diff options
author | Chris Lattner <sabre@nondot.org> | 2011-07-18 04:54:35 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2011-07-18 04:54:35 +0000 |
commit | db125cfaf57cc83e7dd7453de2d509bc8efd0e5e (patch) | |
tree | a163ac0f83da7be3f9675a122a6144b12418be09 /lib/Transforms/InstCombine/InstCombineCasts.cpp | |
parent | 4b3d5469fb7c25504fa20dc65640f02d79675d48 (diff) |
land David Blaikie's patch to de-constify Type, with a few tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135375 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstCombineCasts.cpp | 78 |
1 files changed, 39 insertions, 39 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineCasts.cpp b/lib/Transforms/InstCombine/InstCombineCasts.cpp index 82c734e0b8..f99e457482 100644 --- a/lib/Transforms/InstCombine/InstCombineCasts.cpp +++ b/lib/Transforms/InstCombine/InstCombineCasts.cpp @@ -79,14 +79,14 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, // This requires TargetData to get the alloca alignment and size information. if (!TD) return 0; - const PointerType *PTy = cast<PointerType>(CI.getType()); + PointerType *PTy = cast<PointerType>(CI.getType()); BuilderTy AllocaBuilder(*Builder); AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); // Get the type really allocated and the type casted to. - const Type *AllocElTy = AI.getAllocatedType(); - const Type *CastElTy = PTy->getElementType(); + Type *AllocElTy = AI.getAllocatedType(); + Type *CastElTy = PTy->getElementType(); if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); @@ -151,7 +151,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, /// EvaluateInDifferentType - Given an expression that /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually /// insert the code to evaluate the expression. -Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, +Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned) { if (Constant *C = dyn_cast<Constant>(V)) { C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); @@ -229,12 +229,12 @@ static Instruction::CastOps isEliminableCastPair( const CastInst *CI, ///< The first cast instruction unsigned opcode, ///< The opcode of the second cast instruction - const Type *DstTy, ///< The target type for the second cast instruction + Type *DstTy, ///< The target type for the second cast instruction TargetData *TD ///< The target data for pointer size ) { - const Type *SrcTy = CI->getOperand(0)->getType(); // A from above - const Type *MidTy = CI->getType(); // B from above + Type *SrcTy = CI->getOperand(0)->getType(); // A from above + Type *MidTy = CI->getType(); // B from above // Get the opcodes of the two Cast instructions Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); @@ -260,7 +260,7 @@ isEliminableCastPair( /// the cast can be eliminated by some other simple transformation, we prefer /// to do the simplification first. bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, - const Type *Ty) { + Type *Ty) { // Noop casts and casts of constants should be eliminated trivially. if (V->getType() == Ty || isa<Constant>(V)) return false; @@ -324,7 +324,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { /// /// This function works on both vectors and scalars. /// -static bool CanEvaluateTruncated(Value *V, const Type *Ty) { +static bool CanEvaluateTruncated(Value *V, Type *Ty) { // We can always evaluate constants in another type. if (isa<Constant>(V)) return true; @@ -332,7 +332,7 @@ static bool CanEvaluateTruncated(Value *V, const Type *Ty) { Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; - const Type *OrigTy = V->getType(); + Type *OrigTy = V->getType(); // If this is an extension from the dest type, we can eliminate it, even if it // has multiple uses. @@ -435,7 +435,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { return &CI; Value *Src = CI.getOperand(0); - const Type *DestTy = CI.getType(), *SrcTy = Src->getType(); + Type *DestTy = CI.getType(), *SrcTy = Src->getType(); // Attempt to truncate the entire input expression tree to the destination // type. Only do this if the dest type is a simple type, don't convert the @@ -586,7 +586,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, // It is also profitable to transform icmp eq into not(xor(A, B)) because that // may lead to additional simplifications. if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { - if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { + if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { uint32_t BitWidth = ITy->getBitWidth(); Value *LHS = ICI->getOperand(0); Value *RHS = ICI->getOperand(1); @@ -644,7 +644,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, /// clear the top bits anyway, doing this has no extra cost. /// /// This function works on both vectors and scalars. -static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) { +static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { BitsToClear = 0; if (isa<Constant>(V)) return true; @@ -758,7 +758,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { return &CI; Value *Src = CI.getOperand(0); - const Type *SrcTy = Src->getType(), *DestTy = CI.getType(); + Type *SrcTy = Src->getType(), *DestTy = CI.getType(); // Attempt to extend the entire input expression tree to the destination // type. Only do this if the dest type is a simple type, don't convert the @@ -965,10 +965,10 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { } // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed. - if (const VectorType *VTy = dyn_cast<VectorType>(CI.getType())) { + if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) { if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) && Op0->getType() == CI.getType()) { - const Type *EltTy = VTy->getElementType(); + Type *EltTy = VTy->getElementType(); // splat the shift constant to a constant vector. Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1); @@ -988,7 +988,7 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { /// /// This function works on both vectors and scalars. /// -static bool CanEvaluateSExtd(Value *V, const Type *Ty) { +static bool CanEvaluateSExtd(Value *V, Type *Ty) { assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && "Can't sign extend type to a smaller type"); // If this is a constant, it can be trivially promoted. @@ -1063,7 +1063,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { return &CI; Value *Src = CI.getOperand(0); - const Type *SrcTy = Src->getType(), *DestTy = CI.getType(); + Type *SrcTy = Src->getType(), *DestTy = CI.getType(); // Attempt to extend the entire input expression tree to the destination // type. Only do this if the dest type is a simple type, don't convert the @@ -1192,7 +1192,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: - const Type *SrcTy = OpI->getType(); + Type *SrcTy = OpI->getType(); Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); if (LHSTrunc->getType() != SrcTy && @@ -1351,7 +1351,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { // Get the base pointer input of the bitcast, and the type it points to. Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); - const Type *GEPIdxTy = + Type *GEPIdxTy = cast<PointerType>(OrigBase->getType())->getElementType(); SmallVector<Value*, 8> NewIndices; if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) { @@ -1402,12 +1402,12 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { /// replace it with a shuffle (and vector/vector bitcast) if possible. /// /// The source and destination vector types may have different element types. -static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy, +static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, InstCombiner &IC) { // We can only do this optimization if the output is a multiple of the input // element size, or the input is a multiple of the output element size. // Convert the input type to have the same element type as the output. - const VectorType *SrcTy = cast<VectorType>(InVal->getType()); + VectorType *SrcTy = cast<VectorType>(InVal->getType()); if (SrcTy->getElementType() != DestTy->getElementType()) { // The input types don't need to be identical, but for now they must be the @@ -1427,7 +1427,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy, // size of the input. SmallVector<Constant*, 16> ShuffleMask; Value *V2; - const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext()); + IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext()); if (SrcTy->getNumElements() > DestTy->getNumElements()) { // If we're shrinking the number of elements, just shuffle in the low @@ -1453,11 +1453,11 @@ static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy, return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask)); } -static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) { +static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { return Value % Ty->getPrimitiveSizeInBits() == 0; } -static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) { +static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { return Value / Ty->getPrimitiveSizeInBits(); } @@ -1471,7 +1471,7 @@ static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) { /// filling in Elements with the elements found here. static bool CollectInsertionElements(Value *V, unsigned ElementIndex, SmallVectorImpl<Value*> &Elements, - const Type *VecEltTy) { + Type *VecEltTy) { // Undef values never contribute useful bits to the result. if (isa<UndefValue>(V)) return true; @@ -1508,7 +1508,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), C->getType()->getPrimitiveSizeInBits())); unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); - const Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); + Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); for (unsigned i = 0; i != NumElts; ++i) { Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), @@ -1572,7 +1572,7 @@ static bool CollectInsertionElements(Value *V, unsigned ElementIndex, /// Into two insertelements that do "buildvector{%inc, %inc5}". static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, InstCombiner &IC) { - const VectorType *DestVecTy = cast<VectorType>(CI.getType()); + VectorType *DestVecTy = cast<VectorType>(CI.getType()); Value *IntInput = CI.getOperand(0); SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); @@ -1599,7 +1599,7 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, /// bitcast. The various long double bitcasts can't get in here. static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ Value *Src = CI.getOperand(0); - const Type *DestTy = CI.getType(); + Type *DestTy = CI.getType(); // If this is a bitcast from int to float, check to see if the int is an // extraction from a vector. @@ -1607,7 +1607,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ // bitcast(trunc(bitcast(somevector))) if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && isa<VectorType>(VecInput->getType())) { - const VectorType *VecTy = cast<VectorType>(VecInput->getType()); + VectorType *VecTy = cast<VectorType>(VecInput->getType()); unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { @@ -1628,7 +1628,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), m_ConstantInt(ShAmt)))) && isa<VectorType>(VecInput->getType())) { - const VectorType *VecTy = cast<VectorType>(VecInput->getType()); + VectorType *VecTy = cast<VectorType>(VecInput->getType()); unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && ShAmt->getZExtValue() % DestWidth == 0) { @@ -1651,18 +1651,18 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { // If the operands are integer typed then apply the integer transforms, // otherwise just apply the common ones. Value *Src = CI.getOperand(0); - const Type *SrcTy = Src->getType(); - const Type *DestTy = CI.getType(); + Type *SrcTy = Src->getType(); + Type *DestTy = CI.getType(); // Get rid of casts from one type to the same type. These are useless and can // be replaced by the operand. if (DestTy == Src->getType()) return ReplaceInstUsesWith(CI, Src); - if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { - const PointerType *SrcPTy = cast<PointerType>(SrcTy); - const Type *DstElTy = DstPTy->getElementType(); - const Type *SrcElTy = SrcPTy->getElementType(); + if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { + PointerType *SrcPTy = cast<PointerType>(SrcTy); + Type *DstElTy = DstPTy->getElementType(); + Type *SrcElTy = SrcPTy->getElementType(); // If the address spaces don't match, don't eliminate the bitcast, which is // required for changing types. @@ -1702,7 +1702,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) return I; - if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { + if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); return InsertElementInst::Create(UndefValue::get(DestTy), Elem, @@ -1731,7 +1731,7 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { } } - if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { + if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) { Value *Elem = Builder->CreateExtractElement(Src, |