aboutsummaryrefslogtreecommitdiff
path: root/lib/Target
diff options
context:
space:
mode:
authorEric Christopher <echristo@apple.com>2012-03-23 05:50:46 +0000
committerEric Christopher <echristo@apple.com>2012-03-23 05:50:46 +0000
commita443e5b1f1013612950fc3c9ebfafca60a1c20df (patch)
treec545f5c40915d4440006058147e804f9accfbf19 /lib/Target
parentfe3956ffa48eabad73e96f45df5cb7d4f03c318e (diff)
Remove the C backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153307 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target')
-rw-r--r--lib/Target/CBackend/CBackend.cpp3616
-rw-r--r--lib/Target/CBackend/CMakeLists.txt5
-rw-r--r--lib/Target/CBackend/CTargetMachine.h42
-rw-r--r--lib/Target/CBackend/LLVMBuild.txt31
-rw-r--r--lib/Target/CBackend/Makefile16
-rw-r--r--lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp21
-rw-r--r--lib/Target/CBackend/TargetInfo/CMakeLists.txt5
-rw-r--r--lib/Target/CBackend/TargetInfo/LLVMBuild.txt23
-rw-r--r--lib/Target/CBackend/TargetInfo/Makefile15
-rw-r--r--lib/Target/LLVMBuild.txt2
10 files changed, 1 insertions, 3775 deletions
diff --git a/lib/Target/CBackend/CBackend.cpp b/lib/Target/CBackend/CBackend.cpp
deleted file mode 100644
index b6b209eb06..0000000000
--- a/lib/Target/CBackend/CBackend.cpp
+++ /dev/null
@@ -1,3616 +0,0 @@
-//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This library converts LLVM code to C code, compilable by GCC and other C
-// compilers.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CTargetMachine.h"
-#include "llvm/CallingConv.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Module.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/PassManager.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/InlineAsm.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/Analysis/ConstantsScanner.h"
-#include "llvm/Analysis/FindUsedTypes.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/Target/Mangler.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/MC/MCAsmInfo.h"
-#include "llvm/MC/MCContext.h"
-#include "llvm/MC/MCInstrInfo.h"
-#include "llvm/MC/MCObjectFileInfo.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/MC/MCSubtargetInfo.h"
-#include "llvm/MC/MCSymbol.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/TargetRegistry.h"
-#include "llvm/Support/Host.h"
-#include "llvm/Config/config.h"
-#include <algorithm>
-// Some ms header decided to define setjmp as _setjmp, undo this for this file.
-#ifdef _MSC_VER
-#undef setjmp
-#endif
-using namespace llvm;
-
-extern "C" void LLVMInitializeCBackendTarget() {
- // Register the target.
- RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
-}
-
-namespace {
- class CBEMCAsmInfo : public MCAsmInfo {
- public:
- CBEMCAsmInfo() {
- GlobalPrefix = "";
- PrivateGlobalPrefix = "";
- }
- };
-
- /// CWriter - This class is the main chunk of code that converts an LLVM
- /// module to a C translation unit.
- class CWriter : public FunctionPass, public InstVisitor<CWriter> {
- formatted_raw_ostream &Out;
- IntrinsicLowering *IL;
- Mangler *Mang;
- LoopInfo *LI;
- const Module *TheModule;
- const MCAsmInfo* TAsm;
- const MCRegisterInfo *MRI;
- const MCObjectFileInfo *MOFI;
- MCContext *TCtx;
- const TargetData* TD;
-
- std::map<const ConstantFP *, unsigned> FPConstantMap;
- std::set<Function*> intrinsicPrototypesAlreadyGenerated;
- std::set<const Argument*> ByValParams;
- unsigned FPCounter;
- unsigned OpaqueCounter;
- DenseMap<const Value*, unsigned> AnonValueNumbers;
- unsigned NextAnonValueNumber;
-
- /// UnnamedStructIDs - This contains a unique ID for each struct that is
- /// either anonymous or has no name.
- DenseMap<StructType*, unsigned> UnnamedStructIDs;
-
- public:
- static char ID;
- explicit CWriter(formatted_raw_ostream &o)
- : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0),
- TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0),
- OpaqueCounter(0), NextAnonValueNumber(0) {
- initializeLoopInfoPass(*PassRegistry::getPassRegistry());
- FPCounter = 0;
- }
-
- virtual const char *getPassName() const { return "C backend"; }
-
- void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<LoopInfo>();
- AU.setPreservesAll();
- }
-
- virtual bool doInitialization(Module &M);
-
- bool runOnFunction(Function &F) {
- // Do not codegen any 'available_externally' functions at all, they have
- // definitions outside the translation unit.
- if (F.hasAvailableExternallyLinkage())
- return false;
-
- LI = &getAnalysis<LoopInfo>();
-
- // Get rid of intrinsics we can't handle.
- lowerIntrinsics(F);
-
- // Output all floating point constants that cannot be printed accurately.
- printFloatingPointConstants(F);
-
- printFunction(F);
- return false;
- }
-
- virtual bool doFinalization(Module &M) {
- // Free memory...
- delete IL;
- delete TD;
- delete Mang;
- delete TCtx;
- delete TAsm;
- delete MRI;
- delete MOFI;
- FPConstantMap.clear();
- ByValParams.clear();
- intrinsicPrototypesAlreadyGenerated.clear();
- UnnamedStructIDs.clear();
- return false;
- }
-
- raw_ostream &printType(raw_ostream &Out, Type *Ty,
- bool isSigned = false,
- const std::string &VariableName = "",
- bool IgnoreName = false,
- const AttrListPtr &PAL = AttrListPtr());
- raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty,
- bool isSigned,
- const std::string &NameSoFar = "");
-
- void printStructReturnPointerFunctionType(raw_ostream &Out,
- const AttrListPtr &PAL,
- PointerType *Ty);
-
- std::string getStructName(StructType *ST);
-
- /// writeOperandDeref - Print the result of dereferencing the specified
- /// operand with '*'. This is equivalent to printing '*' then using
- /// writeOperand, but avoids excess syntax in some cases.
- void writeOperandDeref(Value *Operand) {
- if (isAddressExposed(Operand)) {
- // Already something with an address exposed.
- writeOperandInternal(Operand);
- } else {
- Out << "*(";
- writeOperand(Operand);
- Out << ")";
- }
- }
-
- void writeOperand(Value *Operand, bool Static = false);
- void writeInstComputationInline(Instruction &I);
- void writeOperandInternal(Value *Operand, bool Static = false);
- void writeOperandWithCast(Value* Operand, unsigned Opcode);
- void writeOperandWithCast(Value* Operand, const ICmpInst &I);
- bool writeInstructionCast(const Instruction &I);
-
- void writeMemoryAccess(Value *Operand, Type *OperandType,
- bool IsVolatile, unsigned Alignment);
-
- private :
- std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
-
- void lowerIntrinsics(Function &F);
- /// Prints the definition of the intrinsic function F. Supports the
- /// intrinsics which need to be explicitly defined in the CBackend.
- void printIntrinsicDefinition(const Function &F, raw_ostream &Out);
-
- void printModuleTypes();
- void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &);
- void printFloatingPointConstants(Function &F);
- void printFloatingPointConstants(const Constant *C);
- void printFunctionSignature(const Function *F, bool Prototype);
-
- void printFunction(Function &);
- void printBasicBlock(BasicBlock *BB);
- void printLoop(Loop *L);
-
- void printCast(unsigned opcode, Type *SrcTy, Type *DstTy);
- void printConstant(Constant *CPV, bool Static);
- void printConstantWithCast(Constant *CPV, unsigned Opcode);
- bool printConstExprCast(const ConstantExpr *CE, bool Static);
- void printConstantArray(ConstantArray *CPA, bool Static);
- void printConstantVector(ConstantVector *CV, bool Static);
- void printConstantDataSequential(ConstantDataSequential *CDS, bool Static);
-
-
- /// isAddressExposed - Return true if the specified value's name needs to
- /// have its address taken in order to get a C value of the correct type.
- /// This happens for global variables, byval parameters, and direct allocas.
- bool isAddressExposed(const Value *V) const {
- if (const Argument *A = dyn_cast<Argument>(V))
- return ByValParams.count(A);
- return isa<GlobalVariable>(V) || isDirectAlloca(V);
- }
-
- // isInlinableInst - Attempt to inline instructions into their uses to build
- // trees as much as possible. To do this, we have to consistently decide
- // what is acceptable to inline, so that variable declarations don't get
- // printed and an extra copy of the expr is not emitted.
- //
- static bool isInlinableInst(const Instruction &I) {
- // Always inline cmp instructions, even if they are shared by multiple
- // expressions. GCC generates horrible code if we don't.
- if (isa<CmpInst>(I))
- return true;
-
- // Must be an expression, must be used exactly once. If it is dead, we
- // emit it inline where it would go.
- if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
- isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
- isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
- isa<InsertValueInst>(I))
- // Don't inline a load across a store or other bad things!
- return false;
-
- // Must not be used in inline asm, extractelement, or shufflevector.
- if (I.hasOneUse()) {
- const Instruction &User = cast<Instruction>(*I.use_back());
- if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
- isa<ShuffleVectorInst>(User))
- return false;
- }
-
- // Only inline instruction it if it's use is in the same BB as the inst.
- return I.getParent() == cast<Instruction>(I.use_back())->getParent();
- }
-
- // isDirectAlloca - Define fixed sized allocas in the entry block as direct
- // variables which are accessed with the & operator. This causes GCC to
- // generate significantly better code than to emit alloca calls directly.
- //
- static const AllocaInst *isDirectAlloca(const Value *V) {
- const AllocaInst *AI = dyn_cast<AllocaInst>(V);
- if (!AI) return 0;
- if (AI->isArrayAllocation())
- return 0; // FIXME: we can also inline fixed size array allocas!
- if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
- return 0;
- return AI;
- }
-
- // isInlineAsm - Check if the instruction is a call to an inline asm chunk.
- static bool isInlineAsm(const Instruction& I) {
- if (const CallInst *CI = dyn_cast<CallInst>(&I))
- return isa<InlineAsm>(CI->getCalledValue());
- return false;
- }
-
- // Instruction visitation functions
- friend class InstVisitor<CWriter>;
-
- void visitReturnInst(ReturnInst &I);
- void visitBranchInst(BranchInst &I);
- void visitSwitchInst(SwitchInst &I);
- void visitIndirectBrInst(IndirectBrInst &I);
- void visitInvokeInst(InvokeInst &I) {
- llvm_unreachable("Lowerinvoke pass didn't work!");
- }
- void visitResumeInst(ResumeInst &I) {
- llvm_unreachable("DwarfEHPrepare pass didn't work!");
- }
- void visitUnreachableInst(UnreachableInst &I);
-
- void visitPHINode(PHINode &I);
- void visitBinaryOperator(Instruction &I);
- void visitICmpInst(ICmpInst &I);
- void visitFCmpInst(FCmpInst &I);
-
- void visitCastInst (CastInst &I);
- void visitSelectInst(SelectInst &I);
- void visitCallInst (CallInst &I);
- void visitInlineAsm(CallInst &I);
- bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
-
- void visitAllocaInst(AllocaInst &I);
- void visitLoadInst (LoadInst &I);
- void visitStoreInst (StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitVAArgInst (VAArgInst &I);
-
- void visitInsertElementInst(InsertElementInst &I);
- void visitExtractElementInst(ExtractElementInst &I);
- void visitShuffleVectorInst(ShuffleVectorInst &SVI);
-
- void visitInsertValueInst(InsertValueInst &I);
- void visitExtractValueInst(ExtractValueInst &I);
-
- void visitInstruction(Instruction &I) {
-#ifndef NDEBUG
- errs() << "C Writer does not know about " << I;
-#endif
- llvm_unreachable(0);
- }
-
- void outputLValue(Instruction *I) {
- Out << " " << GetValueName(I) << " = ";
- }
-
- bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
- void printPHICopiesForSuccessor(BasicBlock *CurBlock,
- BasicBlock *Successor, unsigned Indent);
- void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
- unsigned Indent);
- void printGEPExpression(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E, bool Static);
-
- std::string GetValueName(const Value *Operand);
- };
-}
-
-char CWriter::ID = 0;
-
-
-
-static std::string CBEMangle(const std::string &S) {
- std::string Result;
-
- for (unsigned i = 0, e = S.size(); i != e; ++i)
- if (isalnum(S[i]) || S[i] == '_') {
- Result += S[i];
- } else {
- Result += '_';
- Result += 'A'+(S[i]&15);
- Result += 'A'+((S[i]>>4)&15);
- Result += '_';
- }
- return Result;
-}
-
-std::string CWriter::getStructName(StructType *ST) {
- if (!ST->isLiteral() && !ST->getName().empty())
- return CBEMangle("l_"+ST->getName().str());
-
- return "l_unnamed_" + utostr(UnnamedStructIDs[ST]);
-}
-
-
-/// printStructReturnPointerFunctionType - This is like printType for a struct
-/// return type, except, instead of printing the type as void (*)(Struct*, ...)
-/// print it as "Struct (*)(...)", for struct return functions.
-void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
- const AttrListPtr &PAL,
- PointerType *TheTy) {
- FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
- std::string tstr;
- raw_string_ostream FunctionInnards(tstr);
- FunctionInnards << " (*) (";
- bool PrintedType = false;
-
- FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
- Type *RetTy = cast<PointerType>(*I)->getElementType();
- unsigned Idx = 1;
- for (++I, ++Idx; I != E; ++I, ++Idx) {
- if (PrintedType)
- FunctionInnards << ", ";
- Type *ArgTy = *I;
- if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
- assert(ArgTy->isPointerTy());
- ArgTy = cast<PointerType>(ArgTy)->getElementType();
- }
- printType(FunctionInnards, ArgTy,
- /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
- PrintedType = true;
- }
- if (FTy->isVarArg()) {
- if (!PrintedType)
- FunctionInnards << " int"; //dummy argument for empty vararg functs
- FunctionInnards << ", ...";
- } else if (!PrintedType) {
- FunctionInnards << "void";
- }
- FunctionInnards << ')';
- printType(Out, RetTy,
- /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
-}
-
-raw_ostream &
-CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned,
- const std::string &NameSoFar) {
- assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) &&
- "Invalid type for printSimpleType");
- switch (Ty->getTypeID()) {
- case Type::VoidTyID: return Out << "void " << NameSoFar;
- case Type::IntegerTyID: {
- unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
- if (NumBits == 1)
- return Out << "bool " << NameSoFar;
- else if (NumBits <= 8)
- return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
- else if (NumBits <= 16)
- return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
- else if (NumBits <= 32)
- return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
- else if (NumBits <= 64)
- return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
- else {
- assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
- return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
- }
- }
- case Type::FloatTyID: return Out << "float " << NameSoFar;
- case Type::DoubleTyID: return Out << "double " << NameSoFar;
- // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
- // present matches host 'long double'.
