diff options
author | Chris Lattner <sabre@nondot.org> | 2006-04-20 17:15:44 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2006-04-20 17:15:44 +0000 |
commit | 2706983c48d001b042896c4302c19a197b802fb6 (patch) | |
tree | 8fc153e045970f846d25e06dbfb6656ee2ee20e0 /lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp | |
parent | 43c40ffa41e4a9f96fb8b47a3e7c0c42c5421fa6 (diff) |
This target is no longer built. The ,v files now live in the reoptimizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27885 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp')
-rw-r--r-- | lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp | 3155 |
1 files changed, 0 insertions, 3155 deletions
diff --git a/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp b/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp deleted file mode 100644 index 8b3185155e..0000000000 --- a/lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp +++ /dev/null @@ -1,3155 +0,0 @@ -//===-- ModuloSchedulingSuperBlock.cpp - ModuloScheduling--------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This ModuloScheduling pass is based on the Swing Modulo Scheduling -// algorithm, but has been extended to support SuperBlocks (multiple -// basic block, single entry, multipl exit loops). -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "ModuloSchedSB" - -#include "DependenceAnalyzer.h" -#include "ModuloSchedulingSuperBlock.h" -#include "llvm/Constants.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/Passes.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/Support/Timer.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/SCCIterator.h" -#include "llvm/Instructions.h" -#include "../MachineCodeForInstruction.h" -#include "../SparcV9RegisterInfo.h" -#include "../SparcV9Internals.h" -#include "../SparcV9TmpInstr.h" -#include <fstream> -#include <sstream> -#include <cmath> -#include <utility> - -using namespace llvm; -/// Create ModuloSchedulingSBPass -/// -FunctionPass *llvm::createModuloSchedulingSBPass(TargetMachine & targ) { - DEBUG(std::cerr << "Created ModuloSchedulingSBPass\n"); - return new ModuloSchedulingSBPass(targ); -} - - -#if 1 -#define TIME_REGION(VARNAME, DESC) \ - NamedRegionTimer VARNAME(DESC) -#else -#define TIME_REGION(VARNAME, DESC) -#endif - - -//Graph Traits for printing out the dependence graph -template<typename GraphType> -static void WriteGraphToFileSB(std::ostream &O, const std::string &GraphName, - const GraphType >) { - std::string Filename = GraphName + ".dot"; - O << "Writing '" << Filename << "'..."; - std::ofstream F(Filename.c_str()); - - if (F.good()) - WriteGraph(F, GT); - else - O << " error opening file for writing!"; - O << "\n"; -}; - -namespace llvm { - Statistic<> NumLoops("moduloschedSB-numLoops", "Total Number of Loops"); - Statistic<> NumSB("moduloschedSB-numSuperBlocks", "Total Number of SuperBlocks"); - Statistic<> BBWithCalls("modulosched-BBCalls", "Basic Blocks rejected due to calls"); - Statistic<> BBWithCondMov("modulosched-loopCondMov", - "Basic Blocks rejected due to conditional moves"); - Statistic<> SBResourceConstraint("modulosched-resourceConstraint", - "Loops constrained by resources"); - Statistic<> SBRecurrenceConstraint("modulosched-recurrenceConstraint", - "Loops constrained by recurrences"); - Statistic<> SBFinalIISum("modulosched-finalIISum", "Sum of all final II"); - Statistic<> SBIISum("modulosched-IISum", "Sum of all theoretical II"); - Statistic<> SBMSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled"); - Statistic<> SBNoSched("modulosched-noSched", "No schedule"); - Statistic<> SBSameStage("modulosched-sameStage", "Max stage is 0"); - Statistic<> SBBLoops("modulosched-SBBLoops", "Number single basic block loops"); - Statistic<> SBInvalid("modulosched-SBInvalid", "Number invalid superblock loops"); - Statistic<> SBValid("modulosched-SBValid", "Number valid superblock loops"); - Statistic<> SBSize("modulosched-SBSize", "Total size of all valid superblocks"); - - template<> - struct DOTGraphTraits<MSchedGraphSB*> : public DefaultDOTGraphTraits { - static std::string getGraphName(MSchedGraphSB *F) { - return "Dependence Graph"; - } - - static std::string getNodeLabel(MSchedGraphSBNode *Node, MSchedGraphSB *Graph) { - if(!Node->isPredicate()) { - if (Node->getInst()) { - std::stringstream ss; - ss << *(Node->getInst()); - return ss.str(); //((MachineInstr*)Node->getInst()); - } - else - return "No Inst"; - } - else - return "Pred Node"; - } - static std::string getEdgeSourceLabel(MSchedGraphSBNode *Node, - MSchedGraphSBNode::succ_iterator I) { - //Label each edge with the type of dependence - std::string edgelabel = ""; - switch (I.getEdge().getDepOrderType()) { - - case MSchedGraphSBEdge::TrueDep: - edgelabel = "True"; - break; - - case MSchedGraphSBEdge::AntiDep: - edgelabel = "Anti"; - break; - - case MSchedGraphSBEdge::OutputDep: - edgelabel = "Output"; - break; - - case MSchedGraphSBEdge::NonDataDep: - edgelabel = "Pred"; - break; - - default: - edgelabel = "Unknown"; - break; - } - - //FIXME - int iteDiff = I.getEdge().getIteDiff(); - std::string intStr = "(IteDiff: "; - intStr += itostr(iteDiff); - - intStr += ")"; - edgelabel += intStr; - - return edgelabel; - } - }; - - bool ModuloSchedulingSBPass::runOnFunction(Function &F) { - bool Changed = false; - - //Get MachineFunction - MachineFunction &MF = MachineFunction::get(&F); - - //Get Loop Info & Dependence Anaysis info - LoopInfo &LI = getAnalysis<LoopInfo>(); - DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>(); - - //Worklist of superblocks - std::vector<std::vector<const MachineBasicBlock*> > Worklist; - FindSuperBlocks(F, LI, Worklist); - - DEBUG(if(Worklist.size() == 0) std::cerr << "No superblocks in function to ModuloSchedule\n"); - - //Loop over worklist and ModuloSchedule each SuperBlock - for(std::vector<std::vector<const MachineBasicBlock*> >::iterator