diff options
author | Chris Lattner <sabre@nondot.org> | 2004-07-22 21:30:35 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2004-07-22 21:30:35 +0000 |
commit | cc46c4fceeef4d5a359a1188b737689a69f5be5f (patch) | |
tree | a36818ea86400407f32eb0b93b4e483d4548dc40 /lib/Target/X86/X86SimpInstrSelector.cpp | |
parent | 0bafa9818baafc969359a668245cff7d95268931 (diff) |
Remove some (LARGE) abandoned code for the release. If this is ever needed
again in the future, it can be resurrected out of CVS
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15112 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/X86/X86SimpInstrSelector.cpp')
-rw-r--r-- | lib/Target/X86/X86SimpInstrSelector.cpp | 2826 |
1 files changed, 0 insertions, 2826 deletions
diff --git a/lib/Target/X86/X86SimpInstrSelector.cpp b/lib/Target/X86/X86SimpInstrSelector.cpp deleted file mode 100644 index 2ada795718..0000000000 --- a/lib/Target/X86/X86SimpInstrSelector.cpp +++ /dev/null @@ -1,2826 +0,0 @@ -//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines a simple peephole instruction selector for the x86 target -// -//===----------------------------------------------------------------------===// - -#include "X86.h" -#include "X86InstrBuilder.h" -#include "X86InstrInfo.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/CFG.h" -#include "Support/Statistic.h" -using namespace llvm; - -namespace { - Statistic<> - NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); -} - -namespace { - struct ISel : public FunctionPass, InstVisitor<ISel> { - TargetMachine &TM; - MachineFunction *F; // The function we are compiling into - MachineBasicBlock *BB; // The current MBB we are compiling - int VarArgsFrameIndex; // FrameIndex for start of varargs area - int ReturnAddressIndex; // FrameIndex for the return address - - std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs - - // MBBMap - Mapping between LLVM BB -> Machine BB - std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; - - ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} - - /// runOnFunction - Top level implementation of instruction selection for - /// the entire function. - /// - bool runOnFunction(Function &Fn) { - // First pass over the function, lower any unknown intrinsic functions - // with the IntrinsicLowering class. - LowerUnknownIntrinsicFunctionCalls(Fn); - - F = &MachineFunction::construct(&Fn, TM); - - // Create all of the machine basic blocks for the function... - for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) - F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); - - BB = &F->front(); - - // Set up a frame object for the return address. This is used by the - // llvm.returnaddress & llvm.frameaddress intrinisics. - ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); - - // Copy incoming arguments off of the stack... - LoadArgumentsToVirtualRegs(Fn); - - // Instruction select everything except PHI nodes - visit(Fn); - - // Select the PHI nodes - SelectPHINodes(); - - // Insert the FP_REG_KILL instructions into blocks that need them. - InsertFPRegKills(); - - RegMap.clear(); - MBBMap.clear(); - F = 0; - // We always build a machine code representation for the function - return true; - } - - virtual const char *getPassName() const { - return "X86 Simple Instruction Selection"; - } - - /// visitBasicBlock - This method is called when we are visiting a new basic - /// block. This simply creates a new MachineBasicBlock to emit code into - /// and adds it to the current MachineFunction. Subsequent visit* for - /// instructions will be invoked for all instructions in the basic block. - /// - void visitBasicBlock(BasicBlock &LLVM_BB) { - BB = MBBMap[&LLVM_BB]; - } - - /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the - /// function, lowering any calls to unknown intrinsic functions into the - /// equivalent LLVM code. - /// - void LowerUnknownIntrinsicFunctionCalls(Function &F); - - /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function - /// from the stack into virtual registers. - /// - void LoadArgumentsToVirtualRegs(Function &F); - - /// SelectPHINodes - Insert machine code to generate phis. This is tricky - /// because we have to generate our sources into the source basic blocks, - /// not the current one. - /// - void SelectPHINodes(); - - /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks - /// that need them. This only occurs due to the floating point stackifier - /// not being aggressive enough to handle arbitrary global stackification. - /// - void InsertFPRegKills(); - - // Visitation methods for various instructions. These methods simply emit - // fixed X86 code for each instruction. - // - - // Control flow operators - void visitReturnInst(ReturnInst &RI); - void visitBranchInst(BranchInst &BI); - - struct ValueRecord { - Value *Val; - unsigned Reg; - const Type *Ty; - ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} - ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} - }; - void doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args); - void