- case Type::X86_FP80TyID:
- case Type::PPC_FP128TyID:
- case Type::FP128TyID: return Out << "long double " << NameSoFar;
-
- case Type::X86_MMXTyID:
- return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned,
- " __attribute__((vector_size(64))) " + NameSoFar);
-
- case Type::VectorTyID: {
- VectorType *VTy = cast<VectorType>(Ty);
- return printSimpleType(Out, VTy->getElementType(), isSigned,
- " __attribute__((vector_size(" +
- utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
- }
-
- default:
-#ifndef NDEBUG
- errs() << "Unknown primitive type: " << *Ty << "\n";
-#endif
- llvm_unreachable(0);
- }
-}
-
-// Pass the Type* and the variable name and this prints out the variable
-// declaration.
-//
-raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty,
- bool isSigned, const std::string &NameSoFar,
- bool IgnoreName, const AttrListPtr &PAL) {
- if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) {
- printSimpleType(Out, Ty, isSigned, NameSoFar);
- return Out;
- }
-
- switch (Ty->getTypeID()) {
- case Type::FunctionTyID: {
- FunctionType *FTy = cast<FunctionType>(Ty);
- std::string tstr;
- raw_string_ostream FunctionInnards(tstr);
- FunctionInnards << " (" << NameSoFar << ") (";
- unsigned Idx = 1;
- for (FunctionType::param_iterator I = FTy->param_begin(),
- E = FTy->param_end(); I != E; ++I) {
- Type *ArgTy = *I;
- if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
- assert(ArgTy->isPointerTy());
- ArgTy = cast<PointerType>(ArgTy)->getElementType();
- }
- if (I != FTy->param_begin())
- FunctionInnards << ", ";
- printType(FunctionInnards, ArgTy,
- /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
- ++Idx;
- }
- if (FTy->isVarArg()) {
- if (!FTy->getNumParams())
- FunctionInnards << " int"; //dummy argument for empty vaarg functs
- FunctionInnards << ", ...";
- } else if (!FTy->getNumParams()) {
- FunctionInnards << "void";
- }
- FunctionInnards << ')';
- printType(Out, FTy->getReturnType(),
- /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
- return Out;
- }
- case Type::StructTyID: {
- StructType *STy = cast<StructType>(Ty);
-
- // Check to see if the type is named.
- if (!IgnoreName)
- return Out << getStructName(STy) << ' ' << NameSoFar;
-
- Out << NameSoFar + " {\n";
- unsigned Idx = 0;
- for (StructType::element_iterator I = STy->element_begin(),
- E = STy->element_end(); I != E; ++I) {
- Out << " ";
- printType(Out, *I, false, "field" + utostr(Idx++));
- Out << ";\n";
- }
- Out << '}';
- if (STy->isPacked())
- Out << " __attribute__ ((packed))";
- return Out;
- }
-
- case Type::PointerTyID: {
- PointerType *PTy = cast<PointerType>(Ty);
- std::string ptrName = "*" + NameSoFar;
-
- if (PTy->getElementType()->isArrayTy() ||
- PTy->getElementType()->isVectorTy())
- ptrName = "(" + ptrName + ")";
-
- if (!PAL.isEmpty())
- // Must be a function ptr cast!
- return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
- return printType(Out, PTy->getElementType(), false, ptrName);
- }
-
- case Type::ArrayTyID: {
- ArrayType *ATy = cast<ArrayType>(Ty);
- unsigned NumElements = ATy->getNumElements();
- if (NumElements == 0) NumElements = 1;
- // Arrays are wrapped in structs to allow them to have normal
- // value semantics (avoiding the array "decay").
- Out << NameSoFar << " { ";
- printType(Out, ATy->getElementType(), false,
- "array[" + utostr(NumElements) + "]");
- return Out << "; }";
- }
-
- default:
- llvm_unreachable("Unhandled case in getTypeProps!");
- }
-}
-
-void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
- Out << "{ ";
- printConstant(cast<Constant>(CPA->getOperand(0)), Static);
- for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
- Out << ", ";
- printConstant(cast<Constant>(CPA->getOperand(i)), Static);
- }
- Out << " }";
-}
-
-void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
- Out << "{ ";
- printConstant(cast<Constant>(CP->getOperand(0)), Static);
- for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
- Out << ", ";
- printConstant(cast<Constant>(CP->getOperand(i)), Static);
- }
- Out << " }";
-}
-
-void CWriter::printConstantDataSequential(ConstantDataSequential *CDS,
- bool Static) {
- // As a special case, print the array as a string if it is an array of
- // ubytes or an array of sbytes with positive values.
- //
- if (CDS->isCString()) {
- Out << '\"';
- // Keep track of whether the last number was a hexadecimal escape.
- bool LastWasHex = false;
-
- StringRef Bytes = CDS->getAsCString();
-
- // Do not include the last character, which we know is null
- for (unsigned i = 0, e = Bytes.size(); i != e; ++i) {
- unsigned char C = Bytes[i];
-
- // Print it out literally if it is a printable character. The only thing
- // to be careful about is when the last letter output was a hex escape
- // code, in which case we have to be careful not to print out hex digits
- // explicitly (the C compiler thinks it is a continuation of the previous
- // character, sheesh...)
- //
- if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
- LastWasHex = false;
- if (C == '"' || C == '\\')
- Out << "\\" << (char)C;
- else
- Out << (char)C;
- } else {
- LastWasHex = false;
- switch (C) {
- case '\n': Out << "\\n"; break;
- case '\t': Out << "\\t"; break;
- case '\r': Out << "\\r"; break;
- case '\v': Out << "\\v"; break;
- case '\a': Out << "\\a"; break;
- case '\"': Out << "\\\""; break;
- case '\'': Out << "\\\'"; break;
- default:
- Out << "\\x";
- Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
- Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
- LastWasHex = true;
- break;
- }
- }
- }
- Out << '\"';
- } else {
- Out << "{ ";
- printConstant(CDS->getElementAsConstant(0), Static);
- for (unsigned i = 1, e = CDS->getNumElements(); i != e; ++i) {
- Out << ", ";
- printConstant(CDS->getElementAsConstant(i), Static);
- }
- Out << " }";
- }
-}
-
-
-// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
-// textually as a double (rather than as a reference to a stack-allocated
-// variable). We decide this by converting CFP to a string and back into a
-// double, and then checking whether the conversion results in a bit-equal
-// double to the original value of CFP. This depends on us and the target C
-// compiler agreeing on the conversion process (which is pretty likely since we
-// only deal in IEEE FP).
-//
-static bool isFPCSafeToPrint(const ConstantFP *CFP) {
- bool ignored;
- // Do long doubles in hex for now.
- if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
- CFP->getType() != Type::getDoubleTy(CFP->getContext()))
- return false;
- APFloat APF = APFloat(CFP->getValueAPF()); // copy
- if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
- APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
-#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
- char Buffer[100];
- sprintf(Buffer, "%a", APF.convertToDouble());
- if (!strncmp(Buffer, "0x", 2) ||
- !strncmp(Buffer, "-0x", 3) ||
- !strncmp(Buffer, "+0x", 3))
- return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
- return false;
-#else
- std::string StrVal = ftostr(APF);
-
- while (StrVal[0] == ' ')
- StrVal.erase(StrVal.begin());
-
- // Check to make sure that the stringized number is not some string like "Inf"
- // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
- if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
- ((StrVal[0] == '-' || StrVal[0] == '+') &&
- (StrVal[1] >= '0' && StrVal[1] <= '9')))
- // Reparse stringized version!
- return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
- return false;
-#endif
-}
-
-/// Print out the casting for a cast operation. This does the double casting
-/// necessary for conversion to the destination type, if necessary.
-/// @brief Print a cast
-void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) {
- // Print the destination type cast
- switch (opc) {
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::IntToPtr:
- case Instruction::Trunc:
- case Instruction::BitCast:
- case Instruction::FPExt:
- case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
- Out << '(';
- printType(Out, DstTy);
- Out << ')';
- break;
- case Instruction::ZExt:
- case Instruction::PtrToInt:
- case Instruction::FPToUI: // For these, make sure we get an unsigned dest
- Out << '(';
- printSimpleType(Out, DstTy, false);
- Out << ')';
- break;
- case Instruction::SExt:
- case Instruction::FPToSI: // For these, make sure we get a signed dest
- Out << '(';
- printSimpleType(Out, DstTy, true);
- Out << ')';
- break;
- default:
- llvm_unreachable("Invalid cast opcode");
- }
-
- // Print the source type cast
- switch (opc) {
- case Instruction::UIToFP:
- case Instruction::ZExt:
- Out << '(';
- printSimpleType(Out, SrcTy, false);
- Out << ')';
- break;
- case Instruction::SIToFP:
- case Instruction::SExt:
- Out << '(';
- printSimpleType(Out, SrcTy, true);
- Out << ')';
- break;
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- // Avoid "cast to pointer from integer of different size" warnings
- Out << "(unsigned long)";
- break;
- case Instruction::Trunc:
- case Instruction::BitCast:
- case Instruction::FPExt:
- case Instruction::FPTrunc:
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- break; // These don't need a source cast.
- default:
- llvm_unreachable("Invalid cast opcode");
- }
-}
-
-// printConstant - The LLVM Constant to C Constant converter.
-void CWriter::printConstant(Constant *CPV, bool Static) {
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
- switch (CE->getOpcode()) {
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- Out << "(";
- printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
- if (CE->getOpcode() == Instruction::SExt &&
- CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
- // Make sure we really sext from bool here by subtracting from 0
- Out << "0-";
- }
- printConstant(CE->getOperand(0), Static);
- if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
- (CE->getOpcode() == Instruction::Trunc ||
- CE->getOpcode() == Instruction::FPToUI ||
- CE->getOpcode() == Instruction::FPToSI ||
- CE->getOpcode() == Instruction::PtrToInt)) {
- // Make sure we really truncate to bool here by anding with 1
- Out << "&1u";
- }
- Out << ')';
- return;
-
- case Instruction::GetElementPtr:
- Out << "(";
- printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
- gep_type_end(CPV), Static);
- Out << ")";
- return;
- case Instruction::Select:
- Out << '(';
- printConstant(CE->getOperand(0), Static);
- Out << '?';
- printConstant(CE->getOperand(1), Static);
- Out << ':';
- printConstant(CE->getOperand(2), Static);
- Out << ')';
- return;
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::ICmp:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- {
- Out << '(';
- bool NeedsClosingParens = printConstExprCast(CE, Static);
- printConstantWithCast(CE->getOperand(0), CE->getOpcode());
- switch (CE->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd: Out << " + "; break;
- case Instruction::Sub:
- case Instruction::FSub: Out << " - "; break;
- case Instruction::Mul:
- case Instruction::FMul: Out << " * "; break;
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem: Out << " % "; break;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv: Out << " / "; break;
- case Instruction::And: Out << " & "; break;
- case Instruction::Or: Out << " | "; break;
- case Instruction::Xor: Out << " ^ "; break;
- case Instruction::Shl: Out << " << "; break;
- case Instruction::LShr:
- case Instruction::AShr: Out << " >> "; break;
- case Instruction::ICmp:
- switch (CE->getPredicate()) {
- case ICmpInst::ICMP_EQ: Out << " == "; break;
- case ICmpInst::ICMP_NE: Out << " != "; break;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_ULT: Out << " < "; break;
- case ICmpInst::ICMP_SLE:
- case ICmpInst::ICMP_ULE: Out << " <= "; break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_UGT: Out << " > "; break;
- case ICmpInst::ICMP_SGE:
- case ICmpInst::ICMP_UGE: Out << " >= "; break;
- default: llvm_unreachable("Illegal ICmp predicate");
- }
- break;
- default: llvm_unreachable("Illegal opcode here!");
- }
- printConstantWithCast(CE->getOperand(1), CE->getOpcode());
- if (NeedsClosingParens)
- Out << "))";
- Out << ')';
- return;
- }
- case Instruction::FCmp: {
- Out << '(';
- bool NeedsClosingParens = printConstExprCast(CE, Static);
- if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
- Out << "0";
- else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
- Out << "1";
- else {
- const char* op = 0;
- switch (CE->getPredicate()) {
- default: llvm_unreachable("Illegal FCmp predicate");
- case FCmpInst::FCMP_ORD: op = "ord"; break;
- case FCmpInst::FCMP_UNO: op = "uno"; break;
- case FCmpInst::FCMP_UEQ: op = "ueq"; break;
- case FCmpInst::FCMP_UNE: op = "une"; break;
- case FCmpInst::FCMP_ULT: op = "ult"; break;
- case FCmpInst::FCMP_ULE: op = "ule"; break;
- case FCmpInst::FCMP_UGT: op = "ugt"; break;
- case FCmpInst::FCMP_UGE: op = "uge"; break;
- case FCmpInst::FCMP_OEQ: op = "oeq"; break;
- case FCmpInst::FCMP_ONE: op = "one"; break;
- case FCmpInst::FCMP_OLT: op = "olt"; break;
- case FCmpInst::FCMP_OLE: op = "ole"; break;
- case FCmpInst::FCMP_OGT: op = "ogt"; break;
- case FCmpInst::FCMP_OGE: op = "oge"; break;
- }
- Out << "llvm_fcmp_" << op << "(";
- printConstantWithCast(CE->getOperand(0), CE->getOpcode());
- Out << ", ";
- printConstantWithCast(CE->getOperand(1), CE->getOpcode());
- Out << ")";
- }
- if (NeedsClosingParens)
- Out << "))";
- Out << ')';
- return;
- }
- default:
-#ifndef NDEBUG
- errs() << "CWriter Error: Unhandled constant expression: "
- << *CE << "\n";
-#endif
- llvm_unreachable(0);
- }
- } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
- Out << "((";
- printType(Out, CPV->getType()); // sign doesn't matter
- Out << ")/*UNDEF*/";
- if (!CPV->getType()->isVectorTy()) {
- Out << "0)";
- } else {
- Out << "{})";
- }
- return;
- }
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
- Type* Ty = CI->getType();
- if (Ty == Type::getInt1Ty(CPV->getContext()))
- Out << (CI->getZExtValue() ? '1' : '0');
- else if (Ty == Type::getInt32Ty(CPV->getContext()))
- Out << CI->getZExtValue() << 'u';
- else if (Ty->getPrimitiveSizeInBits() > 32)
- Out << CI->getZExtValue() << "ull";
- else {
- Out << "((";
- printSimpleType(Out, Ty, false) << ')';
- if (CI->isMinValue(true))
- Out << CI->getZExtValue() << 'u';
- else
- Out << CI->getSExtValue();
- Out << ')';
- }
- return;
- }
-
- switch (CPV->getType()->getTypeID()) {
- case Type::FloatTyID:
- case Type::DoubleTyID:
- case Type::X86_FP80TyID:
- case Type::PPC_FP128TyID:
- case Type::FP128TyID: {
- ConstantFP *FPC = cast<ConstantFP>(CPV);
- std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
- if (I != FPConstantMap.end()) {
- // Because of FP precision problems we must load from a stack allocated
- // value that holds the value in hex.
- Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
- "float" :
- FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
- "double" :
- "long double")
- << "*)&FPConstant" << I->second << ')';
- } else {
- double V;
- if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
- V = FPC->getValueAPF().convertToFloat();
- else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
- V = FPC->getValueAPF().convertToDouble();
- else {
- // Long double. Convert the number to double, discarding precision.
- // This is not awesome, but it at least makes the CBE output somewhat
- // useful.
- APFloat Tmp = FPC->getValueAPF();
- bool LosesInfo;
- Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
- V = Tmp.convertToDouble();
- }
-
- if (IsNAN(V)) {
- // The value is NaN
-
- // FIXME the actual NaN bits should be emitted.
- // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
- // it's 0x7ff4.
- const unsigned long QuietNaN = 0x7ff8UL;
- //const unsigned long SignalNaN = 0x7ff4UL;
-
- // We need to grab the first part of the FP #
- char Buffer[100];
-
- uint64_t ll = DoubleToBits(V);
- sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
-
- std::string Num(&Buffer[0], &Buffer[6]);
- unsigned long Val = strtoul(Num.c_str(), 0, 16);
-
- if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
- Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
- << Buffer << "\") /*nan*/ ";
- else
- Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
- << Buffer << "\") /*nan*/ ";
- } else if (IsInf(V)) {
- // The value is Inf
- if (V < 0) Out << '-';
- Out << "LLVM_INF" <<
- (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
- << " /*inf*/ ";
- } else {
- std::string Num;
-#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
- // Print out the constant as a floating point number.
- char Buffer[100];
- sprintf(Buffer, "%a", V);
- Num = Buffer;
-#else
- Num = ftostr(FPC->getValueAPF());
-#endif
- Out << Num;
- }
- }
- break;
- }
-
- case Type::ArrayTyID:
- // Use C99 compound expression literal initializer syntax.
- if (!Static) {
- Out << "(";
- printType(Out, CPV->getType());
- Out << ")";
- }
- Out << "{ "; // Arrays are wrapped in struct types.
- if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
- printConstantArray(CA, Static);
- } else if (ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(CPV)) {
- printConstantDataSequential(CDS, Static);
- } else {
- assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
- ArrayType *AT = cast<ArrayType>(CPV->getType());
- Out << '{';
- if (AT->getNumElements()) {
- Out << ' ';
- Constant *CZ = Constant::getNullValue(AT->getElementType());
- printConstant(CZ, Static);
- for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
- Out << ", ";
- printConstant(CZ, Static);
- }
- }
- Out << " }";
- }
- Out << " }"; // Arrays are wrapped in struct types.
- break;
-
- case Type::VectorTyID:
- // Use C99 compound expression literal initializer syntax.
- if (!Static) {
- Out << "(";
- printType(Out, CPV->getType());
- Out << ")";
- }
- if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
- printConstantVector(CV, Static);
- } else if (ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(CPV)) {
- printConstantDataSequential(CDS, Static);
- } else {
- assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
- VectorType *VT = cast<VectorType>(CPV->getType());
- Out << "{ ";
- Constant *CZ = Constant::getNullValue(VT->getElementType());
- printConstant(CZ, Static);
- for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
- Out << ", ";
- printConstant(CZ, Static);
- }
- Out << " }";
- }
- break;
-
- case Type::StructTyID:
- // Use C99 compound expression literal initializer syntax.
- if (!Static) {
- Out << "(";
- printType(Out, CPV->getType());
- Out << ")";
- }
- if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
- StructType *ST = cast<StructType>(CPV->getType());
- Out << '{';
- if (ST->getNumElements()) {
- Out << ' ';
- printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
- for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
- Out << ", ";
- printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
- }
- }
- Out << " }";
- } else {
- Out << '{';
- if (CPV->getNumOperands()) {
- Out << ' ';
- printConstant(cast<Constant>(CPV->getOperand(0)), Static);
- for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
- Out << ", ";
- printConstant(cast<Constant>(CPV->getOperand(i)), Static);
- }
- }
- Out << " }";
- }
- break;
-
- case Type::PointerTyID:
- if (isa<ConstantPointerNull>(CPV)) {
- Out << "((";
- printType(Out, CPV->getType()); // sign doesn't matter
- Out << ")/*NULL*/0)";
- break;
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
- writeOperand(GV, Static);
- break;
- }
- // FALL THROUGH
- default:
-#ifndef NDEBUG
- errs() << "Unknown constant type: " << *CPV << "\n";
-#endif
- llvm_unreachable(0);
- }
-}
-
-// Some constant expressions need to be casted back to the original types
-// because their operands were casted to the expected type. This function takes
-// care of detecting that case and printing the cast for the ConstantExpr.
-bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
- bool NeedsExplicitCast = false;
- Type *Ty = CE->getOperand(0)->getType();
- bool TypeIsSigned = false;
- switch (CE->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- // We need to cast integer arithmetic so that it is always performed
- // as unsigned, to avoid undefined behavior on overflow.
- case Instruction::LShr:
- case Instruction::URem:
- case Instruction::UDiv: NeedsExplicitCast = true; break;
- case Instruction::AShr:
- case Instruction::SRem:
- case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
- case Instruction::SExt:
- Ty = CE->getType();
- NeedsExplicitCast = true;
- TypeIsSigned = true;
- break;
- case Instruction::ZExt:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::BitCast:
- Ty = CE->getType();
- NeedsExplicitCast = true;
- break;
- default: break;
- }
- if (NeedsExplicitCast) {
- Out << "((";
- if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext()))
- printSimpleType(Out, Ty, TypeIsSigned);
- else
- printType(Out, Ty); // not integer, sign doesn't matter
- Out << ")(";
- }
- return NeedsExplicitCast;
-}
-
-// Print a constant assuming that it is the operand for a given Opcode. The
-// opcodes that care about sign need to cast their operands to the expected
-// type before the operation proceeds. This function does the casting.
-void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
-
- // Extract the operand's type, we'll need it.
- Type* OpTy = CPV->getType();
-
- // Indicate whether to do the cast or not.
- bool shouldCast = false;
- bool typeIsSigned = false;
-
- // Based on the Opcode for which this Constant is being written, determine
- // the new type to which the operand should be casted by setting the value
- // of OpTy. If we change OpTy, also set shouldCast to true so it gets
- // casted below.
- switch (Opcode) {
- default:
- // for most instructions, it doesn't matter
- break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- // We need to cast integer arithmetic so that it is always performed
- // as unsigned, to avoid undefined behavior on overflow.
- case Instruction::LShr:
- case Instruction::UDiv:
- case Instruction::URem:
- shouldCast = true;
- break;
- case Instruction::AShr:
- case Instruction::SDiv:
- case Instruction::SRem:
- shouldCast = true;
- typeIsSigned = true;
- break;
- }
-
- // Write out the casted constant if we should, otherwise just write the
- // operand.
- if (shouldCast) {
- Out << "((";
- printSimpleType(Out, OpTy, typeIsSigned);
- Out << ")";
- printConstant(CPV, false);
- Out << ")";
- } else
- printConstant(CPV, false);
-}
-
-std::string CWriter::GetValueName(const Value *Operand) {
-
- // Resolve potential alias.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) {
- if (const Value *V = GA->resolveAliasedGlobal(false))
- Operand = V;
- }
-
- // Mangle globals with the standard mangler interface for LLC compatibility.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
- SmallString<128> Str;
- Mang->getNameWithPrefix(Str, GV, false);
- return CBEMangle(Str.str().str());
- }
-
- std::string Name = Operand->getName();
-
- if (Name.empty()) { // Assign unique names to local temporaries.
- unsigned &No = AnonValueNumbers[Operand];
- if (No == 0)
- No = ++NextAnonValueNumber;
- Name = "tmp__" + utostr(No);
- }
-
- std::string VarName;
- VarName.reserve(Name.capacity());
-
- for (std::string::iterator I = Name.begin(), E = Name.end();
- I != E; ++I) {
- char ch = *I;
-
- if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
- (ch >= '0' && ch <= '9') || ch == '_')) {
- char buffer[5];
- sprintf(buffer, "_%x_", ch);
- VarName += buffer;
- } else
- VarName += ch;
- }
-
- return "llvm_cbe_" + VarName;
-}
-
-/// writeInstComputationInline - Emit the computation for the specified
-/// instruction inline, with no destination provided.
-void CWriter::writeInstComputationInline(Instruction &I) {
- // We can't currently support integer types other than 1, 8, 16, 32, 64.
- // Validate this.
- Type *Ty = I.getType();
- if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) &&
- Ty!=Type::getInt8Ty(I.getContext()) &&
- Ty!=Type::getInt16Ty(I.getContext()) &&
- Ty!=Type::getInt32Ty(I.getContext()) &&
- Ty!=Type::getInt64Ty(I.getContext()))) {
- report_fatal_error("The C backend does not currently support integer "
- "types of widths other than 1, 8, 16, 32, 64.\n"
- "This is being tracked as PR 4158.");
- }
-
- // If this is a non-trivial bool computation, make sure to truncate down to
- // a 1 bit value. This is important because we want "add i1 x, y" to return
- // "0" when x and y are true, not "2" for example.
- bool NeedBoolTrunc = false;
- if (I.getType() == Type::getInt1Ty(I.getContext()) &&
- !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
- NeedBoolTrunc = true;
-
- if (NeedBoolTrunc)
- Out << "((";
-
- visit(I);
-
- if (NeedBoolTrunc)
- Out << ")&1)";
-}
-
-
-void CWriter::writeOperandInternal(Value *Operand, bool Static) {
- if (Instruction *I = dyn_cast<Instruction>(Operand))
- // Should we inline this instruction to build a tree?
- if (isInlinableInst(*I) && !isDirectAlloca(I)) {
- Out << '(';
- writeInstComputationInline(*I);
- Out << ')';
- return;
- }
-
- Constant* CPV = dyn_cast<Constant>(Operand);
-
- if (CPV && !isa<GlobalValue>(CPV))
- printConstant(CPV, Static);
- else
- Out << GetValueName(Operand);
-}
-
-void CWriter::writeOperand(Value *Operand, bool Static) {
- bool isAddressImplicit = isAddressExposed(Operand);
- if (isAddressImplicit)
- Out << "(&"; // Global variables are referenced as their addresses by llvm
-
- writeOperandInternal(Operand, Static);
-
- if (isAddressImplicit)
- Out << ')';
-}
-
-// Some instructions need to have their result value casted back to the
-// original types because their operands were casted to the expected type.
-// This function takes care of detecting that case and printing the cast
-// for the Instruction.
-bool CWriter::writeInstructionCast(const Instruction &I) {
- Type *Ty = I.getOperand(0)->getType();
- switch (I.getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- // We need to cast integer arithmetic so that it is always performed
- // as unsigned, to avoid undefined behavior on overflow.
- case Instruction::LShr:
- case Instruction::URem:
- case Instruction::UDiv:
- Out << "((";
- printSimpleType(Out, Ty, false);
- Out << ")(";
- return true;
- case Instruction::AShr:
- case Instruction::SRem:
- case Instruction::SDiv:
- Out << "((";
- printSimpleType(Out, Ty, true);
- Out << ")(";
- return true;
- default: break;
- }
- return false;
-}
-
-// Write the operand with a cast to another type based on the Opcode being used.
-// This will be used in cases where an instruction has specific type
-// requirements (usually signedness) for its operands.
-void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
-
- // Extract the operand's type, we'll need it.
- Type* OpTy = Operand->getType();
-
- // Indicate whether to do the cast or not.
- bool shouldCast = false;
-
- // Indicate whether the cast should be to a signed type or not.
- bool castIsSigned = false;
-
- // Based on the Opcode for which this Operand is being written, determine
- // the new type to which the operand should be casted by setting the value
- // of OpTy. If we change OpTy, also set shouldCast to true.
- switch (Opcode) {
- default:
- // for most instructions, it doesn't matter
- break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- // We need to cast integer arithmetic so that it is always performed
- // as unsigned, to avoid undefined behavior on overflow.
- case Instruction::LShr:
- case Instruction::UDiv:
- case Instruction::URem: // Cast to unsigned first
- shouldCast = true;
- castIsSigned = false;
- break;
- case Instruction::GetElementPtr:
- case Instruction::AShr:
- case Instruction::SDiv:
- case Instruction::SRem: // Cast to signed first
- shouldCast = true;
- castIsSigned = true;
- break;
- }
-
- // Write out the casted operand if we should, otherwise just write the
- // operand.
- if (shouldCast) {
- Out << "((";
- printSimpleType(Out, OpTy, castIsSigned);
- Out << ")";
- writeOperand(Operand);
- Out << ")";
- } else
- writeOperand(Operand);
-}
-
-// Write the operand with a cast to another type based on the icmp predicate
-// being used.
-void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
- // This has to do a cast to ensure the operand has the right signedness.
- // Also, if the operand is a pointer, we make sure to cast to an integer when
- // doing the comparison both for signedness and so that the C compiler doesn't
- // optimize things like "p < NULL" to false (p may contain an integer value
- // f.e.).
- bool shouldCast = Cmp.isRelational();
-
- // Write out the casted operand if we should, otherwise just write the
- // operand.
- if (!shouldCast) {
- writeOperand(Operand);
- return;
- }
-
- // Should this be a signed comparison? If so, convert to signed.
- bool castIsSigned = Cmp.isSigned();
-
- // If the operand was a pointer, convert to a large integer type.
- Type* OpTy = Operand->getType();
- if (OpTy->isPointerTy())
- OpTy = TD->getIntPtrType(Operand->getContext());
-
- Out << "((";
- printSimpleType(Out, OpTy, castIsSigned);
- Out << ")";
- writeOperand(Operand);
- Out << ")";
-}
-
-// generateCompilerSpecificCode - This is where we add conditional compilation
-// directives to cater to specific compilers as need be.