SB = Worklist.begin(), - SBE = Worklist.end(); SB != SBE; ++SB) { - - //Print out Superblock - DEBUG(std::cerr << "ModuloScheduling SB: \n"; - for(std::vector<const MachineBasicBlock*>::const_iterator BI = SB->begin(), - BE = SB->end(); BI != BE; ++BI) { - (*BI)->print(std::cerr);}); - - if(!CreateDefMap(*SB)) { - defaultInst = 0; - defMap.clear(); - continue; - } - - MSchedGraphSB *MSG = new MSchedGraphSB(*SB, target, indVarInstrs[*SB], DA, - machineTollvm[*SB]); - - //Write Graph out to file - DEBUG(WriteGraphToFileSB(std::cerr, F.getName(), MSG)); - - //Calculate Resource II - int ResMII = calculateResMII(*SB); - - //Calculate Recurrence II - int RecMII = calculateRecMII(MSG, ResMII); - - DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n"); - - //Our starting initiation interval is the maximum of RecMII and ResMII - if(RecMII < ResMII) - ++SBRecurrenceConstraint; - else - ++SBResourceConstraint; - - II = std::max(RecMII, ResMII); - int mII = II; - - - //Print out II, RecMII, and ResMII - DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n"); - - //Calculate Node Properties - calculateNodeAttributes(MSG, ResMII); - - //Dump node properties if in debug mode - DEBUG(for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I !=E; ++I) { - std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " - << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth - << " Height: " << I->second.height << "\n"; - }); - - - //Put nodes in order to schedule them - computePartialOrder(); - - //Dump out partial order - DEBUG(for(std::vector<std::set<MSchedGraphSBNode*> >::iterator I = partialOrder.begin(), - E = partialOrder.end(); I !=E; ++I) { - std::cerr << "Start set in PO\n"; - for(std::set<MSchedGraphSBNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) - std::cerr << "PO:" << **J << "\n"; - }); - - //Place nodes in final order - orderNodes(); - - //Dump out order of nodes - DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { - std::cerr << "FO:" << **I << "\n"; - }); - - - //Finally schedule nodes - bool haveSched = computeSchedule(*SB, MSG); - - //Print out final schedule - DEBUG(schedule.print(std::cerr)); - - //Final scheduling step is to reconstruct the loop only if we actual have - //stage > 0 - if(haveSched) { - //schedule.printSchedule(std::cerr); - reconstructLoop(*SB); - ++SBMSLoops; - //Changed = true; - SBIISum += mII; - SBFinalIISum += II; - - if(schedule.getMaxStage() == 0) - ++SBSameStage; - } - else - ++SBNoSched; - - //Clear out our maps for the next basic block that is processed - nodeToAttributesMap.clear(); - partialOrder.clear(); - recurrenceList.clear(); - FinalNodeOrder.clear(); - schedule.clear(); - defMap.clear(); - - } - return Changed; - } - - void ModuloSchedulingSBPass::FindSuperBlocks(Function &F, LoopInfo &LI, - std::vector<std::vector<const MachineBasicBlock*> > &Worklist) { - - //Get MachineFunction - MachineFunction &MF = MachineFunction::get(&F); - - //Map of LLVM BB to machine BB - std::map<BasicBlock*, MachineBasicBlock*> bbMap; - - for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) { - BasicBlock *llvmBB = (BasicBlock*) BI->getBasicBlock(); - assert(!bbMap.count(llvmBB) && "LLVM BB already in map!"); - bbMap[llvmBB] = &*BI; - } - - //Iterate over the loops, and find super blocks - for(LoopInfo::iterator LB = LI.begin(), LE = LI.end(); LB != LE; ++LB) { - Loop *L = *LB; - ++NumLoops; - - //If loop is not single entry, try the next one - if(!L->getLoopPreheader()) - continue; - - //Check size of this loop, we don't want SBB loops - if(L->getBlocks().size() == 1) - continue; - - //Check if this loop contains no sub loops - if(L->getSubLoops().size() == 0) { - - std::vector<const MachineBasicBlock*> superBlock; - - //Get Loop Headers - BasicBlock *header = L->getHeader(); - - //Follow the header and make sure each BB only has one entry and is valid - BasicBlock *current = header; - assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB\n"); - MachineBasicBlock *currentMBB = bbMap[header]; - bool done = false; - bool success = true; - unsigned offset = 0; - std::map<const MachineInstr*, unsigned> indexMap; - - while(!done) { - //Loop over successors of this BB, they should be in the - //loop block and be valid - BasicBlock *next = 0; - for(succ_iterator I = succ_begin(current), E = succ_end(current); - I != E; ++I) { - if(L->contains(*I)) { - if(!next) - next = *I; - else { - done = true; - success = false; - break; - } - } - } - - if(success) { - superBlock.push_back(currentMBB); - if(next == header) - done = true; - else if(!next->getSinglePredecessor()) { - done = true; - success = false; - } - else { - //Check that the next BB only has one entry - current = next; - assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB"); - currentMBB = bbMap[current]; - } - } - } - - - - - - if(success) { - ++NumSB; - - //Loop over all the blocks in the superblock - for(std::vector<const MachineBasicBlock*>::iterator currentMBB = superBlock.begin(), MBBEnd = superBlock.end(); currentMBB != MBBEnd; ++currentMBB) { - if(!MachineBBisValid(*currentMBB, indexMap, offset)) { - success = false; - break; - } - } - } - - if(success) { - if(getIndVar(superBlock, bbMap, indexMap)) { - ++SBValid; - Worklist.push_back(superBlock); - SBSize += superBlock.size(); - } - else - ++SBInvalid; - } - } - } - } - - - bool ModuloSchedulingSBPass::getIndVar(std::vector<const MachineBasicBlock*> &superBlock, std::map<BasicBlock*, MachineBasicBlock*> &bbMap, - std::map<const MachineInstr*, unsigned> &indexMap) { - //See if we can get induction var instructions - std::set<const BasicBlock*> llvmSuperBlock; - - for(unsigned i =0; i < superBlock.size(); ++i) - llvmSuperBlock.insert(superBlock[i]->getBasicBlock()); - - //Get Target machine instruction info - const TargetInstrInfo *TMI = target.getInstrInfo(); - - //Get the loop back branch - BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) (superBlock[superBlock.size()-1])->getBasicBlock())->getTerminator()); - std::set<Instruction*> indVar; - - if(b->isConditional()) { - //Get the condition for the branch - Value *cond = b->getCondition(); - - DEBUG(std::cerr << "Condition: " << *cond << "\n"); - - //List of instructions associated with induction variable - std::vector<Instruction*> stack; - - //Add branch - indVar.insert(b); - - if(Instruction *I = dyn_cast<Instruction>(cond)) - if(bbMap.count(I->getParent())) { - if (!assocIndVar(I, indVar, stack, bbMap, superBlock[(superBlock.size()-1)]->getBasicBlock(), llvmSuperBlock)) - return false; - } - else - return false; - else - return false; - } - else { - indVar.insert(b); - } - - //Dump out instructions associate with indvar for debug reasons - DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); - N != NE; ++N) { - std::cerr << **N << "\n"; - }); - - //Create map of machine instr to llvm instr - std::map<MachineInstr*, Instruction*> mllvm; - for(std::vector<const MachineBasicBlock*>::iterator MBB = superBlock.begin(), MBE = superBlock.end(); MBB != MBE; ++MBB) { - BasicBlock *BB = (BasicBlock*) (*MBB)->getBasicBlock(); - for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I); - for (unsigned j = 0; j < tempMvec.size(); j++) { - mllvm[tempMvec[j]] = I; - } - } - } - - //Convert list of LLVM Instructions to list of Machine instructions - std::map<const MachineInstr*, unsigned> mIndVar; - for(std::set<Instruction*>::iterator N = indVar.begin(), - NE = indVar.end(); N != NE; ++N) { - - //If we have a load, we can't handle this loop because - //there is no way to preserve dependences between loads - //and stores - if(isa<LoadInst>(*N)) - return false; - - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N); - for (unsigned j = 0; j < tempMvec.size(); j++) { - MachineOpCode OC = (tempMvec[j])->getOpcode(); - if(TMI->isNop(OC)) - continue; - if(!indexMap.count(tempMvec[j])) - continue; - mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]]; - DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n"); - } - } - - //Put into a map for future access - indVarInstrs[superBlock] = mIndVar; - machineTollvm[superBlock] = mllvm; - - return true; - - } - - bool ModuloSchedulingSBPass::assocIndVar(Instruction *I, - std::set<Instruction*> &indVar, - std::vector<Instruction*> &stack, - std::map<BasicBlock*, MachineBasicBlock*> &bbMap, - const BasicBlock *last, std::set<const BasicBlock*> &llvmSuperBlock) { - - stack.push_back(I); - - //If this is a phi node, check if its the canonical indvar - if(PHINode *PN = dyn_cast<PHINode>(I)) { - if(llvmSuperBlock.count(PN->getParent())) { - if (Instruction *Inc = - dyn_cast<Instruction>(PN->getIncomingValueForBlock(last))) - if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) - if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) - if (CI->equalsInt(1)) { - //We have found the indvar, so add the stack, and inc instruction to the set - indVar.insert(stack.begin(), stack.end()); - indVar.insert(Inc); - stack.pop_back(); - return true; - } - return false; - } - } - else { - //Loop over each of the instructions operands, check if they are an instruction and in this BB - for(unsigned i = 0; i < I->getNumOperands(); ++i) { - if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) { - if(bbMap.count(N->getParent())) - if(!assocIndVar(N, indVar, stack, bbMap, last, llvmSuperBlock)) - return false; - } - } - } - - stack.pop_back(); - return true; - } - - - /// This function checks if a Machine Basic Block is valid for modulo - /// scheduling. This means that it has no control flow (if/else or - /// calls) in the block. Currently ModuloScheduling only works on - /// single basic block loops. - bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI, - std::map<const MachineInstr*, unsigned> &indexMap, - unsigned &offset) { - - //Check size of our basic block.. make sure we have more then just the terminator in it - if(BI->getBasicBlock()->size() == 1) - return false; - - //Get Target machine instruction info - const TargetInstrInfo *TMI = target.getInstrInfo(); - - unsigned count = 0; - for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { - //Get opcode to check instruction type - MachineOpCode OC = I->getOpcode(); - - //Look for calls - if(TMI->isCall(OC)) { - ++BBWithCalls; - return false; - } - - //Look for conditional move - if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi - || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi - || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr - || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr - || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi - || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi - || OC == V9::MOVFNEr || OC == V9::MOVFNEi) { - ++BBWithCondMov; - return false; - } - - indexMap[I] = count + offset; - - if(TMI->isNop(OC)) - continue; - - ++count; - } - - offset += count; - - return true; - } -} - -bool ModuloSchedulingSBPass::CreateDefMap(std::vector<const MachineBasicBlock*> &SB) { - defaultInst = 0; - - for(std::vector<const MachineBasicBlock*>::iterator BI = SB.begin(), - BE = SB.end(); BI != BE; ++BI) { - - for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) { - for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) { - const MachineOperand &mOp = I->getOperand(opNum); - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { - Value *V = mOp.getVRegValue(); - //assert if this is the second def we have seen - if(defMap.count(V) && isa<PHINode>(V)) - DEBUG(std::cerr << "FIXME: Dup def for phi!