visitCallInst(CallInst &I); - void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); - - // Arithmetic operators - void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); - void visitAdd(BinaryOperator &B);// visitSimpleBinary(B, 0); } - void visitSub(BinaryOperator &B);// { visitSimpleBinary(B, 1); } - void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned Op0Reg, unsigned Op1Reg); - void doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - unsigned DestReg, const Type *DestTy, - unsigned Op0Reg, unsigned Op1Val); - void visitMul(BinaryOperator &B); - - void visitDiv(BinaryOperator &B) { visitDivRem(B); } - void visitRem(BinaryOperator &B) { visitDivRem(B); } - void visitDivRem(BinaryOperator &B); - - // Bitwise operators - void visitAnd(BinaryOperator &B);// { visitSimpleBinary(B, 2); } - void visitOr (BinaryOperator &B);// { visitSimpleBinary(B, 3); } - void visitXor(BinaryOperator &B);// { visitSimpleBinary(B, 4); } - - // Comparison operators... - void visitSetCondInst(SetCondInst &I); - unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI); - - // Memory Instructions - void visitLoadInst(LoadInst &I); - void visitStoreInst(StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitAllocaInst(AllocaInst &I); - void visitMallocInst(MallocInst &I); - void visitFreeInst(FreeInst &I); - - // Other operators - void visitShiftInst(ShiftInst &I); - void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass - void visitCastInst(CastInst &I); - void visitVANextInst(VANextInst &I); - void visitVAArgInst(VAArgInst &I); - - void visitInstruction(Instruction &I) { - std::cerr << "Cannot instruction select: " << I; - abort(); - } - - /// promote32 - Make a value 32-bits wide, and put it somewhere. - /// - void promote32(unsigned targetReg, const ValueRecord &VR); - - /// getAddressingMode - Get the addressing mode to use to address the - /// specified value. The returned value should be used with addFullAddress. - void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, - unsigned &IndexReg, unsigned &Disp); - - - /// getGEPIndex - This is used to fold GEP instructions into X86 addressing - /// expressions. - void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - std::vector<Value*> &GEPOps, - std::vector<const Type*> &GEPTypes, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp); - - /// isGEPFoldable - Return true if the specified GEP can be completely - /// folded into the addressing mode of a load/store or lea instruction. - bool isGEPFoldable(MachineBasicBlock *MBB, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned &BaseReg, - unsigned &Scale, unsigned &IndexReg, unsigned &Disp); - - /// emitGEPOperation - Common code shared between visitGetElementPtrInst and - /// constant expression GEP support. - /// - void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned TargetReg); - - /// emitCastOperation - Common code shared between visitCastInst and - /// constant expression cast support. - /// - void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, unsigned TargetReg); - - /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary - /// and constant expression support. - /// - void emitSimpleBinaryOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - void emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - unsigned Op0Reg, unsigned Op1Reg, bool isDiv, - const Type *Ty, unsigned TargetReg); - - /// emitSetCCOperation - Common code shared between visitSetCondInst and - /// constant expression support. - /// - void emitSetCCOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg); - - /// emitShiftOperation - Common code shared between visitShiftInst and - /// constant expression support. - /// - void emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, unsigned DestReg); - - - /// copyConstantToRegister - Output the instructions required to put the - /// specified constant into the specified register. - /// - void copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - Constant *C, unsigned Reg); - - /// makeAnotherReg - This method returns the next register number we haven't - /// yet used. - /// - /// Long values are handled somewhat specially. They are always allocated - /// as pairs of 32 bit integer values. The register number returned is the - /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits - /// of the long value. - /// - unsigned makeAnotherReg(const Type *Ty) { - assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) && - "Current target doesn't have X86 reg info??"); - const X86RegisterInfo *MRI = - static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); - if (Ty == Type::LongTy || Ty == Type::ULongTy) { - const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); - // Create the lower part - F->getSSARegMap()->createVirtualRegister(RC); - // Create the upper part. - return F->getSSARegMap()->createVirtualRegister(RC)-1; - } - - // Add the mapping of regnumber => reg class to MachineFunction - const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); - return F->getSSARegMap()->createVirtualRegister(RC); - } - - /// getReg - This method turns an LLVM value into a register number. This - /// is guaranteed to produce the same register number for a particular value - /// every time it is queried. - /// - unsigned getReg(Value &V) { return getReg(&V); } // Allow references - unsigned getReg(Value *V) { - // Just append to the end of the current bb. - MachineBasicBlock::iterator It = BB->end(); - return getReg(V, BB, It); - } - unsigned getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt) { - unsigned &Reg = RegMap[V]; - if (Reg == 0) { - Reg = makeAnotherReg(V->getType()); - RegMap[V] = Reg; - } - - // If this operand is a constant, emit the code to copy the constant into - // the register here... - // - if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - // Move the address of the global into the register - BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV); - RegMap.erase(V); // Assign a new name to this address if ref'd again - } else if (Constant *C = dyn_cast<Constant>(V)) { - copyConstantToRegister(MBB, IPt, C, Reg); - RegMap.erase(V); // Assign a new name to this constant if ref'd again - } - - return Reg; - } - }; -} - -/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 -/// Representation. -/// -enum TypeClass { - cByte, cShort, cInt, cFP, cLong -}; - -enum Subclasses { - NegOne, PosOne, Cons, Other -}; - - - -/// getClass - Turn a primitive type into a "class" number which is based on the -/// size of the type, and whether or not it is floating point. -/// -static inline TypeClass getClass(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::SByteTyID: - case Type::UByteTyID: return cByte; // Byte operands are class #0 - case Type::ShortTyID: - case Type::UShortTyID: return cShort; // Short operands are class #1 - case Type::IntTyID: - case Type::UIntTyID: - case Type::PointerTyID: return cInt; // Int's and pointers are class #2 - - case Type::FloatTyID: - case Type::DoubleTyID: return cFP; // Floating Point is #3 - - case Type::LongTyID: - case Type::ULongTyID: return cLong; // Longs are class #4 - default: - assert(0 && "Invalid type to getClass!"); - return cByte; // not reached - } -} - -// getClassB - Just like getClass, but treat boolean values as bytes. -static inline TypeClass getClassB(const Type *Ty) { - if (Ty == Type::BoolTy) return cByte; - return getClass(Ty); -} - - -/// copyConstantToRegister - Output the instructions required to put the -/// specified constant into the specified register. -/// -void ISel::copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Constant *C, unsigned R) { - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { - unsigned Class = 0; - switch (CE->getOpcode()) { - case Instruction::GetElementPtr: - emitGEPOperation(MBB, IP, CE->getOperand(0), - CE->op_begin()+1, CE->op_end(), R); - return; - case Instruction::Cast: - emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); - return; - - case Instruction::Xor: ++Class; // FALL THROUGH - case Instruction::Or: ++Class; // FALL THROUGH - case Instruction::And: ++Class; // FALL THROUGH - case Instruction::Sub: ++Class; // FALL THROUGH - case Instruction::Add: - emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - Class, R); - return; - - case Instruction::Mul: { - unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP); - unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP); - doMultiply(MBB, IP, R, CE->getType(), Op0Reg, Op1Reg); - return; - } - case Instruction::Div: - case Instruction::Rem: { - unsigned Op0Reg = getReg(CE->getOperand(0), MBB, IP); - unsigned Op1Reg = getReg(CE->getOperand(1), MBB, IP); - emitDivRemOperation(MBB, IP, Op0Reg, Op1Reg, - CE->getOpcode() == Instruction::Div, - CE->getType(), R); - return; - } - - case Instruction::SetNE: - case Instruction::SetEQ: - case Instruction::SetLT: - case Instruction::SetGT: - case Instruction::SetLE: - case Instruction::SetGE: - emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode(), R); - return; - - case Instruction::Shl: - case Instruction::Shr: - emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), - CE->getOpcode() == Instruction::Shl, CE->getType(), R); - return; - - default: - std::cerr << "Offending expr: " << *C << "\n"; - assert(0 && "Constant expression not yet handled!