-//
-static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
- const TargetData *TD) {
- // Alloca is hard to get, and we don't want to include stdlib.h here.
- Out << "/* get a declaration for alloca */\n"
- << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
- << "#define alloca(x) __builtin_alloca((x))\n"
- << "#define _alloca(x) __builtin_alloca((x))\n"
- << "#elif defined(__APPLE__)\n"
- << "extern void *__builtin_alloca(unsigned long);\n"
- << "#define alloca(x) __builtin_alloca(x)\n"
- << "#define longjmp _longjmp\n"
- << "#define setjmp _setjmp\n"
- << "#elif defined(__sun__)\n"
- << "#if defined(__sparcv9)\n"
- << "extern void *__builtin_alloca(unsigned long);\n"
- << "#else\n"
- << "extern void *__builtin_alloca(unsigned int);\n"
- << "#endif\n"
- << "#define alloca(x) __builtin_alloca(x)\n"
- << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
- << "#define alloca(x) __builtin_alloca(x)\n"
- << "#elif defined(_MSC_VER)\n"
- << "#define inline _inline\n"
- << "#define alloca(x) _alloca(x)\n"
- << "#else\n"
- << "#include <alloca.h>\n"
- << "#endif\n\n";
-
- // We output GCC specific attributes to preserve 'linkonce'ness on globals.
- // If we aren't being compiled with GCC, just drop these attributes.
- Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
- << "#define __attribute__(X)\n"
- << "#endif\n\n";
-
- // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
- Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
- << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
- << "#elif defined(__GNUC__)\n"
- << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
- << "#else\n"
- << "#define __EXTERNAL_WEAK__\n"
- << "#endif\n\n";
-
- // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
- Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
- << "#define __ATTRIBUTE_WEAK__\n"
- << "#elif defined(__GNUC__)\n"
- << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
- << "#else\n"
- << "#define __ATTRIBUTE_WEAK__\n"
- << "#endif\n\n";
-
- // Add hidden visibility support. FIXME: APPLE_CC?
- Out << "#if defined(__GNUC__)\n"
- << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
- << "#endif\n\n";
-
- // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
- // From the GCC documentation:
- //
- // double __builtin_nan (const char *str)
- //
- // This is an implementation of the ISO C99 function nan.
- //
- // Since ISO C99 defines this function in terms of strtod, which we do
- // not implement, a description of the parsing is in order. The string is
- // parsed as by strtol; that is, the base is recognized by leading 0 or
- // 0x prefixes. The number parsed is placed in the significand such that
- // the least significant bit of the number is at the least significant
- // bit of the significand. The number is truncated to fit the significand
- // field provided. The significand is forced to be a quiet NaN.
- //
- // This function, if given a string literal, is evaluated early enough
- // that it is considered a compile-time constant.
- //
- // float __builtin_nanf (const char *str)
- //
- // Similar to __builtin_nan, except the return type is float.
- //
- // double __builtin_inf (void)
- //
- // Similar to __builtin_huge_val, except a warning is generated if the
- // target floating-point format does not support infinities. This
- // function is suitable for implementing the ISO C99 macro INFINITY.
- //
- // float __builtin_inff (void)
- //
- // Similar to __builtin_inf, except the return type is float.
- Out << "#ifdef __GNUC__\n"
- << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
- << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
- << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
- << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
- << "#define LLVM_INF __builtin_inf() /* Double */\n"
- << "#define LLVM_INFF __builtin_inff() /* Float */\n"
- << "#define LLVM_PREFETCH(addr,rw,locality) "
- "__builtin_prefetch(addr,rw,locality)\n"
- << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
- << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
- << "#define LLVM_ASM __asm__\n"
- << "#else\n"
- << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
- << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
- << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
- << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
- << "#define LLVM_INF ((double)0.0) /* Double */\n"
- << "#define LLVM_INFF 0.0F /* Float */\n"
- << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
- << "#define __ATTRIBUTE_CTOR__\n"
- << "#define __ATTRIBUTE_DTOR__\n"
- << "#define LLVM_ASM(X)\n"
- << "#endif\n\n";
-
- Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
- << "#define __builtin_stack_save() 0 /* not implemented */\n"
- << "#define __builtin_stack_restore(X) /* noop */\n"
- << "#endif\n\n";
-
- // Output typedefs for 128-bit integers. If these are needed with a
- // 32-bit target or with a C compiler that doesn't support mode(TI),
- // more drastic measures will be needed.
- Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
- << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
- << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
- << "#endif\n\n";
-
- // Output target-specific code that should be inserted into main.
- Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
-}
-
-/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
-/// the StaticTors set.
-static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
- ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
- if (!InitList) return;
-
- for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
- if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
- if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
-
- if (CS->getOperand(1)->isNullValue())
- return; // Found a null terminator, exit printing.
- Constant *FP = CS->getOperand(1);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
- if (CE->isCast())
- FP = CE->getOperand(0);
- if (Function *F = dyn_cast<Function>(FP))
- StaticTors.insert(F);
- }
-}
-
-enum SpecialGlobalClass {
- NotSpecial = 0,
- GlobalCtors, GlobalDtors,
- NotPrinted
-};
-
-/// getGlobalVariableClass - If this is a global that is specially recognized
-/// by LLVM, return a code that indicates how we should handle it.
-static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
- // If this is a global ctors/dtors list, handle it now.
- if (GV->hasAppendingLinkage() && GV->use_empty()) {
- if (GV->getName() == "llvm.global_ctors")
- return GlobalCtors;
- else if (GV->getName() == "llvm.global_dtors")
- return GlobalDtors;
- }
-
- // Otherwise, if it is other metadata, don't print it. This catches things
- // like debug information.
- if (GV->getSection() == "llvm.metadata")
- return NotPrinted;
-
- return NotSpecial;
-}
-
-// PrintEscapedString - Print each character of the specified string, escaping
-// it if it is not printable or if it is an escape char.
-static void PrintEscapedString(const char *Str, unsigned Length,
- raw_ostream &Out) {
- for (unsigned i = 0; i != Length; ++i) {
- unsigned char C = Str[i];
- if (isprint(C) && C != '\\' && C != '"')
- Out << C;
- else if (C == '\\')
- Out << "\\\\";
- else if (C == '\"')
- Out << "\\\"";
- else if (C == '\t')
- Out << "\\t";
- else
- Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
- }
-}
-
-// PrintEscapedString - Print each character of the specified string, escaping
-// it if it is not printable or if it is an escape char.
-static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
- PrintEscapedString(Str.c_str(), Str.size(), Out);
-}
-
-bool CWriter::doInitialization(Module &M) {
- FunctionPass::doInitialization(M);
-
- // Initialize
- TheModule = &M;
-
- TD = new TargetData(&M);
- IL = new IntrinsicLowering(*TD);
- IL->AddPrototypes(M);
-
-#if 0
- std::string Triple = TheModule->getTargetTriple();
- if (Triple.empty())
- Triple = llvm::sys::getDefaultTargetTriple();
-
- std::string E;
- if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
- TAsm = Match->createMCAsmInfo(Triple);
-#endif
- TAsm = new CBEMCAsmInfo();
- MRI = new MCRegisterInfo();
- TCtx = new MCContext(*TAsm, *MRI, NULL);
- Mang = new Mangler(*TCtx, *TD);
-
- // Keep track of which functions are static ctors/dtors so they can have
- // an attribute added to their prototypes.
- std::set<Function*> StaticCtors, StaticDtors;
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
- switch (getGlobalVariableClass(I)) {
- default: break;
- case GlobalCtors:
- FindStaticTors(I, StaticCtors);
- break;
- case GlobalDtors:
- FindStaticTors(I, StaticDtors);
- break;
- }
- }
-
- // get declaration for alloca
- Out << "/* Provide Declarations */\n";
- Out << "#include <stdarg.h>\n"; // Varargs support
- Out << "#include <setjmp.h>\n"; // Unwind support
- Out << "#include <limits.h>\n"; // With overflow intrinsics support.
- generateCompilerSpecificCode(Out, TD);
-
- // Provide a definition for `bool' if not compiling with a C++ compiler.
- Out << "\n"
- << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
-
- << "\n\n/* Support for floating point constants */\n"
- << "typedef unsigned long long ConstantDoubleTy;\n"
- << "typedef unsigned int ConstantFloatTy;\n"
- << "typedef struct { unsigned long long f1; unsigned short f2; "
- "unsigned short pad[3]; } ConstantFP80Ty;\n"
- // This is used for both kinds of 128-bit long double; meaning differs.
- << "typedef struct { unsigned long long f1; unsigned long long f2; }"
- " ConstantFP128Ty;\n"
- << "\n\n/* Global Declarations */\n";
-
- // First output all the declarations for the program, because C requires
- // Functions & globals to be declared before they are used.
- //
- if (!M.getModuleInlineAsm().empty()) {
- Out << "/* Module asm statements */\n"
- << "asm(";
-
- // Split the string into lines, to make it easier to read the .ll file.
- std::string Asm = M.getModuleInlineAsm();
- size_t CurPos = 0;
- size_t NewLine = Asm.find_first_of('\n', CurPos);
- while (NewLine != std::string::npos) {
- // We found a newline, print the portion of the asm string from the
- // last newline up to this newline.
- Out << "\"";
- PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
- Out);
- Out << "\\n\"\n";
- CurPos = NewLine+1;
- NewLine = Asm.find_first_of('\n', CurPos);
- }
- Out << "\"";
- PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
- Out << "\");\n"
- << "/* End Module asm statements */\n";
- }
-
- // Loop over the symbol table, emitting all named constants.
- printModuleTypes();
-
- // Global variable declarations...
- if (!M.global_empty()) {
- Out << "\n/* External Global Variable Declarations */\n";
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I) {
-
- if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
- I->hasCommonLinkage())
- Out << "extern ";
- else if (I->hasDLLImportLinkage())
- Out << "__declspec(dllimport) ";
- else
- continue; // Internal Global
-
- // Thread Local Storage
- if (I->isThreadLocal())
- Out << "__thread ";
-
- printType(Out, I->getType()->getElementType(), false, GetValueName(I));
-
- if (I->hasExternalWeakLinkage())
- Out << " __EXTERNAL_WEAK__";
- Out << ";\n";
- }
- }
-
- // Function declarations
- Out << "\n/* Function Declarations */\n";
- Out << "double fmod(double, double);\n"; // Support for FP rem
- Out << "float fmodf(float, float);\n";
- Out << "long double fmodl(long double, long double);\n";
-
- // Store the intrinsics which will be declared/defined below.
- SmallVector<const Function*, 8> intrinsicsToDefine;
-
- for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
- // Don't print declarations for intrinsic functions.
- // Store the used intrinsics, which need to be explicitly defined.
- if (I->isIntrinsic()) {
- switch (I->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- intrinsicsToDefine.push_back(I);
- break;
- }
- continue;
- }
-
- if (I->getName() == "setjmp" ||
- I->getName() == "longjmp" || I->getName() == "_setjmp")
- continue;
-
- if (I->hasExternalWeakLinkage())
- Out << "extern ";
- printFunctionSignature(I, true);
- if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
- Out << " __ATTRIBUTE_WEAK__";
- if (I->hasExternalWeakLinkage())
- Out << " __EXTERNAL_WEAK__";
- if (StaticCtors.count(I))
- Out << " __ATTRIBUTE_CTOR__";
- if (StaticDtors.count(I))
- Out << " __ATTRIBUTE_DTOR__";
- if (I->hasHiddenVisibility())
- Out << " __HIDDEN__";
-
- if (I->hasName() && I->getName()[0] == 1)
- Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
-
- Out << ";\n";
- }
-
- // Output the global variable declarations
- if (!M.global_empty()) {
- Out << "\n\n/* Global Variable Declarations */\n";
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- if (!I->isDeclaration()) {
- // Ignore special globals, such as debug info.
- if (getGlobalVariableClass(I))
- continue;
-
- if (I->hasLocalLinkage())
- Out << "static ";
- else
- Out << "extern ";
-
- // Thread Local Storage
- if (I->isThreadLocal())
- Out << "__thread ";
-
- printType(Out, I->getType()->getElementType(), false,
- GetValueName(I));
-
- if (I->hasLinkOnceLinkage())
- Out << " __attribute__((common))";
- else if (I->hasCommonLinkage()) // FIXME is this right?
- Out << " __ATTRIBUTE_WEAK__";
- else if (I->hasWeakLinkage())
- Out << " __ATTRIBUTE_WEAK__";
- else if (I->hasExternalWeakLinkage())
- Out << " __EXTERNAL_WEAK__";
- if (I->hasHiddenVisibility())
- Out << " __HIDDEN__";
- Out << ";\n";
- }
- }
-
- // Output the global variable definitions and contents...
- if (!M.global_empty()) {
- Out << "\n\n/* Global Variable Definitions and Initialization */\n";
- for (Module::global_iterator I = M.global_begin(), E = M.global_end();
- I != E; ++I)
- if (!I->isDeclaration()) {
- // Ignore special globals, such as debug info.
- if (getGlobalVariableClass(I))
- continue;
-
- if (I->hasLocalLinkage())
- Out << "static ";
- else if (I->hasDLLImportLinkage())
- Out << "__declspec(dllimport) ";
- else if (I->hasDLLExportLinkage())
- Out << "__declspec(dllexport) ";
-
- // Thread Local Storage
- if (I->isThreadLocal())
- Out << "__thread ";
-
- printType(Out, I->getType()->getElementType(), false,
- GetValueName(I));
- if (I->hasLinkOnceLinkage())
- Out << " __attribute__((common))";
- else if (I->hasWeakLinkage())
- Out << " __ATTRIBUTE_WEAK__";
- else if (I->hasCommonLinkage())
- Out << " __ATTRIBUTE_WEAK__";
-
- if (I->hasHiddenVisibility())
- Out << " __HIDDEN__";
-
- // If the initializer is not null, emit the initializer. If it is null,
- // we try to avoid emitting large amounts of zeros. The problem with
- // this, however, occurs when the variable has weak linkage. In this
- // case, the assembler will complain about the variable being both weak
- // and common, so we disable this optimization.
- // FIXME common linkage should avoid this problem.
- if (!I->getInitializer()->isNullValue()) {
- Out << " = " ;
- writeOperand(I->getInitializer(), true);
- } else if (I->hasWeakLinkage()) {
- // We have to specify an initializer, but it doesn't have to be
- // complete. If the value is an aggregate, print out { 0 }, and let
- // the compiler figure out the rest of the zeros.