\n"); - else { - //assert(!defMap.count(V) && "Def already in the map"); - if(defMap.count(V)) - return false; - defMap[V] = (MachineInstr*) &*I; - } - } - - //See if we can use this Value* as our defaultInst - if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) { - Value *V = mOp.getVRegValue(); - if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V)) - defaultInst = (Instruction*) V; - } - } - } - } - - if(!defaultInst) - return false; - - return true; - -} - - -//ResMII is calculated by determining the usage count for each resource -//and using the maximum. -//FIXME: In future there should be a way to get alternative resources -//for each instruction -int ModuloSchedulingSBPass::calculateResMII(std::vector<const MachineBasicBlock*> &superBlock) { - - TIME_REGION(X, "calculateResMII"); - - const TargetInstrInfo *mii = target.getInstrInfo(); - const TargetSchedInfo *msi = target.getSchedInfo(); - - int ResMII = 0; - - //Map to keep track of usage count of each resource - std::map<unsigned, unsigned> resourceUsageCount; - - for(std::vector<const MachineBasicBlock*>::iterator BI = superBlock.begin(), BE = superBlock.end(); BI != BE; ++BI) { - for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) { - - //Get resource usage for this instruction - InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); - std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; - - //Loop over resources in each cycle and increments their usage count - for(unsigned i=0; i < resources.size(); ++i) - for(unsigned j=0; j < resources[i].size(); ++j) { - if(!resourceUsageCount.count(resources[i][j])) { - resourceUsageCount[resources[i][j]] = 1; - } - else { - resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; - } - } - } - } - - //Find maximum usage count - - //Get max number of instructions that can be issued at once. (FIXME) - int issueSlots = msi->maxNumIssueTotal; - - for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { - - //Get the total number of the resources in our cpu - int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; - - //Get total usage count for this resources - unsigned usageCount = RB->second; - - //Divide the usage count by either the max number we can issue or the number of - //resources (whichever is its upper bound) - double finalUsageCount; - DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n"); - - if( resourceNum <= issueSlots) - finalUsageCount = ceil(1.0 * usageCount / resourceNum); - else - finalUsageCount = ceil(1.0 * usageCount / issueSlots); - - - //Only keep track of the max - ResMII = std::max( (int) finalUsageCount, ResMII); - - } - - return ResMII; - -} - -/// calculateRecMII - Calculates the value of the highest recurrence -/// By value we mean the total latency/distance -int ModuloSchedulingSBPass::calculateRecMII(MSchedGraphSB *graph, int MII) { - - TIME_REGION(X, "calculateRecMII"); - - findAllCircuits(graph, MII); - int RecMII = 0; - - for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { - RecMII = std::max(RecMII, I->first); - } - - return MII; -} - -int CircCountSB; - -void ModuloSchedulingSBPass::unblock(MSchedGraphSBNode *u, std::set<MSchedGraphSBNode*> &blocked, - std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B) { - - //Unblock u - DEBUG(std::cerr << "Unblocking: " << *u << "\n"); - blocked.erase(u); - - //std::set<MSchedGraphSBNode*> toErase; - while (!B[u].empty()) { - MSchedGraphSBNode *W = *B[u].begin(); - B[u].erase(W); - //toErase.insert(*W); - DEBUG(std::cerr << "Removed: " << *W << "from B-List\n"); - if(blocked.count(W)) - unblock(W, blocked, B); - } - -} - -void ModuloSchedulingSBPass::addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) { - - int totalDelay = 0; - int totalDistance = 0; - std::vector<MSchedGraphSBNode*> recc; - MSchedGraphSBNode *start = 0; - MSchedGraphSBNode *end = 0; - - //Loop over recurrence, get delay and distance - for(std::vector<MSchedGraphSBNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) { - DEBUG(std::cerr << **N << "\n"); - totalDelay += (*N)->getLatency(); - - for(unsigned i = 0; i < (*N)->succ_size(); ++i) { - MSchedGraphSBEdge *edge = (*N)->getSuccessor(i); - if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) { - totalDistance += edge->getIteDiff(); - if(edge->getIteDiff() > 0) - if(!start && !end) { - start = *N; - end = edge->getDest(); - } - - } - } - - - //Get the original node - recc.push_back(newNodes[*N]); - - - } - - DEBUG(std::cerr << "End Recc\n"); - - - assert( (start && end) && "Must have start and end node to ignore edge for SCC"); - - if(start && end) { - //Insert reccurrence into the list - DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); - edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); - } - - int lastII = totalDelay / totalDistance; - - - recurrenceList.insert(std::make_pair(lastII, recc)); - -} - -bool ModuloSchedulingSBPass::circuit(MSchedGraphSBNode *v, std::vector<MSchedGraphSBNode*> &stack, - std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC, - MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B, - int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) { - bool f = false; - - DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n"); - - //Push node onto the stack - stack.push_back(v); - - //block this node - blocked.insert(v); - - //Loop over all successors of node v that are in the scc, create Adjaceny list - std::set<MSchedGraphSBNode*> AkV; - for(MSchedGraphSBNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) { - if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) { - AkV.insert(*I); - } - } - - for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) { - if(*I == s) { - //We have a circuit, so add it to our list - addRecc(stack, newNodes); - f = true; - } - else if(!blocked.count(*I)) { - if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes)) - f = true; - } - else - DEBUG(std::cerr << "Blocked: " << **I << "\n"); - } - - - if(f) { - unblock(v, blocked, B); - } - else { - for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) - B[*I].insert(v); - - } - - //Pop v - stack.pop_back(); - - return