\n"); - } - } - - if (C->getType()->isIntegral()) { - unsigned Class = getClassB(C->getType()); - - if (Class == cLong) { - // Copy the value into the register pair. - uint64_t Val = cast<ConstantInt>(C)->getRawValue(); - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF); - BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32); - return; - } - - assert(Class <= cInt && "Type not handled yet!"); - - static const unsigned IntegralOpcodeTab[] = { - X86::MOV8ri, X86::MOV16ri, X86::MOV32ri - }; - - if (C->getType() == Type::BoolTy) { - BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True); - } else { - ConstantInt *CI = cast<ConstantInt>(C); - BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue()); - } - } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - if (CFP->isExactlyValue(+0.0)) - BuildMI(*MBB, IP, X86::FLD0, 0, R); - else if (CFP->isExactlyValue(+1.0)) - BuildMI(*MBB, IP, X86::FLD1, 0, R); - else { - // Otherwise we need to spill the constant to memory... - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(CFP); - const Type *Ty = CFP->getType(); - - assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); - unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; - addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); - } - - } else if (isa<ConstantPointerNull>(C)) { - // Copy zero (null pointer) to the register. - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { - BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV); - } else { - std::cerr << "Offending constant: " << *C << "\n"; - assert(0 && "Type not handled yet!"); - } -} - -/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from -/// the stack into virtual registers. -/// -void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { - // Emit instructions to load the arguments... On entry to a function on the - // X86, the stack frame looks like this: - // - // [ESP] -- return address - // [ESP + 4] -- first argument (leftmost lexically) - // [ESP + 8] -- second argument, if first argument is four bytes in size - // ... - // - unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot - MachineFrameInfo *MFI = F->getFrameInfo(); - - for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { - unsigned Reg = getReg(*I); - - int FI; // Frame object index - switch (getClassB(I->getType())) { - case cByte: - FI = MFI->CreateFixedObject(1, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI); - break; - case cShort: - FI = MFI->CreateFixedObject(2, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI); - break; - case cInt: - FI = MFI->CreateFixedObject(4, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); - break; - case cLong: - FI = MFI->CreateFixedObject(8, ArgOffset); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); - addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4); - ArgOffset += 4; // longs require 4 additional bytes - break; - case cFP: - unsigned Opcode; - if (I->getType() == Type::FloatTy) { - Opcode = X86::FLD32m; - FI = MFI->CreateFixedObject(4, ArgOffset); - } else { - Opcode = X86::FLD64m; - FI = MFI->CreateFixedObject(8, ArgOffset); - ArgOffset += 4; // doubles require 4 additional bytes - } - addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI); - break; - default: - assert(0 && "Unhandled argument type!"); - } - ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... - } - - // If the function takes variable number of arguments, add a frame offset for - // the start of the first vararg value... this is used to expand - // llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); -} - - -/// SelectPHINodes - Insert machine code to generate phis. This is tricky -/// because we have to generate our sources into the source basic blocks, not -/// the current one. -/// -void ISel::SelectPHINodes() { - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const Function &LF = *F->getFunction(); // The LLVM function... - for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { - const BasicBlock *BB = I; - MachineBasicBlock &MBB = *MBBMap[I]; - - // Loop over all of the PHI nodes in the LLVM basic block... - MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); - for (BasicBlock::const_iterator I = BB->begin(); - PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { - - // Create a new machine instr PHI node, and insert it. - unsigned PHIReg = getReg(*PN); - MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, - X86::PHI, PN->getNumOperands(), PHIReg); - - MachineInstr *LongPhiMI = 0; - if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) - LongPhiMI = BuildMI(MBB, PHIInsertPoint, - X86::PHI, PN->getNumOperands(), PHIReg+1); - - // PHIValues - Map of blocks to incoming virtual registers. We use this - // so that we only initialize one incoming value for a particular block, - // even if the block has multiple entries in the PHI node. - // - std::map<MachineBasicBlock*, unsigned> PHIValues; - - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; - unsigned ValReg; - std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = - PHIValues.lower_bound(PredMBB); - - if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { - // We already inserted an initialization of the register for this - // predecessor. Recycle it. - ValReg = EntryIt->second; - - } else { - // Get the incoming value into a virtual register. - // - Value *Val = PN->getIncomingValue(i); - - // If this is a constant or GlobalValue, we may have to insert code - // into the basic block to compute it into a virtual register. - if (isa<Constant>(Val)) { - // Because we don't want to clobber any values which might be in - // physical registers with the computation