- Out << " = " ;
- if (I->getInitializer()->getType()->isStructTy() ||
- I->getInitializer()->getType()->isVectorTy()) {
- Out << "{ 0 }";
- } else if (I->getInitializer()->getType()->isArrayTy()) {
- // As with structs and vectors, but with an extra set of braces
- // because arrays are wrapped in structs.
- Out << "{ { 0 } }";
- } else {
- // Just print it out normally.
- writeOperand(I->getInitializer(), true);
- }
- }
- Out << ";\n";
- }
- }
-
- if (!M.empty())
- Out << "\n\n/* Function Bodies */\n";
-
- // Emit some helper functions for dealing with FCMP instruction's
- // predicates
- Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
- Out << "return X == X && Y == Y; }\n";
- Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
- Out << "return X != X || Y != Y; }\n";
- Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
- Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
- Out << "return X != Y; }\n";
- Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
- Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
- Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
- Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
- Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
- Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
- Out << "return X == Y ; }\n";
- Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
- Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
- Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
- Out << "return X < Y ; }\n";
- Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
- Out << "return X > Y ; }\n";
- Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
- Out << "return X <= Y ; }\n";
- Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
- Out << "return X >= Y ; }\n";
-
- // Emit definitions of the intrinsics.
- for (SmallVector<const Function*, 8>::const_iterator
- I = intrinsicsToDefine.begin(),
- E = intrinsicsToDefine.end(); I != E; ++I) {
- printIntrinsicDefinition(**I, Out);
- }
-
- return false;
-}
-
-
-/// Output all floating point constants that cannot be printed accurately...
-void CWriter::printFloatingPointConstants(Function &F) {
- // Scan the module for floating point constants. If any FP constant is used
- // in the function, we want to redirect it here so that we do not depend on
- // the precision of the printed form, unless the printed form preserves
- // precision.
- //
- for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
- I != E; ++I)
- printFloatingPointConstants(*I);
-
- Out << '\n';
-}
-
-void CWriter::printFloatingPointConstants(const Constant *C) {
- // If this is a constant expression, recursively check for constant fp values.
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
- printFloatingPointConstants(CE->getOperand(i));
- return;
- }
-
- // Otherwise, check for a FP constant that we need to print.
- const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
- if (FPC == 0 ||
- // Do not put in FPConstantMap if safe.
- isFPCSafeToPrint(FPC) ||
- // Already printed this constant?
- FPConstantMap.count(FPC))
- return;
-
- FPConstantMap[FPC] = FPCounter; // Number the FP constants
-
- if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
- double Val = FPC->getValueAPF().convertToDouble();
- uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
- Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
- << " = 0x" << utohexstr(i)
- << "ULL; /* " << Val << " */\n";
- } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
- float Val = FPC->getValueAPF().convertToFloat();
- uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
- getZExtValue();
- Out << "static const ConstantFloatTy FPConstant" << FPCounter++
- << " = 0x" << utohexstr(i)
- << "U; /* " << Val << " */\n";
- } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
- // api needed to prevent premature destruction
- APInt api = FPC->getValueAPF().bitcastToAPInt();
- const uint64_t *p = api.getRawData();
- Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
- << " = { 0x" << utohexstr(p[0])
- << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
- << "}; /* Long double constant */\n";
- } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
- FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
- APInt api = FPC->getValueAPF().bitcastToAPInt();
- const uint64_t *p = api.getRawData();
- Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
- << " = { 0x"
- << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
- << "}; /* Long double constant */\n";
-
- } else {
- llvm_unreachable("Unknown float type!");
- }
-}
-
-
-/// printSymbolTable - Run through symbol table looking for type names. If a
-/// type name is found, emit its declaration...
-///
-void CWriter::printModuleTypes() {
- Out << "/* Helper union for bitcasts */\n";
- Out << "typedef union {\n";
- Out << " unsigned int Int32;\n";
- Out << " unsigned long long Int64;\n";
- Out << " float Float;\n";
- Out << " double Double;\n";
- Out << "} llvmBitCastUnion;\n";
-
- // Get all of the struct types used in the module.
- std::vector<StructType*> StructTypes;
- TheModule->findUsedStructTypes(StructTypes);
-
- if (StructTypes.empty()) return;
-
- Out << "/* Structure forward decls */\n";
-
- unsigned NextTypeID = 0;
-
- // If any of them are missing names, add a unique ID to UnnamedStructIDs.
- // Print out forward declarations for structure types.
- for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) {
- StructType *ST = StructTypes[i];
-
- if (ST->isLiteral() || ST->getName().empty())
- UnnamedStructIDs[ST] = NextTypeID++;
-
- std::string Name = getStructName(ST);
-
- Out << "typedef struct " << Name << ' ' << Name << ";\n";
- }
-
- Out << '\n';
-
- // Keep track of which structures have been printed so far.
- SmallPtrSet<Type *, 16> StructPrinted;
-
- // Loop over all structures then push them into the stack so they are
- // printed in the correct order.
- //
- Out << "/* Structure contents */\n";
- for (unsigned i = 0, e = StructTypes.size(); i != e; ++i)
- if (StructTypes[i]->isStructTy())
- // Only print out used types!
- printContainedStructs(StructTypes[i], StructPrinted);
-}
-
-// Push the struct onto the stack and recursively push all structs
-// this one depends on.
-//
-// TODO: Make this work properly with vector types
-//
-void CWriter::printContainedStructs(Type *Ty,
- SmallPtrSet<Type *, 16> &StructPrinted) {
- // Don't walk through pointers.
- if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy())
- return;
-
- // Print all contained types first.
- for (Type::subtype_iterator I = Ty->subtype_begin(),
- E = Ty->subtype_end(); I != E; ++I)
- printContainedStructs(*I, StructPrinted);
-
- if (StructType *ST = dyn_cast<StructType>(Ty)) {
- // Check to see if we have already printed this struct.
- if (!StructPrinted.insert(Ty)) return;
-
- // Print structure type out.
- printType(Out, ST, false, getStructName(ST), true);
- Out << ";\n\n";
- }
-}
-
-void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
- /// isStructReturn - Should this function actually return a struct by-value?
- bool isStructReturn = F->hasStructRetAttr();
-
- if (F->hasLocalLinkage()) Out << "static ";
- if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
- if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
- switch (F->getCallingConv()) {
- case CallingConv::X86_StdCall:
- Out << "__attribute__((stdcall)) ";
- break;
- case CallingConv::X86_FastCall:
- Out << "__attribute__((fastcall)) ";
- break;
- case CallingConv::X86_ThisCall:
- Out << "__attribute__((thiscall)) ";
- break;
- default:
- break;
- }
-
- // Loop over the arguments, printing them...
- FunctionType *FT = cast<FunctionType>(F->getFunctionType());
- const AttrListPtr &PAL = F->getAttributes();
-
- std::string tstr;
- raw_string_ostream FunctionInnards(tstr);
-
- // Print out the name...
- FunctionInnards << GetValueName(F) << '(';
-
- bool PrintedArg = false;
- if (!F->isDeclaration()) {
- if (!F->arg_empty()) {
- Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
- unsigned Idx = 1;
-
- // If this is a struct-return function, don't print the hidden
- // struct-return argument.
- if (isStructReturn) {
- assert(I != E && "Invalid struct return function!");
- ++I;
- ++Idx;
- }
-
- std::string ArgName;
- for (; I != E; ++I) {
- if (PrintedArg) FunctionInnards << ", ";
- if (I->hasName() || !Prototype)
- ArgName = GetValueName(I);
- else
- ArgName = "";
- Type *ArgTy = I->getType();
- if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
- ArgTy = cast<PointerType>(ArgTy)->getElementType();
- ByValParams.insert(I);
- }
- printType(FunctionInnards, ArgTy,
- /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
- ArgName);
- PrintedArg = true;
- ++Idx;
- }
- }
- } else {
- // Loop over the arguments, printing them.
- FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
- unsigned Idx = 1;
-
- // If this is a struct-return function, don't print the hidden
- // struct-return argument.
- if (isStructReturn) {
- assert(I != E && "Invalid struct return function!");
- ++I;
- ++Idx;
- }
-
- for (; I != E; ++I) {
- if (PrintedArg) FunctionInnards << ", ";
- Type *ArgTy = *I;
- if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
- assert(ArgTy->isPointerTy());
- ArgTy = cast<PointerType>(ArgTy)->getElementType();
- }
- printType(FunctionInnards, ArgTy,
- /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
- PrintedArg = true;
- ++Idx;
- }
- }
-
- if (!PrintedArg && FT->isVarArg()) {
- FunctionInnards << "int vararg_dummy_arg";
- PrintedArg = true;
- }
-
- // Finish printing arguments... if this is a vararg function, print the ...,
- // unless there are no known types, in which case, we just emit ().
- //
- if (FT->isVarArg() && PrintedArg) {
- FunctionInnards << ",..."; // Output varargs portion of signature!
- } else if (!FT->isVarArg() && !PrintedArg) {
- FunctionInnards << "void"; // ret() -> ret(void) in C.
- }
- FunctionInnards << ')';
-
- // Get the return tpe for the function.
- Type *RetTy;
- if (!isStructReturn)
- RetTy = F->getReturnType();
- else {
- // If this is a struct-return function, print the struct-return type.
- RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
- }
-
- // Print out the return type and the signature built above.
- printType(Out, RetTy,
- /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
- FunctionInnards.str());
-}
-
-static inline bool isFPIntBitCast(const Instruction &I) {
- if (!isa<BitCastInst>(I))
- return false;
- Type *SrcTy = I.getOperand(0)->getType();
- Type *DstTy = I.getType();
- return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) ||
- (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy());
-}
-
-void CWriter::printFunction(Function &F) {
- /// isStructReturn - Should this function actually return a struct by-value?
- bool isStructReturn = F.hasStructRetAttr();
-
- printFunctionSignature(&F, false);
- Out << " {\n";
-
- // If this is a struct return function, handle the result with magic.
- if (isStructReturn) {
- Type *StructTy =
- cast<PointerType>(F.arg_begin()->getType())->getElementType();
- Out << " ";
- printType(Out, StructTy, false, "StructReturn");
- Out << "; /* Struct return temporary */\n";
-
- Out << " ";
- printType(Out, F.arg_begin()->getType(), false,
- GetValueName(F.arg_begin()));
- Out << " = &StructReturn;\n";
- }
-
- bool PrintedVar = false;
-
- // print local variable information for the function
- for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
- if (const AllocaInst *AI = isDirectAlloca(&*I)) {
- Out << " ";
- printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
- Out << "; /* Address-exposed local */\n";
- PrintedVar = true;
- } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
- !isInlinableInst(*I)) {
- Out << " ";
- printType(Out, I->getType(), false, GetValueName(&*I));
- Out << ";\n";
-
- if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
- Out << " ";
- printType(Out, I->getType(), false,
- GetValueName(&*I)+"__PHI_TEMPORARY");
- Out << ";\n";
- }
- PrintedVar = true;
- }
- // We need a temporary for the BitCast to use so it can pluck a value out
- // of a union to do the BitCast. This is separate from the need for a
- // variable to hold the result of the BitCast.
- if (isFPIntBitCast(*I)) {
- Out << " llvmBitCastUnion " << GetValueName(&*I)
- << "__BITCAST_TEMPORARY;\n";
- PrintedVar = true;
- }
- }
-
- if (PrintedVar)
- Out << '\n';
-
- if (F.hasExternalLinkage() && F.getName() == "main")
- Out << " CODE_FOR_MAIN();\n";
-
- // print the basic blocks
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- if (Loop *L = LI->getLoopFor(BB)) {
- if (L->getHeader() == BB && L->getParentLoop() == 0)
- printLoop(L);
- } else {
- printBasicBlock(BB);
- }
- }
-
- Out << "}\n\n";
-}
-
-void CWriter::printLoop(Loop *L) {
- Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
- << "' to make GCC happy */\n";
- for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
- BasicBlock *BB = L->getBlocks()[i];
- Loop *BBLoop = LI->getLoopFor(BB);
- if (BBLoop == L)
- printBasicBlock(BB);
- else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
- printLoop(BBLoop);
- }
- Out << " } while (1); /* end of syntactic loop '"
- << L->getHeader()->getName() << "' */\n";
-}
-
-void CWriter::printBasicBlock(BasicBlock *BB) {
-
- // Don't print the label for the basic block if there are no uses, or if
- // the only terminator use is the predecessor basic block's terminator.
- // We have to scan the use list because PHI nodes use basic blocks too but
- // do not require a label to be generated.
- //
- bool NeedsLabel = false;
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
- if (isGotoCodeNecessary(*PI, BB)) {
- NeedsLabel = true;
- break;
- }
-
- if (NeedsLabel) Out << GetValueName(BB) << ":\n";
-
- // Output all of the instructions in the basic block...
- for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
- ++II) {
- if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
- if (II->getType() != Type::getVoidTy(BB->getContext()) &&
- !isInlineAsm(*II))
- outputLValue(II);
- else
- Out << " ";
- writeInstComputationInline(*II);
- Out << ";\n";
- }
- }
-
- // Don't emit prefix or suffix for the terminator.
- visit(*BB->getTerminator());
-}
-
-
-// Specific Instruction type classes... note that all of the casts are
-// necessary because we use the instruction classes as opaque types...
-//
-void CWriter::visitReturnInst(ReturnInst &I) {
- // If this is a struct return function, return the temporary struct.
- bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
-
- if (isStructReturn) {
- Out << " return StructReturn;\n";
- return;
- }
-
- // Don't output a void return if this is the last basic block in the function
- if (I.getNumOperands() == 0 &&
- &*--I.getParent()->getParent()->end() == I.getParent() &&
- !I.getParent()->size() == 1) {
- return;
- }
-
- Out << " return";
- if (I.getNumOperands()) {
- Out << ' ';
- writeOperand(I.getOperand(0));
- }
- Out << ";\n";
-}
-
-void CWriter::visitSwitchInst(SwitchInst &SI) {
-
- Value* Cond = SI.getCondition();
-
- Out << " switch (";
- writeOperand(Cond);
- Out << ") {\n default:\n";
- printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
- printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
- Out << ";\n";
-
- // Skip the first item since that's the default case.
- for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
- ConstantInt* CaseVal = i.getCaseValue();
- BasicBlock* Succ = i.getCaseSuccessor();
- Out << " case ";
- writeOperand(CaseVal);
- Out << ":\n";
- printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
- printBranchToBlock(SI.getParent(), Succ, 2);
- if (Function::iterator(Succ) ==
- llvm::next(Function::iterator(SI.getParent())))
- Out << " break;\n";
- }
-
- Out << " }\n";
-}
-
-void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) {
- Out << " goto *(void*)(";
- writeOperand(IBI.getOperand(0));
- Out << ");\n";
-}
-
-void CWriter::visitUnreachableInst(UnreachableInst &I) {
- Out << " /*UNREACHABLE*/;\n";
-}
-
-bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
- /// FIXME: This should be reenabled, but loop reordering safe!!
