarlierCall, + "", Call); + CI->setTailCall(); + } + // Zap the fully redundant load. + Call->replaceAllUsesWith(EarlierCall); + Call->eraseFromParent(); + goto clobbered; + case AliasAnalysis::MayAlias: + case AliasAnalysis::PartialAlias: + goto clobbered; + case AliasAnalysis::NoAlias: + break; + } + break; + } + case IC_StoreWeak: + case IC_InitWeak: { + // If this is storing to the same pointer and has the same size etc. + // replace this load's value with the stored value. + CallInst *Call = cast<CallInst>(Inst); + CallInst *EarlierCall = cast<CallInst>(EarlierInst); + Value *Arg = Call->getArgOperand(0); + Value *EarlierArg = EarlierCall->getArgOperand(0); + switch (PA.getAA()->alias(Arg, EarlierArg)) { + case AliasAnalysis::MustAlias: + Changed = true; + // If the load has a builtin retain, insert a plain retain for it. + if (Class == IC_LoadWeakRetained) { + CallInst *CI = + CallInst::Create(getRetainCallee(F.getParent()), EarlierCall, + "", Call); + CI->setTailCall(); + } + // Zap the fully redundant load. + Call->replaceAllUsesWith(EarlierCall->getArgOperand(1)); + Call->eraseFromParent(); + goto clobbered; + case AliasAnalysis::MayAlias: + case AliasAnalysis::PartialAlias: + goto clobbered; + case AliasAnalysis::NoAlias: + break; + } + break; + } + case IC_MoveWeak: + case IC_CopyWeak: + // TOOD: Grab the copied value. + goto clobbered; + case IC_AutoreleasepoolPush: + case IC_None: + case IC_User: + // Weak pointers are only modified through the weak entry points + // (and arbitrary calls, which could call the weak entry points). + break; + default: + // Anything else could modify the weak pointer. + goto clobbered; + } + } + clobbered:; + } + + // Then, for each destroyWeak with an alloca operand, check to see if + // the alloca and all its users can be zapped. + for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) { + Instruction *Inst = &*I++; + InstructionClass Class = GetBasicInstructionClass(Inst); + if (Class != IC_DestroyWeak) + continue; + + CallInst *Call = cast<CallInst>(Inst); + Value *Arg = Call->getArgOperand(0); + if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) { + for (Value::use_iterator UI = Alloca->use_begin(), + UE = Alloca->use_end(); UI != UE; ++UI) { + const Instruction *UserInst = cast<Instruction>(*UI); + switch (GetBasicInstructionClass(UserInst)) { + case IC_InitWeak: + case IC_StoreWeak: + case IC_DestroyWeak: + continue; + default: + goto done; + } + } + Changed = true; + for (Value::use_iterator UI = Alloca->use_begin(), + UE = Alloca->use_end(); UI != UE; ) { + CallInst *UserInst = cast<CallInst>(*UI++); + switch (GetBasicInstructionClass(UserInst)) { + case IC_InitWeak: + case IC_StoreWeak: + // These functions return their second argument. + UserInst->replaceAllUsesWith(UserInst->getArgOperand(1)); + break; + case IC_DestroyWeak: + // No return value. + break; + default: + llvm_unreachable("alloca really is used!"); + } + UserInst->eraseFromParent(); + } + Alloca->eraseFromParent(); + done:; + } + } + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeWeakCalls: Finished List.\n\n"); + +} + +/// Identify program paths which execute sequences of retains and releases which +/// can be eliminated. +bool ObjCARCOpt::OptimizeSequences(Function &F) { + /// Releases, Retains - These are used to store the results of the main flow + /// analysis. These use Value* as the key instead of Instruction* so that the + /// map stays valid when we get around to rewriting code and calls get + /// replaced by arguments. + DenseMap<Value *, RRInfo> Releases; + MapVector<Value *, RRInfo> Retains; + + /// This is used during the traversal of the function to track the + /// states for each identified object at each block. + DenseMap<const BasicBlock *, BBState> BBStates; + + // Analyze the CFG of the function, and all instructions. + bool NestingDetected = Visit(F, BBStates, Retains, Releases); + + // Transform. + return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) && + NestingDetected; +} + +/// Look for this pattern: +/// \code +/// %call = call i8* @something(...) +/// %2 = call i8* @objc_retain(i8* %call) +/// %3 = call i8* @objc_autorelease(i8* %2) +/// ret i8* %3 +/// \endcode +/// And delete the retain and autorelease. +/// +/// Otherwise if it's just this: +/// \code +/// %3 = call i8* @objc_autorelease(i8* %2) +/// ret i8* %3 +/// \endcode +/// convert the autorelease to autoreleaseRV. +void ObjCARCOpt::OptimizeReturns(Function &F) { + if (!F.getReturnType()->isPointerTy()) + return; + + SmallPtrSet<Instruction *, 4> DependingInstructions; + SmallPtrSet<const BasicBlock *, 4> Visited; + for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { + BasicBlock *BB = FI; + ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back()); + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Visiting: " << *Ret << "\n"); + + if (!Ret) continue; + + const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0)); + FindDependencies(NeedsPositiveRetainCount, Arg, + BB, Ret, DependingInstructions, Visited, PA); + if (DependingInstructions.size() != 