of this constant (which - // might be arbitrarily complex if it is a constant expression), - // just insert the computation at the top of the basic block. - MachineBasicBlock::iterator PI = PredMBB->begin(); - - // Skip over any PHI nodes though! - while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) - ++PI; - - ValReg = getReg(Val, PredMBB, PI); - } else { - ValReg = getReg(Val); - } - - // Remember that we inserted a value for this PHI for this predecessor - PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); - } - - PhiMI->addRegOperand(ValReg); - PhiMI->addMachineBasicBlockOperand(PredMBB); - if (LongPhiMI) { - LongPhiMI->addRegOperand(ValReg+1); - LongPhiMI->addMachineBasicBlockOperand(PredMBB); - } - } - - // Now that we emitted all of the incoming values for the PHI node, make - // sure to reposition the InsertPoint after the PHI that we just added. - // This is needed because we might have inserted a constant into this - // block, right after the PHI's which is before the old insert point! - PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; - ++PHIInsertPoint; - } - } -} - -/// RequiresFPRegKill - The floating point stackifier pass cannot insert -/// compensation code on critical edges. As such, it requires that we kill all -/// FP registers on the exit from any blocks that either ARE critical edges, or -/// branch to a block that has incoming critical edges. -/// -/// Note that this kill instruction will eventually be eliminated when -/// restrictions in the stackifier are relaxed. -/// -static bool RequiresFPRegKill(const BasicBlock *BB) { -#if 0 - for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) { - const BasicBlock *Succ = *SI; - pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ); - ++PI; // Block have at least one predecessory - if (PI != PE) { // If it has exactly one, this isn't crit edge - // If this block has more than one predecessor, check all of the - // predecessors to see if they have multiple successors. If so, then the - // block we are analyzing needs an FPRegKill. - for (PI = pred_begin(Succ); PI != PE; ++PI) { - const BasicBlock *Pred = *PI; - succ_const_iterator SI2 = succ_begin(Pred); - ++SI2; // There must be at least one successor of this block. - if (SI2 != succ_end(Pred)) - return true; // Yes, we must insert the kill on this edge. - } - } - } - // If we got this far, there is no need to insert the kill instruction. - return false; -#else - return true; -#endif -} - -// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that -// need them. This only occurs due to the floating point stackifier not being -// aggressive enough to handle arbitrary global stackification. -// -// Currently we insert an FP_REG_KILL instruction into each block that uses or -// defines a floating point virtual register. -// -// When the global register allocators (like linear scan) finally update live -// variable analysis, we can keep floating point values in registers across -// portions of the CFG that do not involve critical edges. This will be a big -// win, but we are waiting on the global allocators before we can do this. -// -// With a bit of work, the floating point stackifier pass can be enhanced to -// break critical edges as needed (to make a place to put compensation code), -// but this will require some infrastructure improvements as well. -// -void ISel::InsertFPRegKills() { - SSARegMap &RegMap = *F->getSSARegMap(); - - for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { - for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I) - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { - MachineOperand& MO = I->getOperand(i); - if (MO.isRegister() && MO.getReg()) { - unsigned Reg = MO.getReg(); - if (MRegisterInfo::isVirtualRegister(Reg)) - if (RegMap.getRegClass(Reg)->getSize() == 10) - goto UsesFPReg; - } - } - // If we haven't found an FP register use or def in this basic block, check - // to see if any of our successors has an FP PHI node, which will cause a - // copy to be inserted into this block. - for (succ_const_iterator SI = succ_begin(BB->getBasicBlock()), - E = succ_end(BB->getBasicBlock()); SI != E; ++SI) { - MachineBasicBlock *SBB = MBBMap[*SI]; - for (MachineBasicBlock::iterator I = SBB->begin(); - I != SBB->end() && I->getOpcode() == X86::PHI; ++I) { - if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10) - goto UsesFPReg; - } - } - continue; - UsesFPReg: - // Okay, this block uses an FP register. If the block has successors (ie, - // it's not an unwind/return), insert the FP_REG_KILL instruction. - if (BB->getBasicBlock()->getTerminator()->getNumSuccessors() && - RequiresFPRegKill(BB->getBasicBlock())) { - BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); - ++NumFPKill; - } - } -} - - -// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into -// the conditional branch instruction which is the only user of the cc -// instruction. This is the case if the conditional branch is the only user of -// the setcc, and if the setcc is in the