- return true;
-
- if (llvm::next(Function::iterator(From)) != Function::iterator(To))
- return true; // Not the direct successor, we need a goto.
-
- //isa<SwitchInst>(From->getTerminator())
-
- if (LI->getLoopFor(From) != LI->getLoopFor(To))
- return true;
- return false;
-}
-
-void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
- BasicBlock *Successor,
- unsigned Indent) {
- for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // Now we have to do the printing.
- Value *IV = PN->getIncomingValueForBlock(CurBlock);
- if (!isa<UndefValue>(IV)) {
- Out << std::string(Indent, ' ');
- Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
- writeOperand(IV);
- Out << "; /* for PHI node */\n";
- }
- }
-}
-
-void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
- unsigned Indent) {
- if (isGotoCodeNecessary(CurBB, Succ)) {
- Out << std::string(Indent, ' ') << " goto ";
- writeOperand(Succ);
- Out << ";\n";
- }
-}
-
-// Branch instruction printing - Avoid printing out a branch to a basic block
-// that immediately succeeds the current one.
-//
-void CWriter::visitBranchInst(BranchInst &I) {
-
- if (I.isConditional()) {
- if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
- Out << " if (";
- writeOperand(I.getCondition());
- Out << ") {\n";
-
- printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
- printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
-
- if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
- Out << " } else {\n";
- printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
- printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
- }
- } else {
- // First goto not necessary, assume second one is...
- Out << " if (!";
- writeOperand(I.getCondition());
- Out << ") {\n";
-
- printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
- printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
- }
-
- Out << " }\n";
- } else {
- printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
- printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
- }
- Out << "\n";
-}
-
-// PHI nodes get copied into temporary values at the end of predecessor basic
-// blocks. We now need to copy these temporary values into the REAL value for
-// the PHI.
-void CWriter::visitPHINode(PHINode &I) {
- writeOperand(&I);
- Out << "__PHI_TEMPORARY";
-}
-
-
-void CWriter::visitBinaryOperator(Instruction &I) {
- // binary instructions, shift instructions, setCond instructions.
- assert(!I.getType()->isPointerTy());
-
- // We must cast the results of binary operations which might be promoted.
- bool needsCast = false;
- if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
- (I.getType() == Type::getInt16Ty(I.getContext()))
- || (I.getType() == Type::getFloatTy(I.getContext()))) {
- needsCast = true;
- Out << "((";
- printType(Out, I.getType(), false);
- Out << ")(";
- }
-
- // If this is a negation operation, print it out as such. For FP, we don't
- // want to print "-0.0 - X".
- if (BinaryOperator::isNeg(&I)) {
- Out << "-(";
- writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
- Out << ")";
- } else if (BinaryOperator::isFNeg(&I)) {
- Out << "-(";
- writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
- Out << ")";
- } else if (I.getOpcode() == Instruction::FRem) {
- // Output a call to fmod/fmodf instead of emitting a%b
- if (I.getType() == Type::getFloatTy(I.getContext()))
- Out << "fmodf(";
- else if (I.getType() == Type::getDoubleTy(I.getContext()))
- Out << "fmod(";
- else // all 3 flavors of long double
- Out << "fmodl(";
- writeOperand(I.getOperand(0));
- Out << ", ";
- writeOperand(I.getOperand(1));
- Out << ")";
- } else {
-
- // Write out the cast of the instruction's value back to the proper type
- // if necessary.
- bool NeedsClosingParens = writeInstructionCast(I);
-
- // Certain instructions require the operand to be forced to a specific type
- // so we use writeOperandWithCast here instead of writeOperand. Similarly
- // below for operand 1
- writeOperandWithCast(I.getOperand(0), I.getOpcode());
-
- switch (I.getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd: Out << " + "; break;
- case Instruction::Sub:
- case Instruction::FSub: Out << " - "; break;
- case Instruction::Mul:
- case Instruction::FMul: Out << " * "; break;
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem: Out << " % "; break;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv: Out << " / "; break;
- case Instruction::And: Out << " & "; break;
- case Instruction::Or: Out << " | "; break;
- case Instruction::Xor: Out << " ^ "; break;
- case Instruction::Shl : Out << " << "; break;
- case Instruction::LShr:
- case Instruction::AShr: Out << " >> "; break;
- default:
-#ifndef NDEBUG
- errs() << "Invalid operator type!" << I;
-#endif
- llvm_unreachable(0);
- }
-
- writeOperandWithCast(I.getOperand(1), I.getOpcode());
- if (NeedsClosingParens)
- Out << "))";
- }
-
- if (needsCast) {
- Out << "))";
- }
-}
-
-void CWriter::visitICmpInst(ICmpInst &I) {
- // We must cast the results of icmp which might be promoted.
- bool needsCast = false;
-
- // Write out the cast of the instruction's value back to the proper type
- // if necessary.
- bool NeedsClosingParens = writeInstructionCast(I);
-
- // Certain icmp predicate require the operand to be forced to a specific type
- // so we use writeOperandWithCast here instead of writeOperand. Similarly
- // below for operand 1
- writeOperandWithCast(I.getOperand(0), I);
-
- switch (I.getPredicate()) {
- case ICmpInst::ICMP_EQ: Out << " == "; break;
- case ICmpInst::ICMP_NE: Out << " != "; break;
- case ICmpInst::ICMP_ULE:
- case ICmpInst::ICMP_SLE: Out << " <= "; break;
- case ICmpInst::ICMP_UGE:
- case ICmpInst::ICMP_SGE: Out << " >= "; break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT: Out << " < "; break;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT: Out << " > "; break;
- default:
-#ifndef NDEBUG
- errs() << "Invalid icmp predicate!" << I;
-#endif
- llvm_unreachable(0);
- }
-
- writeOperandWithCast(I.getOperand(1), I);
- if (NeedsClosingParens)
- Out << "))";
-
- if (needsCast) {
- Out << "))";
- }
-}
-
-void CWriter::visitFCmpInst(FCmpInst &I) {
- if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
- Out << "0";
- return;
- }
- if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
- Out << "1";
- return;
- }
-
- const char* op = 0;
- switch (I.getPredicate()) {
- default: llvm_unreachable("Illegal FCmp predicate");
- case FCmpInst::FCMP_ORD: op = "ord"; break;
- case FCmpInst::FCMP_UNO: op = "uno"; break;
- case FCmpInst::FCMP_UEQ: op = "ueq"; break;
- case FCmpInst::FCMP_UNE: op = "une"; break;
- case FCmpInst::FCMP_ULT: op = "ult"; break;
- case FCmpInst::FCMP_ULE: op = "ule"; break;
- case FCmpInst::FCMP_UGT: op = "ugt"; break;
- case FCmpInst::FCMP_UGE: op = "uge"; break;
- case FCmpInst::FCMP_OEQ: op = "oeq"; break;
- case FCmpInst::FCMP_ONE: op = "one"; break;
- case FCmpInst::FCMP_OLT: op = "olt"; break;
- case FCmpInst::FCMP_OLE: op = "ole"; break;
- case FCmpInst::FCMP_OGT: op = "ogt"; break;
- case FCmpInst::FCMP_OGE: op = "oge"; break;
- }
-
- Out << "llvm_fcmp_" << op << "(";
- // Write the first operand
- writeOperand(I.getOperand(0));
- Out << ", ";
- // Write the second operand
- writeOperand(I.getOperand(1));
- Out << ")";
-}
-
-static const char * getFloatBitCastField(Type *Ty) {
- switch (Ty->getTypeID()) {
- default: llvm_unreachable("Invalid Type");
- case Type::FloatTyID: return "Float";
- case Type::DoubleTyID: return "Double";
- case Type::IntegerTyID: {
- unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
- if (NumBits <= 32)
- return "Int32";
- else
- return "Int64";
- }
- }
-}
-
-void CWriter::visitCastInst(CastInst &I) {
- Type *DstTy = I.getType();
- Type *SrcTy = I.getOperand(0)->getType();
- if (isFPIntBitCast(I)) {
- Out << '(';
- // These int<->float and long<->double casts need to be handled specially
- Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
- << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
- writeOperand(I.getOperand(0));
- Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
- << getFloatBitCastField(I.getType());
- Out << ')';
- return;
- }
-
- Out << '(';
- printCast(I.getOpcode(), SrcTy, DstTy);
-
- // Make a sext from i1 work by subtracting the i1 from 0 (an int).
- if (SrcTy == Type::getInt1Ty(I.getContext()) &&
- I.getOpcode() == Instruction::SExt)
- Out << "0-";
-
- writeOperand(I.getOperand(0));
-
- if (DstTy == Type::getInt1Ty(I.getContext()) &&
- (I.getOpcode() == Instruction::Trunc ||
- I.getOpcode() == Instruction::FPToUI ||
- I.getOpcode() == Instruction::FPToSI ||
- I.getOpcode() == Instruction::PtrToInt)) {
- // Make sure we really get a trunc to bool by anding the operand with 1
- Out << "&1u";
- }
- Out << ')';
-}
-
-void CWriter::visitSelectInst(SelectInst &I) {
- Out << "((";
- writeOperand(I.getCondition());
- Out << ") ? (";
- writeOperand(I.getTrueValue());
- Out << ") : (";
- writeOperand(I.getFalseValue());
- Out << "))";
-}
-
-// Returns the macro name or value of the max or min of an integer type
-// (as defined in limits.h).
-static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax,
- raw_ostream &Out) {
- const char* type;
- const char* sprefix = "";
-
- unsigned NumBits = Ty.getBitWidth();
- if (NumBits <= 8) {
- type = "CHAR";
- sprefix = "S";
- } else if (NumBits <= 16) {
- type = "SHRT";
- } else if (NumBits <= 32) {
- type = "INT";
- } else if (NumBits <= 64) {
- type = "LLONG";
- } else {
- llvm_unreachable("Bit widths > 64 not implemented yet");
- }
-
- if (isSigned)
- Out << sprefix << type << (isMax ? "_MAX" : "_MIN");
- else
- Out << "U" << type << (isMax ? "_MAX" : "0");
-}
-
-#ifndef NDEBUG
-static bool isSupportedIntegerSize(IntegerType &T) {
- return T.getBitWidth() == 8 || T.getBitWidth() == 16 ||
- T.getBitWidth() == 32 || T.getBitWidth() == 64;
-}
-#endif
-
-void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) {
- FunctionType *funT = F.getFunctionType();
- Type *retT = F.getReturnType();
- IntegerType *elemT = cast<IntegerType>(funT->getParamType(1));
-
- assert(isSupportedIntegerSize(*elemT) &&
- "CBackend does not support arbitrary size integers.");
- assert(cast<StructType>(retT)->getElementType(0) == elemT &&
- elemT == funT->getParamType(0) && funT->getNumParams() == 2);
-
- switch (F.getIntrinsicID()) {
- default:
- llvm_unreachable("Unsupported Intrinsic.");
- case Intrinsic::uadd_with_overflow:
- // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) {
- // Rty r;
- // r.field0 = a + b;
- // r.field1 = (r.field0 < a);
- // return r;
- // }
- Out << "static inline ";
- printType(Out, retT);
- Out << GetValueName(&F);
- Out << "(";
- printSimpleType(Out, elemT, false);
- Out << "a,";
- printSimpleType(Out, elemT, false);
- Out << "b) {\n ";
- printType(Out, retT);
- Out << "r;\n";
- Out << " r.field0 = a + b;\n";
- Out << " r.field1 = (r.field0 < a);\n";
- Out << " return r;\n}\n";
- break;
-
- case Intrinsic::sadd_with_overflow:
- // static inline Rty sadd_ixx(ixx a, ixx b) {
- // Rty r;
- // r.field1 = (b > 0 && a > XX_MAX - b) ||
- // (b < 0 && a < XX_MIN - b);
- // r.field0 = r.field1 ? 0 : a + b;
- // return r;
- // }
- Out << "static ";
- printType(Out, retT);
- Out << GetValueName(&F);
- Out << "(";
- printSimpleType(Out, elemT, true);
- Out << "a,";
- printSimpleType(Out, elemT, true);
- Out << "b) {\n ";
- printType(Out, retT);
- Out << "r;\n";
- Out << " r.field1 = (b > 0 && a > ";
- printLimitValue(*elemT, true, true, Out);
- Out << " - b) || (b < 0 && a < ";
- printLimitValue(*elemT, true, false, Out);
- Out << " - b);\n";
- Out << " r.field0 = r.field1 ? 0 : a + b;\n";
- Out << " return r;\n}\n";
- break;
- }
-}
-
-void CWriter::lowerIntrinsics(Function &F) {
- // This is used to keep track of intrinsics that get generated to a lowered
- // function. We must generate the prototypes before the function body which
- // will only be expanded on first use (by the loop below).
- std::vector<Function*> prototypesToGen;
-
- // Examine all the instructions in this function to find the intrinsics that
- // need to be lowered.
- for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
- if (CallInst *CI = dyn_cast<CallInst>(I++))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::not_intrinsic:
- case Intrinsic::vastart:
- case Intrinsic::vacopy:
- case Intrinsic::vaend:
- case Intrinsic::returnaddress:
- case Intrinsic::frameaddress:
- case Intrinsic::setjmp:
- case Intrinsic::longjmp:
- case Intrinsic::prefetch:
- case Intrinsic::powi:
- case Intrinsic::x86_sse_cmp_ss:
- case Intrinsic::x86_sse_cmp_ps:
- case Intrinsic::x86_sse2_cmp_sd:
- case Intrinsic::x86_sse2_cmp_pd:
- case Intrinsic::ppc_altivec_lvsl:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- // We directly implement these intrinsics
- break;
- default:
- // If this is an intrinsic that directly corresponds to a GCC
- // builtin, we handle it.
- const char *BuiltinName = "";
-#define GET_GCC_BUILTIN_NAME
-#include "llvm/Intrinsics.gen"
-#undef GET_GCC_BUILTIN_NAME
- // If we handle it, don't lower it.
- if (BuiltinName[0]) break;
-
- // All other intrinsic calls we must lower.