f; - -} - -void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) { - std::vector<MSchedGraphSBNode*> recc; - //Dump recurrence for now - DEBUG(std::cerr << "Starting Recc\n"); - - int totalDelay = 0; - int totalDistance = 0; - MSchedGraphSBNode *lastN = 0; - MSchedGraphSBNode *start = 0; - MSchedGraphSBNode *end = 0; - - //Loop over recurrence, get delay and distance - for(std::vector<MSchedGraphSBNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) { - DEBUG(std::cerr << **N << "\n"); - totalDelay += (*N)->getLatency(); - if(lastN) { - int iteDiff = (*N)->getInEdge(lastN).getIteDiff(); - totalDistance += iteDiff; - - if(iteDiff > 0) { - start = lastN; - end = *N; - } - } - //Get the original node - lastN = *N; - recc.push_back(newNodes[*N]); - - - } - - //Get the loop edge - totalDistance += lastN->getIteDiff(*stack.begin()); - - DEBUG(std::cerr << "End Recc\n"); - CircCountSB++; - - if(start && end) { - //Insert reccurrence into the list - DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); - edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); - } - else { - //Insert reccurrence into the list - DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n"); - edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN]))); - - } - //Adjust II until we get close to the inequality delay - II*distance <= 0 - int RecMII = II; //Starting value - int value = totalDelay-(RecMII * totalDistance); - int lastII = II; - while(value < 0) { - - lastII = RecMII; - RecMII--; - value = totalDelay-(RecMII * totalDistance); - } - - recurrenceList.insert(std::make_pair(lastII, recc)); - -} - - -void ModuloSchedulingSBPass::findAllCircuits(MSchedGraphSB *g, int II) { - - CircCountSB = 0; - - //Keep old to new node mapping information - std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> newNodes; - - //copy the graph - MSchedGraphSB *MSG = new MSchedGraphSB(*g, newNodes); - - DEBUG(std::cerr << "Finding All Circuits\n"); - - //Set of blocked nodes - std::set<MSchedGraphSBNode*> blocked; - - //Stack holding current circuit - std::vector<MSchedGraphSBNode*> stack; - - //Map for B Lists - std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > B; - - //current node - MSchedGraphSBNode *s; - - - //Iterate over the graph until its down to one node or empty - while(MSG->size() > 1) { - - //Write Graph out to file - //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG); - - DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n"); - DEBUG(std::cerr << "Finding strong component Vk with least vertex\n"); - - //Iterate over all the SCCs in the graph - std::set<MSchedGraphSBNode*> Visited; - std::vector<MSchedGraphSBNode*> Vk; - MSchedGraphSBNode* s = 0; - int numEdges = 0; - - //Find scc with the least vertex - for (MSchedGraphSB::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI) - if (Visited.insert(GI->second).second) { - for (scc_iterator<MSchedGraphSBNode*> SCCI = scc_begin(GI->second), - E = scc_end(GI->second); SCCI != E; ++SCCI) { - std::vector<MSchedGraphSBNode*> &nextSCC = *SCCI; - - if (Visited.insert(nextSCC[0]).second) { - Visited.insert(nextSCC.begin()+1, nextSCC.end()); - - if(nextSCC.size() > 1) { - DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n"); - - for(unsigned i = 0; i < nextSCC.size(); ++i) { - //Loop over successor and see if in scc, then count edge - MSchedGraphSBNode *node = nextSCC[i]; - for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { - if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end()) - numEdges++; - } - } - DEBUG(std::cerr << "Num Edges: " << numEdges << "\n"); - } - - //Ignore self loops - if(nextSCC.size() > 1) { - - //Get least vertex in Vk - if(!s) { - s = nextSCC[0]; - Vk = nextSCC; - } - - for(unsigned i = 0; i < nextSCC.size(); ++i) { - if(nextSCC[i] < s) { - s = nextSCC[i]; - Vk = nextSCC; - } - } - } - } - } - } - - - - //Process SCC - DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end(); - N != NE; ++N) { std::cerr << *((*N)->getInst()); }); - - //Iterate over all nodes in this scc - for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end(); - N != NE; ++N) { - blocked.erase(*N); - B[*N].clear(); - } - if(Vk.size() > 1) { - if(numEdges < 98) - circuit(s, stack, blocked, Vk, s, B, II, newNodes); - else - addSCC(Vk, newNodes); - - - //Delete nodes from the graph - //Find all nodes up to s and delete them - std::vector<MSchedGraphSBNode*> nodesToRemove; - nodesToRemove.push_back(s); - for(MSchedGraphSB::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) { - if(N->second < s ) - nodesToRemove.push_back(N->second); - } - for(std::vector<MSchedGraphSBNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) { - DEBUG(std::cerr << "Deleting Node: " << **N << "\n"); - MSG->deleteNode(*N); - } - } - else - break; - } - DEBUG(std::cerr << "Num Circuits found: " << CircCountSB << "\n"); -} -/// calculateNodeAttributes - The following properties are calculated for -/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and -/// MOB. -void ModuloSchedulingSBPass::calculateNodeAttributes(MSchedGraphSB *graph, int MII) { - - TIME_REGION(X, "calculateNodeAttributes"); - - assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared"); - - //Loop over the nodes and add them to the map - for(MSchedGraphSB::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { - - DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n"); - - //Assert if its already in the map - assert(nodeToAttributesMap.count(I->second) == 0 && - "Node attributes are already in the map"); - - //Put into the map with default attribute values - nodeToAttributesMap[I->second] = MSNodeSBAttributes(); - } - - //Create set to deal with reccurrences - std::set<MSchedGraphSBNode*> visitedNodes; - - //Now Loop over map and calculate the node attributes - for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - calculateASAP(I->first, MII, (MSchedGraphSBNode*) 0); - visitedNodes.clear(); - } - - int maxASAP = findMaxASAP(); - //Calculate ALAP which depends on ASAP being totally calculated - for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - calculateALAP(I->first, MII, maxASAP, (MSchedGraphSBNode*) 0); - visitedNodes.clear(); - } - - //Calculate MOB which depends on ASAP being totally calculated, also do depth and height - for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); - - DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); - calculateDepth(I->first, (MSchedGraphSBNode*) 0); - calculateHeight(I->first, (MSchedGraphSBNode*) 0); - } - - -} - -/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not -bool ModuloSchedulingSBPass::ignoreEdge(MSchedGraphSBNode *srcNode, MSchedGraphSBNode *destNode) { - if(destNode == 0 || srcNode ==0) - return false; - - bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); - - DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n"); - - return findEdge; -} - - -/// calculateASAP - Calculates the -int ModuloSchedulingSBPass::calculateASAP(MSchedGraphSBNode *node, int MII, MSchedGraphSBNode *destNode) { - - DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); - - //Get current node attributes - MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.ASAP != -1) - return attributes.ASAP; - - int maxPredValue = 0; - - //Iterate over all of the predecessors and find max - for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - - //Only process if we are not ignoring the edge - if(!ignoreEdge(*P, node)) { - int predASAP = -1; - predASAP = calculateASAP(*P, MII, node); - - assert(predASAP != -1 && "ASAP has not been calculated"); - int iteDiff = node->getInEdge(*P).getIteDiff(); - - int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); - DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); - maxPredValue = std::max(maxPredValue, currentPredValue); - } - } - - attributes.ASAP = maxPredValue; - - DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); - - return maxPredValue; -} - - -int ModuloSchedulingSBPass::calculateALAP(MSchedGraphSBNode *node, int MII, - int maxASAP, MSchedGraphSBNode *srcNode) { - - DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); - - MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.ALAP != -1) - return attributes.ALAP; - - if(node->hasSuccessors()) { - - //Trying to deal with the issue where the node has successors, but - //we are ignoring all of the edges to them. So this is my hack for - //now.. there is probably a more elegant way of doing this (FIXME) - bool processedOneEdge = false; - - //FIXME, set to something high to start - int minSuccValue = 9999999; - - //Iterate over all of the predecessors and fine max - for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { - - //Only process if we are not ignoring the edge - if(!ignoreEdge(node, *P)) { - processedOneEdge = true; - int succALAP = -1; - succALAP = calculateALAP(*P, MII, maxASAP, node); - - assert(succALAP != -1 && "Successors ALAP should have been caclulated"); - - int iteDiff = P.getEdge().getIteDiff(); - - int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; - - DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); - - minSuccValue = std::min(minSuccValue, currentSuccValue); - } - } - - if(processedOneEdge) - attributes.ALAP = minSuccValue; - - else - attributes.ALAP = maxASAP; - } - else - attributes.ALAP = maxASAP; - - DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); - - if(attributes.ALAP < 0) - attributes.ALAP = 0; - - return attributes.ALAP; -} - -int ModuloSchedulingSBPass::findMaxASAP() { - int maxASAP = 0; - - for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I != E; ++I) - maxASAP = std::max(maxASAP, I->second.ASAP); - return maxASAP; -} - - -int ModuloSchedulingSBPass::calculateHeight(MSchedGraphSBNode *node,MSchedGraphSBNode *srcNode) { - - MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.height != -1) - return attributes.height; - - int maxHeight = 0; - - //Iterate over all of the predecessors and find max - for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { - - - if(!ignoreEdge(node, *P)) { - int succHeight = calculateHeight(*P, node); - - assert(succHeight != -1 && "Successors Height should have been caclulated"); - - int currentHeight = succHeight + node->getLatency(); - maxHeight = std::max(maxHeight, currentHeight); - } - } - attributes.height = maxHeight; - DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); - return maxHeight; -} - - -int ModuloSchedulingSBPass::calculateDepth(MSchedGraphSBNode *node, - MSchedGraphSBNode *destNode) { - - MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.depth != -1) - return attributes.depth; - - int maxDepth = 0; - - //Iterate over all of the predecessors and fine max - for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - - if(!ignoreEdge(*P, node)) { - int predDepth = -1; - predDepth = calculateDepth(*P, node); - - assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); - - int currentDepth = predDepth + (*P)->getLatency(); - maxDepth = std::max(maxDepth, currentDepth); - } - } - attributes.depth = maxDepth; - - DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); - return maxDepth; -} - -void ModuloSchedulingSBPass::computePartialOrder() { - - TIME_REGION(X, "calculatePartialOrder"); - - DEBUG(std::cerr << "Computing Partial Order\n"); - - //Steps to add a recurrence to the partial order 1) Find reccurrence - //with the highest RecMII. Add it to the partial order. 