same basic block as the conditional -// branch. We also don't handle long arguments below, so we reject them here as -// well. -// -static SetCondInst *canFoldSetCCIntoBranch(Value *V) { - if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) - if (SCI->hasOneUse() && isa<BranchInst>(SCI->use_back()) && - SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) { - const Type *Ty = SCI->getOperand(0)->getType(); - if (Ty != Type::LongTy && Ty != Type::ULongTy) - return SCI; - } - return 0; -} - -// Return a fixed numbering for setcc instructions which does not depend on the -// order of the opcodes. -// -static unsigned getSetCCNumber(unsigned Opcode) { - switch(Opcode) { - default: assert(0 && "Unknown setcc instruction!"); - case Instruction::SetEQ: return 0; - case Instruction::SetNE: return 1; - case Instruction::SetLT: return 2; - case Instruction::SetGE: return 3; - case Instruction::SetGT: return 4; - case Instruction::SetLE: return 5; - } -} - -// LLVM -> X86 signed X86 unsigned -// ----- ---------- ------------ -// seteq -> sete sete -// setne -> setne setne -// setlt -> setl setb -// setge -> setge setae -// setgt -> setg seta -// setle -> setle setbe -// ---- -// sets // Used by comparison with 0 optimization -// setns -static const unsigned SetCCOpcodeTab[2][8] = { - { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr, - 0, 0 }, - { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr, - X86::SETSr, X86::SETNSr }, -}; - -// EmitComparison - This function emits a comparison of the two operands, -// returning the extended setcc code to use. -unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP) { - // The arguments are already supposed to be of the same type. - const Type *CompTy = Op0->getType(); - unsigned Class = getClassB(CompTy); - unsigned Op0r = getReg(Op0, MBB, IP); - - // Special case handling of: cmp R, i - if (Class == cByte || Class == cShort || Class == cInt) - if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - uint64_t Op1v = cast<ConstantInt>(CI)->getRawValue(); - - // Mask off any upper bits of the constant, if there are any... - Op1v &= (1ULL << (8 << Class)) - 1; - - // If this is a comparison against zero, emit more efficient code. We - // can't handle unsigned comparisons against zero unless they are == or - // !=. These should have been strength reduced already anyway. - if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) { - static const unsigned TESTTab[] = { - X86::TEST8rr, X86::TEST16rr, X86::TEST32rr - }; - BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r); - - if (OpNum == 2) return 6; // Map jl -> js - if (OpNum == 3) return 7; // Map jg -> jns - return OpNum; - } - - static const unsigned CMPTab[] = { - X86::CMP8ri, X86::CMP16ri, X86::CMP32ri - }; - - BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v); - return OpNum; - } - - // Special case handling of comparison against +/- 0.0 - if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1)) - if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) { - BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r); - BuildMI(*MBB, IP, X86::FNSTSW8r, 0); - BuildMI(*MBB, IP, X86::SAHF, 1); - return OpNum; - } - - unsigned Op1r = getReg(Op1, MBB, IP); - switch (Class) { - default: assert(0 && "Unknown type class!"); - // Emit: cmp <var1>, <var2> (do the comparison). We can - // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with - // 32-bit. - case cByte: - BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cShort: - BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cInt: - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); - break; - case cFP: - BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, X86::FNSTSW8r, 0); - BuildMI(*MBB, IP, X86::SAHF, 1); - break; - - case cLong: - if (OpNum < 2) { // seteq, setne - unsigned LoTmp = makeAnotherReg(Type::IntTy); - unsigned HiTmp = makeAnotherReg(Type::IntTy); - unsigned FinalTmp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); - break; // Allow the sete or setne to be generated from flags set by OR - } else { - // Emit a sequence of code which compares the high and low parts once - // each, then uses a conditional move to handle the overflow case. For - // example, a setlt for long would generate code like this: - // - // AL = lo(op1) < lo(op2) // Signedness depends on operands - // BL = hi(op1) < hi(op2) // Always unsigned comparison - // dest = hi(op1) == hi(op2) ? AL : BL; - // - - // FIXME: This would be much better if we had hierarchical register - // classes! Until then, hardcode registers so that we can deal with their - // aliases (because we don't have conditional byte moves). - // - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); - BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); - BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1); - BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); - BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); - BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) - |