- Instruction *Before = 0;
- if (CI != &BB->front())
- Before = prior(BasicBlock::iterator(CI));
-
- IL->LowerIntrinsicCall(CI);
- if (Before) { // Move iterator to instruction after call
- I = Before; ++I;
- } else {
- I = BB->begin();
- }
- // If the intrinsic got lowered to another call, and that call has
- // a definition then we need to make sure its prototype is emitted
- // before any calls to it.
- if (CallInst *Call = dyn_cast<CallInst>(I))
- if (Function *NewF = Call->getCalledFunction())
- if (!NewF->isDeclaration())
- prototypesToGen.push_back(NewF);
-
- break;
- }
-
- // We may have collected some prototypes to emit in the loop above.
- // Emit them now, before the function that uses them is emitted. But,
- // be careful not to emit them twice.
- std::vector<Function*>::iterator I = prototypesToGen.begin();
- std::vector<Function*>::iterator E = prototypesToGen.end();
- for ( ; I != E; ++I) {
- if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
- Out << '\n';
- printFunctionSignature(*I, true);
- Out << ";\n";
- }
- }
-}
-
-void CWriter::visitCallInst(CallInst &I) {
- if (isa<InlineAsm>(I.getCalledValue()))
- return visitInlineAsm(I);
-
- bool WroteCallee = false;
-
- // Handle intrinsic function calls first...
- if (Function *F = I.getCalledFunction())
- if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
- if (visitBuiltinCall(I, ID, WroteCallee))
- return;
-
- Value *Callee = I.getCalledValue();
-
- PointerType *PTy = cast<PointerType>(Callee->getType());
- FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
-
- // If this is a call to a struct-return function, assign to the first
- // parameter instead of passing it to the call.
- const AttrListPtr &PAL = I.getAttributes();
- bool hasByVal = I.hasByValArgument();
- bool isStructRet = I.hasStructRetAttr();
- if (isStructRet) {
- writeOperandDeref(I.getArgOperand(0));
- Out << " = ";
- }
-
- if (I.isTailCall()) Out << " /*tail*/ ";
-
- if (!WroteCallee) {
- // If this is an indirect call to a struct return function, we need to cast
- // the pointer. Ditto for indirect calls with byval arguments.
- bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
-
- // GCC is a real PITA. It does not permit codegening casts of functions to
- // function pointers if they are in a call (it generates a trap instruction
- // instead!). We work around this by inserting a cast to void* in between
- // the function and the function pointer cast. Unfortunately, we can't just
- // form the constant expression here, because the folder will immediately
- // nuke it.
- //
- // Note finally, that this is completely unsafe. ANSI C does not guarantee
- // that void* and function pointers have the same size. :( To deal with this
- // in the common case, we handle casts where the number of arguments passed
- // match exactly.
- //
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
- if (CE->isCast())
- if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
- NeedsCast = true;
- Callee = RF;
- }
-
- if (NeedsCast) {
- // Ok, just cast the pointer type.
- Out << "((";
- if (isStructRet)
- printStructReturnPointerFunctionType(Out, PAL,
- cast<PointerType>(I.getCalledValue()->getType()));
- else if (hasByVal)
- printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
- else
- printType(Out, I.getCalledValue()->getType());
- Out << ")(void*)";
- }
- writeOperand(Callee);
- if (NeedsCast) Out << ')';
- }
-
- Out << '(';
-
- bool PrintedArg = false;
- if(FTy->isVarArg() && !FTy->getNumParams()) {
- Out << "0 /*dummy arg*/";
- PrintedArg = true;
- }
-
- unsigned NumDeclaredParams = FTy->getNumParams();
- CallSite CS(&I);
- CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
- unsigned ArgNo = 0;
- if (isStructRet) { // Skip struct return argument.
- ++AI;
- ++ArgNo;
- }
-
-
- for (; AI != AE; ++AI, ++ArgNo) {
- if (PrintedArg) Out << ", ";
- if (ArgNo < NumDeclaredParams &&
- (*AI)->getType() != FTy->getParamType(ArgNo)) {
- Out << '(';
- printType(Out, FTy->getParamType(ArgNo),
- /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
- Out << ')';
- }
- // Check if the argument is expected to be passed by value.
- if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
- writeOperandDeref(*AI);
- else
- writeOperand(*AI);
- PrintedArg = true;
- }
- Out << ')';
-}
-
-/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
-/// if the entire call is handled, return false if it wasn't handled, and
-/// optionally set 'WroteCallee' if the callee has already been printed out.
-bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
- bool &WroteCallee) {
- switch (ID) {
- default: {
- // If this is an intrinsic that directly corresponds to a GCC
- // builtin, we emit it here.
- const char *BuiltinName = "";
- Function *F = I.getCalledFunction();
-#define GET_GCC_BUILTIN_NAME
-#include "llvm/Intrinsics.gen"
-#undef GET_GCC_BUILTIN_NAME
- assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
-
- Out << BuiltinName;
- WroteCallee = true;
- return false;
- }
- case Intrinsic::vastart:
- Out << "0; ";
-
- Out << "va_start(*(va_list*)";
- writeOperand(I.getArgOperand(0));
- Out << ", ";
- // Output the last argument to the enclosing function.
- if (I.getParent()->getParent()->arg_empty())
- Out << "vararg_dummy_arg";
- else
- writeOperand(--I.getParent()->getParent()->arg_end());
- Out << ')';
- return true;
- case Intrinsic::vaend:
- if (!isa<ConstantPointerNull>(I.getArgOperand(0))) {
- Out << "0; va_end(*(va_list*)";
- writeOperand(I.getArgOperand(0));
- Out << ')';
- } else {
- Out << "va_end(*(va_list*)0)";
- }
- return true;
- case Intrinsic::vacopy:
- Out << "0; ";
- Out << "va_copy(*(va_list*)";
- writeOperand(I.getArgOperand(0));
- Out << ", *(va_list*)";
- writeOperand(I.getArgOperand(1));
- Out << ')';
- return true;
- case Intrinsic::returnaddress:
- Out << "__builtin_return_address(";
- writeOperand(I.getArgOperand(0));
- Out << ')';
- return true;
- case Intrinsic::frameaddress:
- Out << "__builtin_frame_address(";
- writeOperand(I.getArgOperand(0));
- Out << ')';
- return true;
- case Intrinsic::powi:
- Out << "__builtin_powi(";
- writeOperand(I.getArgOperand(0));
- Out << ", ";
- writeOperand(I.getArgOperand(1));
- Out << ')';
- return true;
- case Intrinsic::setjmp:
- Out << "setjmp(*(jmp_buf*)";
- writeOperand(I.getArgOperand(0));
- Out << ')';
- return true;
- case Intrinsic::longjmp:
- Out << "longjmp(*(jmp_buf*)";
- writeOperand(I.getArgOperand(0));
- Out << ", ";
- writeOperand(I.getArgOperand(1));
- Out << ')';
- return true;
- case Intrinsic::prefetch:
- Out << "LLVM_PREFETCH((const void *)";
- writeOperand(I.getArgOperand(0));
- Out << ", ";
- writeOperand(I.getArgOperand(1));
- Out << ", ";
- writeOperand(I.getArgOperand(2));
- Out << ")";
- return true;
- case Intrinsic::stacksave:
- // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
- // to work around GCC bugs (see PR1809).
- Out << "0; *((void**)&" << GetValueName(&I)
- << ") = __builtin_stack_save()";
- return true;
- case Intrinsic::x86_sse_cmp_ss:
- case Intrinsic::x86_sse_cmp_ps:
- case Intrinsic::x86_sse2_cmp_sd:
- case Intrinsic::x86_sse2_cmp_pd:
- Out << '(';
- printType(Out, I.getType());
- Out << ')';
- // Multiple GCC builtins multiplex onto this intrinsic.
- switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) {
- default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
- case 0: Out << "__builtin_ia32_cmpeq"; break;
- case 1: Out << "__builtin_ia32_cmplt"; break;
- case 2: Out << "__builtin_ia32_cmple"; break;
- case 3: Out << "__builtin_ia32_cmpunord"; break;
- case 4: Out << "__builtin_ia32_cmpneq"; break;
- case 5: Out << "__builtin_ia32_cmpnlt"; break;
- case 6: Out << "__builtin_ia32_cmpnle"; break;
- case 7: Out << "__builtin_ia32_cmpord"; break;
- }
- if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
- Out << 'p';
- else
- Out << 's';
- if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
- Out << 's';
- else
- Out << 'd';
-
- Out << "(";
- writeOperand(I.getArgOperand(0));
- Out << ", ";
- writeOperand(I.getArgOperand(1));
- Out << ")";
- return true;
- case Intrinsic::ppc_altivec_lvsl:
- Out << '(';
- printType(Out, I.getType());
- Out << ')';
- Out << "__builtin_altivec_lvsl(0, (void*)";
- writeOperand(I.getArgOperand(0));
- Out << ")";
- return true;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- Out << GetValueName(I.getCalledFunction()) << "(";
- writeOperand(I.getArgOperand(0));
- Out << ", ";
- writeOperand(I.getArgOperand(1));
- Out << ")";
- return true;
- }
-}
-
-//This converts the llvm constraint string to something gcc is expecting.
-//TODO: work out platform independent constraints and factor those out
-// of the per target tables
-// handle multiple constraint codes
-std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
- assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
-
- // Grab the translation table from MCAsmInfo if it exists.
- const MCAsmInfo *TargetAsm;
- std::string Triple = TheModule->getTargetTriple();
- if (Triple.empty())
- Triple = llvm::sys::getDefaultTargetTriple();
-
- std::string E;
- if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
- TargetAsm = Match->createMCAsmInfo(Triple);
- else
- return c.Codes[0];
-
- const char *const *table = TargetAsm->getAsmCBE();
-
- // Search the translation table if it exists.
- for (int i = 0; table && table[i]; i += 2)
- if (c.Codes[0] == table[i]) {
- delete TargetAsm;
- return table[i+1];
- }
-
- // Default is identity.
- delete TargetAsm;
- return c.Codes[0];
-}
-
-//TODO: import logic from AsmPrinter.cpp
-static std::string gccifyAsm(std::string asmstr) {
- for (std::string::size_type i = 0; i != asmstr.size(); ++i)
- if (asmstr[i] == '\n')
- asmstr.replace(i, 1, "\\n");
- else if (asmstr[i] == '\t')
- asmstr.replace(i, 1, "\\t");
- else if (asmstr[i] == '$') {
- if (asmstr[i + 1] == '{') {
- std::string::size_type a = asmstr.find_first_of(':', i + 1);
- std::string::size_type b = asmstr.find_first_of('}', i + 1);
- std::string n = "%" +
- asmstr.substr(a + 1, b - a - 1) +
- asmstr.substr(i + 2, a - i - 2);
- asmstr.replace(i, b - i + 1, n);
- i += n.size() - 1;
- } else
- asmstr.replace(i, 1, "%");
- }
- else if (asmstr[i] == '%')//grr
- { asmstr.replace(i, 1, "%%"); ++i;}
-
- return asmstr;
-}
-
-//TODO: assumptions about what consume arguments from the call are likely wrong
-// handle communitivity
-void CWriter::visitInlineAsm(CallInst &CI) {
- InlineAsm* as = cast<InlineAsm>(CI.getCalledValue());
- InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints();
-
- std::vector<std::pair<Value*, int> > ResultVals;
- if (CI.getType() == Type::getVoidTy(CI.getContext()))
- ;
- else if (StructType *ST = dyn_cast<StructType>(CI.getType())) {
- for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
- ResultVals.push_back(std::make_pair(&CI, (int)i));
- } else {
- ResultVals.push_back(std::make_pair(&CI, -1));
- }
-
- // Fix up the asm string for gcc and emit it.
- Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
- Out << " :";
-
- unsigned ValueCount = 0;
- bool IsFirst = true;
-
- // Convert over all the output constraints.
- for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
- E = Constraints.end(); I != E; ++I) {
-
- if (I->Type != InlineAsm::isOutput) {
- ++ValueCount;
- continue; // Ignore non-output constraints.
- }
-
- assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
- std::string C = InterpretASMConstraint(*I);
- if (C.empty()) continue;
-
- if (!IsFirst) {
- Out << ", ";
- IsFirst = false;
- }
-
- // Unpack the dest.
- Value *DestVal;
- int DestValNo = -1;
-
- if (ValueCount < ResultVals.size()) {
- DestVal = ResultVals[ValueCount].first;
- DestValNo = ResultVals[ValueCount].second;
- } else
- DestVal = CI.getArgOperand(ValueCount-ResultVals.size());
-
- if (I->isEarlyClobber)
- C = "&"+C;
-
- Out << "\"=" << C << "\"(" << GetValueName(DestVal);
- if (DestValNo != -1)
- Out << ".field" << DestValNo; // Multiple retvals.
- Out << ")";
- ++ValueCount;
- }
-
-
- // Convert over all the input constraints.
- Out << "\n :";
- IsFirst = true;
- ValueCount = 0;
- for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
- E = Constraints.end(); I != E; ++I) {
- if (I->Type != InlineAsm::isInput) {
- ++ValueCount;
- continue; // Ignore non-input constraints.
- }
-
- assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
- std::string C = InterpretASMConstraint(*I);
- if (C.empty()) continue;
-
- if (!IsFirst) {
- Out << ", ";
- IsFirst = false;
- }
-
- assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
- Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size());
-
- Out << "\"" << C << "\"(";
- if (!I->isIndirect)
- writeOperand(SrcVal);
- else
- writeOperandDeref(SrcVal);
- Out << ")";
- }
-
- // Convert over the clobber constraints.
- IsFirst = true;
- for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
- E = Constraints.end(); I != E; ++I) {
- if (I->Type != InlineAsm::isClobber)
- continue; // Ignore non-input constraints.
-
- assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
- std::string C = InterpretASMConstraint(*I);
- if (C.empty()) continue;
-
- if (!IsFirst) {
- Out << ", ";
- IsFirst = false;
- }
-
- Out << '\"' << C << '"';
- }
-
- Out << ")";
-}
-
-void CWriter::visitAllocaInst(AllocaInst &I) {
- Out << '(';
- printType(Out, I.getType());
- Out << ") alloca(sizeof(";
- printType(Out, I.getType()->getElementType());
- Out << ')';
- if (I.isArrayAllocation()) {
- Out << " * " ;
- writeOperand(I.getOperand(0));
- }
- Out << ')';
-}
-
-void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
- gep_type_iterator E, bool Static) {
-
- // If there are no indices, just print out the pointer.
- if (I == E) {
- writeOperand(Ptr);
- return;
- }
-
- // Find out if the last index is into a vector. If so, we have to print this
- // specially. Since vectors can't have elements of indexable type, only the
- // last index could possibly be of a vector element.