1) + goto next_block; + + { + CallInst *Autorelease = + dyn_cast_or_null<CallInst>(*DependingInstructions.begin()); + if (!Autorelease) + goto next_block; + InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease); + if (!IsAutorelease(AutoreleaseClass)) + goto next_block; + if (GetObjCArg(Autorelease) != Arg) + goto next_block; + + DependingInstructions.clear(); + Visited.clear(); + + // Check that there is nothing that can affect the reference + // count between the autorelease and the retain. + FindDependencies(CanChangeRetainCount, Arg, + BB, Autorelease, DependingInstructions, Visited, PA); + if (DependingInstructions.size() != 1) + goto next_block; + + { + CallInst *Retain = + dyn_cast_or_null<CallInst>(*DependingInstructions.begin()); + + // Check that we found a retain with the same argument. + if (!Retain || + !IsRetain(GetBasicInstructionClass(Retain)) || + GetObjCArg(Retain) != Arg) + goto next_block; + + DependingInstructions.clear(); + Visited.clear(); + + // Convert the autorelease to an autoreleaseRV, since it's + // returning the value. + if (AutoreleaseClass == IC_Autorelease) { + DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Converting autorelease " + "=> autoreleaseRV since it's returning a value.\n" + " In: " << *Autorelease + << "\n"); + Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent())); + DEBUG(dbgs() << " Out: " << *Autorelease + << "\n"); + Autorelease->setTailCall(); // Always tail call autoreleaseRV. + AutoreleaseClass = IC_AutoreleaseRV; + } + + // Check that there is nothing that can affect the reference + // count between the retain and the call. + // Note that Retain need not be in BB. + FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain, + DependingInstructions, Visited, PA); + if (DependingInstructions.size() != 1) + goto next_block; + + { + CallInst *Call = + dyn_cast_or_null<CallInst>(*DependingInstructions.begin()); + + // Check that the pointer is the return value of the call. + if (!Call || Arg != Call) + goto next_block; + + // Check that the call is a regular call. + InstructionClass Class = GetBasicInstructionClass(Call); + if (Class != IC_CallOrUser && Class != IC_Call) + goto next_block; + + // If so, we can zap the retain and autorelease. + Changed = true; + ++NumRets; + DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Erasing: " << *Retain + << "\n Erasing: " + << *Autorelease << "\n"); + EraseInstruction(Retain); + EraseInstruction(Autorelease); + } + } + } + + next_block: + DependingInstructions.clear(); + Visited.clear(); + } + + DEBUG(dbgs() << "ObjCARCOpt::OptimizeReturns: Finished List.\n\n"); + +} + +bool ObjCARCOpt::doInitialization(Module &M) { + if (!EnableARCOpts) + return false; + + // If nothing in the Module uses ARC, don't do anything. + Run = ModuleHasARC(M); + if (!Run) + return false; + + // Identify the imprecise release metadata kind. + ImpreciseReleaseMDKind = + M.getContext().getMDKindID("clang.imprecise_release"); + CopyOnEscapeMDKind = + M.getContext().getMDKindID("clang.arc.copy_on_escape"); + NoObjCARCExceptionsMDKind = + M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions"); + + // Intuitively, objc_retain and others are nocapture, however in practice + // they are not, because they return their argument value. And objc_release + // calls finalizers which can have arbitrary side effects. + + // These are initialized lazily. + RetainRVCallee = 0; + AutoreleaseRVCallee = 0; + ReleaseCallee = 0; + RetainCallee = 0; + RetainBlockCallee = 0; + AutoreleaseCallee = 0; + + return false; +} + +bool ObjCARCOpt::runOnFunction(Function &F) { + if (!EnableARCOpts) + return false; + + // If nothing in the Module uses ARC, don't do anything. + if (!Run) + return false; + + Changed = false; + + DEBUG(dbgs() << "ObjCARCOpt: Visiting Function: " << F.getName() << "\n"); + + PA.setAA(&getAnalysis<AliasAnalysis>()); + + // This pass performs several distinct transformations. As a compile-time aid + // when compiling code that isn't ObjC, skip these if the relevant ObjC + // library functions aren't declared. + + // Preliminary optimizations. This also computs UsedInThisFunction. + OptimizeIndividualCalls(F); + + // Optimizations for weak pointers. + if (UsedInThisFunction & ((1 << IC_LoadWeak) | + (1 << IC_LoadWeakRetained) | + (1 << IC_StoreWeak) | + (1 << IC_InitWeak) | + (1 << IC_CopyWeak) | + (1 << IC_MoveWeak) | + (1 << IC_DestroyWeak))) + OptimizeWeakCalls(F); + + // Optimizations for retain+release pairs. + if (UsedInThisFunction & ((1 << IC_Retain) | + (1 << IC_RetainRV) | + (1 << IC_RetainBlock))) + if (UsedInThisFunction & (1 << IC_Release)) + // Run OptimizeSequences until it either stops making changes or + // no retain+release pair nesting is detected. + while (OptimizeSequences(F)) {} + + // Optimizations if objc_autorelease is used. + if (UsedInThisFunction & ((1 << IC_Autorelease) | + (1 << IC_AutoreleaseRV))) + OptimizeReturns(F); + + DEBUG(dbgs() << "\n"); + + return Changed; +} + +void ObjCARCOpt::releaseMemory() { + PA.clear(); +} + +/// @} +/// |