- VectorType *LastIndexIsVector = 0;
- {
- for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
- LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
- }
-
- Out << "(";
-
- // If the last index is into a vector, we can't print it as &a[i][j] because
- // we can't index into a vector with j in GCC. Instead, emit this as
- // (((float*)&a[i])+j)
- if (LastIndexIsVector) {
- Out << "((";
- printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
- Out << ")(";
- }
-
- Out << '&';
-
- // If the first index is 0 (very typical) we can do a number of
- // simplifications to clean up the code.
- Value *FirstOp = I.getOperand();
- if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
- // First index isn't simple, print it the hard way.
- writeOperand(Ptr);
- } else {
- ++I; // Skip the zero index.
-
- // Okay, emit the first operand. If Ptr is something that is already address
- // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
- if (isAddressExposed(Ptr)) {
- writeOperandInternal(Ptr, Static);
- } else if (I != E && (*I)->isStructTy()) {
- // If we didn't already emit the first operand, see if we can print it as
- // P->f instead of "P[0].f"
- writeOperand(Ptr);
- Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
- ++I; // eat the struct index as well.
- } else {
- // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
- Out << "(*";
- writeOperand(Ptr);
- Out << ")";
- }
- }
-
- for (; I != E; ++I) {
- if ((*I)->isStructTy()) {
- Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
- } else if ((*I)->isArrayTy()) {
- Out << ".array[";
- writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
- Out << ']';
- } else if (!(*I)->isVectorTy()) {
- Out << '[';
- writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
- Out << ']';
- } else {
- // If the last index is into a vector, then print it out as "+j)". This
- // works with the 'LastIndexIsVector' code above.
- if (isa<Constant>(I.getOperand()) &&
- cast<Constant>(I.getOperand())->isNullValue()) {
- Out << "))"; // avoid "+0".
- } else {
- Out << ")+(";
- writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
- Out << "))";
- }
- }
- }
- Out << ")";
-}
-
-void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType,
- bool IsVolatile, unsigned Alignment) {
-
- bool IsUnaligned = Alignment &&
- Alignment < TD->getABITypeAlignment(OperandType);
-
- if (!IsUnaligned)
- Out << '*';
- if (IsVolatile || IsUnaligned) {
- Out << "((";
- if (IsUnaligned)
- Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
- printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
- if (IsUnaligned) {
- Out << "; } ";
- if (IsVolatile) Out << "volatile ";
- Out << "*";
- }
- Out << ")";
- }
-
- writeOperand(Operand);
-
- if (IsVolatile || IsUnaligned) {
- Out << ')';
- if (IsUnaligned)
- Out << "->data";
- }
-}
-
-void CWriter::visitLoadInst(LoadInst &I) {
- writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
- I.getAlignment());
-
-}
-
-void CWriter::visitStoreInst(StoreInst &I) {
- writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
- I.isVolatile(), I.getAlignment());
- Out << " = ";
- Value *Operand = I.getOperand(0);
- Constant *BitMask = 0;
- if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
- if (!ITy->isPowerOf2ByteWidth())
- // We have a bit width that doesn't match an even power-of-2 byte
- // size. Consequently we must & the value with the type's bit mask
- BitMask = ConstantInt::get(ITy, ITy->getBitMask());
- if (BitMask)
- Out << "((";
- writeOperand(Operand);
- if (BitMask) {
- Out << ") & ";
- printConstant(BitMask, false);
- Out << ")";
- }
-}
-
-void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
- printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
- gep_type_end(I), false);
-}
-
-void CWriter::visitVAArgInst(VAArgInst &I) {
- Out << "va_arg(*(va_list*)";
- writeOperand(I.getOperand(0));
- Out << ", ";
- printType(Out, I.getType());
- Out << ");\n ";
-}
-
-void CWriter::visitInsertElementInst(InsertElementInst &I) {
- Type *EltTy = I.getType()->getElementType();
- writeOperand(I.getOperand(0));
- Out << ";\n ";
- Out << "((";
- printType(Out, PointerType::getUnqual(EltTy));
- Out << ")(&" << GetValueName(&I) << "))[";
- writeOperand(I.getOperand(2));
- Out << "] = (";
- writeOperand(I.getOperand(1));
- Out << ")";
-}
-
-void CWriter::visitExtractElementInst(ExtractElementInst &I) {
- // We know that our operand is not inlined.
- Out << "((";
- Type *EltTy =
- cast<VectorType>(I.getOperand(0)->getType())->getElementType();
- printType(Out, PointerType::getUnqual(EltTy));
- Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
- writeOperand(I.getOperand(1));
- Out << "]";
-}
-
-void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
- Out << "(";
- printType(Out, SVI.getType());
- Out << "){ ";
- VectorType *VT = SVI.getType();
- unsigned NumElts = VT->getNumElements();
- Type *EltTy = VT->getElementType();
-
- for (unsigned i = 0; i != NumElts; ++i) {
- if (i) Out << ", ";
- int SrcVal = SVI.getMaskValue(i);
- if ((unsigned)SrcVal >= NumElts*2) {
- Out << " 0/*undef*/ ";
- } else {
- Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
- if (isa<Instruction>(Op)) {
- // Do an extractelement of this value from the appropriate input.
- Out << "((";
- printType(Out, PointerType::getUnqual(EltTy));
- Out << ")(&" << GetValueName(Op)
- << "))[" << (SrcVal & (NumElts-1)) << "]";
- } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
- Out << "0";
- } else {
- printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
- (NumElts-1)),
- false);
- }
- }
- }
- Out << "}";
-}
-
-void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
- // Start by copying the entire aggregate value into the result variable.
- writeOperand(IVI.getOperand(0));
- Out << ";\n ";
-
- // Then do the insert to update the field.
- Out << GetValueName(&IVI);
- for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
- i != e; ++i) {
- Type *IndexedTy =
- ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(),
- makeArrayRef(b, i+1));
- if (IndexedTy->isArrayTy())
- Out << ".array[" << *i << "]";
- else
- Out << ".field" << *i;
- }
- Out << " = ";
- writeOperand(IVI.getOperand(1));
-}
-
-void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
- Out << "(";
- if (isa<UndefValue>(EVI.getOperand(0))) {
- Out << "(";
- printType(Out, EVI.getType());
- Out << ") 0/*UNDEF*/";
- } else {
- Out << GetValueName(EVI.getOperand(0));
- for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
- i != e; ++i) {
- Type *IndexedTy =
- ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(),
- makeArrayRef(b, i+1));
- if (IndexedTy->isArrayTy())
- Out << ".array[" << *i << "]";
- else
- Out << ".field" << *i;
- }
- }
- Out << ")";
-}
-
-//===----------------------------------------------------------------------===//
-// External Interface declaration
-//===----------------------------------------------------------------------===//
-
-bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
- formatted_raw_ostream &o,
- CodeGenFileType FileType,
- bool DisableVerify) {
- if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
-
- PM.add(createGCLoweringPass());
- PM.add(createLowerInvokePass());
- PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
- PM.add(new CWriter(o));
- PM.add(createGCInfoDeleter());
- return false;
-}
diff --git a/lib/Target/CBackend/CMakeLists.txt b/lib/Target/CBackend/CMakeLists.txt
deleted file mode 100644
index fa819a4e0b..0000000000
--- a/lib/Target/CBackend/CMakeLists.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-add_llvm_target(CBackendCodeGen
- CBackend.cpp
- )
-
-add_subdirectory(TargetInfo)
diff --git a/lib/Target/CBackend/CTargetMachine.h b/lib/Target/CBackend/CTargetMachine.h
deleted file mode 100644
index 8b2286ed6b..0000000000
--- a/lib/Target/CBackend/CTargetMachine.h
+++ /dev/null
@@ -1,42 +0,0 @@
-//===-- CTargetMachine.h - TargetMachine for the C backend ------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file declares the TargetMachine that is used by the C backend.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef CTARGETMACHINE_H
-#define CTARGETMACHINE_H
-
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetData.h"
-
-namespace llvm {
-
-struct CTargetMachine : public TargetMachine {
- CTargetMachine(const Target &T, StringRef TT,
- StringRef CPU, StringRef FS, const TargetOptions &Options,
- Reloc::Model RM, CodeModel::Model CM,
- CodeGenOpt::Level OL)
- : TargetMachine(T, TT, CPU, FS, Options) { }
-
- virtual bool addPassesToEmitFile(PassManagerBase &PM,
- formatted_raw_ostream &Out,
- CodeGenFileType FileType,
- bool DisableVerify);
-
- virtual const TargetData *getTargetData() const { return 0; }
-};
-
-extern Target TheCBackendTarget;
-
-} // End llvm namespace
-
-
-#endif
diff --git a/lib/Target/CBackend/LLVMBuild.txt b/lib/Target/CBackend/LLVMBuild.txt
deleted file mode 100644
index e64feb0e60..0000000000
--- a/lib/Target/CBackend/LLVMBuild.txt
+++ /dev/null
@@ -1,31 +0,0 @@
-;===- ./lib/Target/CBackend/LLVMBuild.txt ----------------------*- Conf -*--===;
-;
-; The LLVM Compiler Infrastructure
-;
-; This file is distributed under the University of Illinois Open Source
-; License. See LICENSE.TXT for details.
-;
-;===------------------------------------------------------------------------===;
-;
-; This is an LLVMBuild description file for the components in this subdirectory.
-;
-; For more information on the LLVMBuild system, please see:
-;
-; http://llvm.org/docs/LLVMBuild.html
-;
-;===------------------------------------------------------------------------===;
-
-[common]
-subdirectories = TargetInfo
-
-[component_0]
-type = TargetGroup
-name = CBackend
-parent = Target
-
-[component_1]
-type = Library
-name = CBackendCodeGen
-parent = CBackend
-required_libraries = Analysis CBackendInfo CodeGen Core MC Scalar Support Target TransformUtils
-add_to_library_groups = CBackend
diff --git a/lib/Target/CBackend/Makefile b/lib/Target/CBackend/Makefile
deleted file mode 100644
index bac3474099..0000000000
--- a/lib/Target/CBackend/Makefile
+++ /dev/null
@@ -1,16 +0,0 @@
-##===- lib/Target/CBackend/Makefile ------------------------*- Makefile -*-===##
-#
-# The LLVM Compiler Infrastructure
-#
-# This file is distributed under the University of Illinois Open Source
-# License. See LICENSE.TXT for details.
-#
-##===----------------------------------------------------------------------===##
-
-LEVEL = ../../..
-LIBRARYNAME = LLVMCBackendCodeGen
-DIRS = TargetInfo
-
-include $(LEVEL)/Makefile.common
-
-CompileCommonOpts += -Wno-format
diff --git a/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp b/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp
deleted file mode 100644
index e8274ff9ce..0000000000
--- a/lib/Target/CBackend/TargetInfo/CBackendTargetInfo.cpp
+++ /dev/null
@@ -1,21 +0,0 @@
-//===-- CBackendTargetInfo.cpp - CBackend Target Implementation -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CTargetMachine.h"
-#include "llvm/Module.h"
-#include "llvm/Support/TargetRegistry.h"
-using namespace llvm;
-
-Target llvm::TheCBackendTarget;
-
-extern "C" void LLVMInitializeCBackendTargetInfo() {
- RegisterTarget<> X(TheCBackendTarget, "c", "C backend");
-}
-
-extern "C" void LLVMInitializeCBackendTargetMC() {}
diff --git a/lib/Target/CBackend/TargetInfo/CMakeLists.txt b/lib/Target/CBackend/TargetInfo/CMakeLists.txt
deleted file mode 100644
index 62036161fd..0000000000
--- a/lib/Target/CBackend/TargetInfo/CMakeLists.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-include_directories( ${CMAKE_CURRENT_BINARY_DIR}/.. ${CMAKE_CURRENT_SOURCE_DIR}/.. )
-
-add_llvm_library(LLVMCBackendInfo
- CBackendTargetInfo.cpp
- )
diff --git a/lib/Target/CBackend/TargetInfo/LLVMBuild.txt b/lib/Target/CBackend/TargetInfo/LLVMBuild.txt
deleted file mode 100644
index 1b47d8ebbe..0000000000
--- a/lib/Target/CBackend/TargetInfo/LLVMBuild.txt
+++ /dev/null
@@ -1,23 +0,0 @@
-;===- ./lib/Target/CBackend/TargetInfo/LLVMBuild.txt -----------*- Conf -*--===;
-;
-; The LLVM Compiler Infrastructure
-;
-; This file is distributed under the University of Illinois Open Source
-; License. See LICENSE.TXT for details.
-;
-;===------------------------------------------------------------------------===;
-;
-; This is an LLVMBuild description file for the components in this subdirectory.
-;
-; For more information on the LLVMBuild system, please see:
-;
-; http://llvm.org/docs/LLVMBuild.html
-;
-;===------------------------------------------------------------------------===;
-
-[component_0]
-type = Library
-name = CBackendInfo
-parent = CBackend
-required_libraries = MC Support Target
-add_to_library_groups = CBackend
diff --git a/lib/Target/CBackend/TargetInfo/Makefile b/lib/Target/CBackend/TargetInfo/Makefile
deleted file mode 100644
index d4d5e15b40..0000000000
--- a/lib/Target/CBackend/TargetInfo/Makefile
+++ /dev/null
@@ -1,15 +0,0 @@
-##===- lib/Target/CBackend/TargetInfo/Makefile -------------*- Makefile -*-===##
-#
-# The LLVM Compiler Infrastructure
-#
-# This file is distributed under the University of Illinois Open Source
-# License. See LICENSE.TXT for details.
-#
-##===----------------------------------------------------------------------===##
-LEVEL = ../../../..
-LIBRARYNAME = LLVMCBackendInfo
-
-# Hack: we need to include 'main' target directory to grab private headers
-CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
-
-include $(LEVEL)/Makefile.common
diff --git a/lib/Target/LLVMBuild.txt b/lib/Target/LLVMBuild.txt
index 5a42ca5efb..8ec5673470 100644
--- a/lib/Target/LLVMBuild.txt
+++ b/lib/Target/LLVMBuild.txt
@@ -16,7 +16,7 @@
;===------------------------------------------------------------------------===;
[common]
-subdirectories = ARM CBackend CellSPU CppBackend Hexagon MBlaze MSP430 Mips PTX PowerPC Sparc X86 XCore
+subdirectories = ARM CellSPU CppBackend Hexagon MBlaze MSP430 Mips PTX PowerPC Sparc X86 XCore
; This is a special group whose required libraries are extended (by llvm-build)
; with the best execution engine (the native JIT, if available, or the