2) For each - //recurrence with decreasing RecMII, add it to the partial order - //along with any nodes that connect this recurrence to recurrences - //already in the partial order - for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::reverse_iterator - I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { - - std::set<MSchedGraphSBNode*> new_recurrence; - - //Loop through recurrence and remove any nodes already in the partial order - for(std::vector<MSchedGraphSBNode*>::const_iterator N = I->second.begin(), - NE = I->second.end(); N != NE; ++N) { - - bool found = false; - for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - if(PO->count(*N)) - found = true; - } - - //Check if its a branch, and remove to handle special - if(!found) { - new_recurrence.insert(*N); - } - - } - - - if(new_recurrence.size() > 0) { - - std::vector<MSchedGraphSBNode*> path; - std::set<MSchedGraphSBNode*> nodesToAdd; - - //Dump recc we are dealing with (minus nodes already in PO) - DEBUG(std::cerr << "Recc: "); - DEBUG(for(std::set<MSchedGraphSBNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; }); - - //Add nodes that connect this recurrence to recurrences in the partial path - for(std::set<MSchedGraphSBNode*>::iterator N = new_recurrence.begin(), - NE = new_recurrence.end(); N != NE; ++N) - searchPath(*N, path, nodesToAdd, new_recurrence); - - //Add nodes to this recurrence if they are not already in the partial order - for(std::set<MSchedGraphSBNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end(); - N != NE; ++N) { - bool found = false; - for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - if(PO->count(*N)) - found = true; - } - if(!found) { - assert("FOUND CONNECTOR"); - new_recurrence.insert(*N); - } - } - - partialOrder.push_back(new_recurrence); - } - } - - //Add any nodes that are not already in the partial order - //Add them in a set, one set per connected component - std::set<MSchedGraphSBNode*> lastNodes; - std::set<MSchedGraphSBNode*> noPredNodes; - for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I != E; ++I) { - - bool found = false; - - //Check if its already in our partial order, if not add it to the final vector - for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - if(PO->count(I->first)) - found = true; - } - if(!found) - lastNodes.insert(I->first); - } - - //For each node w/out preds, see if there is a path to one of the - //recurrences, and if so add them to that current recc - /*for(std::set<MSchedGraphSBNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end(); - N != NE; ++N) { - DEBUG(std::cerr << "No Pred Path from: " << **N << "\n"); - for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - std::vector<MSchedGraphSBNode*> path; - pathToRecc(*N, path, *PO, lastNodes); - } - }*/ - - - //Break up remaining nodes that are not in the partial order - ///into their connected compoenents - while(lastNodes.size() > 0) { - std::set<MSchedGraphSBNode*> ccSet; - connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes); - if(ccSet.size() > 0) - partialOrder.push_back(ccSet); - } - -} - -void ModuloSchedulingSBPass::connectedComponentSet(MSchedGraphSBNode *node, std::set<MSchedGraphSBNode*> &ccSet, std::set<MSchedGraphSBNode*> &lastNodes) { - - //Add to final set - if( !ccSet.count(node) && lastNodes.count(node)) { - lastNodes.erase(node); - ccSet.insert(node); - } - else - return; - - //Loop over successors and recurse if we have not seen this node before - for(MSchedGraphSBNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) { - connectedComponentSet(*node_succ, ccSet, lastNodes); - } - -} - -void ModuloSchedulingSBPass::searchPath(MSchedGraphSBNode *node, - std::vector<MSchedGraphSBNode*> &path, - std::set<MSchedGraphSBNode*> &nodesToAdd, - std::set<MSchedGraphSBNode*> &new_reccurrence) { - //Push node onto the path - path.push_back(node); - - //Loop over all successors and see if there is a path from this node to - //a recurrence in the partial order, if so.. add all nodes to be added to recc - for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; - ++S) { - - //Check if we should ignore this edge first - if(ignoreEdge(node,*S)) - continue; - - //check if successor is in this recurrence, we will get to it eventually - if(new_reccurrence.count(*S)) - continue; - - //If this node exists in a recurrence already in the partial - //order, then add all nodes in the path to the set of nodes to add - //Check if its already in our partial order, if not add it to the - //final vector - bool found = false; - for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - - if(PO->count(*S)) { - found = true; - break; - } - } - - if(!found) { - nodesToAdd.insert(*S); - searchPath(*S, path, nodesToAdd, new_reccurrence); - } - } - - //Pop Node off the path - path.pop_back(); -} - -void dumpIntersection(std::set<MSchedGraphSBNode*> &IntersectCurrent) { - std::cerr << "Intersection ("; - for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) - std::cerr << **I << ", "; - std::cerr << ")\n"; -} - -void ModuloSchedulingSBPass::orderNodes() { - - TIME_REGION(X, "orderNodes"); - - int BOTTOM_UP = 0; - int TOP_DOWN = 1; - - //Set default order - int order = BOTTOM_UP; - - //Loop over and find all pred nodes and schedule them first - /*for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { - for(std::set<MSchedGraphSBNode*>::iterator N = CurrentSet->begin(), NE = CurrentSet->end(); N != NE; ++N) - if((*N)->isPredicate()) { - FinalNodeOrder.push_back(*N); - CurrentSet->erase(*N); - } - }*/ - - - - //Loop over all the sets and place them in the final node order - for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { - - DEBUG(std::cerr << "Processing set in S\n"); - DEBUG(dumpIntersection(*CurrentSet)); - - //Result of intersection - std::set<MSchedGraphSBNode*> IntersectCurrent; - - predIntersect(*CurrentSet, IntersectCurrent); - - //If the intersection of predecessor and current set is not empty - //sort nodes bottom up - if(IntersectCurrent.size() != 0) { - DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); - order = BOTTOM_UP; - } - //If empty, use successors - else { - DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); - - succIntersect(*CurrentSet, IntersectCurrent); - - //sort top-down - if(IntersectCurrent.size() != 0) { - DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); - order = TOP_DOWN; - } - else { - DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); - //Find node with max ASAP in current Set - MSchedGraphSBNode *node; - int maxASAP = 0; - DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); - for(std::set<MSchedGraphSBNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) { - //Get node attributes - MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*J)->second; - //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); - - if(maxASAP <= nodeAttr.ASAP) { - maxASAP = nodeAttr.ASAP; - node = *J; - } - } - assert(node != 0 && "In node ordering node should not be null"); - IntersectCurrent.insert(node); - order = BOTTOM_UP; - } - } - - //Repeat until all nodes are put into the final order from current set - while(IntersectCurrent.size() > 0) { - - if(order == TOP_DOWN) { - DEBUG(std::cerr << "Order is TOP DOWN\n"); - - while(IntersectCurrent.size() > 0) { - DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); - - int MOB = 0; - int height = 0; - MSchedGraphSBNode *highestHeightNode = *(IntersectCurrent.begin()); - - //Find node in intersection with highest heigh and lowest MOB - for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), - E = IntersectCurrent.end(); I != E; ++I) { - - //Get current nodes properties - MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - - if(height < nodeAttr.height) { - highestHeightNode = *I; - height = nodeAttr.height; - MOB = nodeAttr.MOB; - } - else if(height == nodeAttr.height) { - if(MOB > nodeAttr.height) { - highestHeightNode = *I; - height = nodeAttr.height; - MOB = nodeAttr.MOB; - } - } - } - - //Append our node with greatest height to the NodeOrder - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { - DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); - FinalNodeOrder.push_back(highestHeightNode); - } - - //Remove V from IntersectOrder - IntersectCurrent.erase(std::find(IntersectCurrent.begin(), - IntersectCurrent.end(), highestHeightNode)); - - - //Intersect V's successors with CurrentSet - for(MSchedGraphSBNode::succ_iterator P = highestHeightNode->succ_begin(), - E = highestHeightNode->succ_end(); P != E; ++P) { - //if(lower_bound(CurrentSet->begin(), - // CurrentSet->end(), *P) != CurrentSet->end()) { - if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { - if(ignoreEdge(highestHeightNode, *P)) - continue; - //If not already in Intersect, add - if(!IntersectCurrent.count(*P)) - IntersectCurrent.insert(*P); - } - } - } //End while loop over Intersect Size - - //Change direction - order = BOTTOM_UP; - - //Reset Intersect to reflect changes in OrderNodes - IntersectCurrent.clear(); - predIntersect(*CurrentSet, IntersectCurrent); - - } //End If TOP_DOWN - - //Begin if BOTTOM_UP - else { - DEBUG(std::cerr << "Order is BOTTOM UP\n"); - while(IntersectCurrent.size() > 0) { - DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); - - //dump intersection - DEBUG(dumpIntersection(IntersectCurrent)); - //Get node with highest depth, if a tie, use one with lowest - //MOB - int MOB = 0; - int depth = 0; - MSchedGraphSBNode *highestDepthNode = *(IntersectCurrent.begin()); - - for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), - E = IntersectCurrent.end(); I != E; ++I) { - //Find node attribute in graph - MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - - if(depth < nodeAttr.depth) { - highestDepthNode = *I; - depth = nodeAttr.depth; - MOB = nodeAttr.MOB; - } - else if(depth == nodeAttr.depth) { - if(MOB > nodeAttr.MOB) { - highestDepthNode = *I; - depth = nodeAttr.depth; - MOB = nodeAttr.MOB; - } - } - } - - - - //Append highest depth node to the NodeOrder - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { - DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); - FinalNodeOrder.push_back(highestDepthNode); - } - //Remove heightestDepthNode from IntersectOrder - IntersectCurrent.erase(highestDepthNode); - - - //Intersect heightDepthNode's pred with CurrentSet - for(MSchedGraphSBNode::pred_iterator P = highestDepthNode->pred_begin(), - E = highestDepthNode->pred_end(); P != E; ++P) { - if(CurrentSet->count(*P)) { - if(ignoreEdge(*P, highestDepthNode)) - continue; - - //If not already in Intersect, add - if(!IntersectCurrent.count(*P)) - IntersectCurrent.insert(*P); - } - } - - } //End while loop over Intersect Size - - //Change order - order = TOP_DOWN; - - //Reset IntersectCurrent to reflect changes in OrderNodes - IntersectCurrent.clear(); - succIntersect(*CurrentSet, IntersectCurrent); - } //End if BOTTOM_DOWN - - DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); - } - //End Wrapping while loop - DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); - }//End for over all sets of nodes - - //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no - //data dependencies) to the final order. We add this manually. It will always be - //in the last set of S since its not part of a recurrence - //Loop over all the sets and place them in the final node order - std::vector<std::set<MSchedGraphSBNode*> > ::reverse_iterator LastSet = partialOrder.rbegin(); - for(std::set<MSchedGraphSBNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end(); - CurrentNode != LastNode; ++CurrentNode) { - if((*CurrentNode)->getInst()->getOpcode() == V9::BA) - FinalNodeOrder.push_back(*CurrentNode); - } - //Return final Order - //return FinalNodeOrder; -} - - -void ModuloSchedulingSBPass::predIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) { - - for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphSBNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), - E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { - - //Check if we are supposed to ignore this edge or not - if(ignoreEdge(*P,FinalNodeOrder[j])) - continue; - - if(CurrentSet.count(*P)) - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) - IntersectResult.insert(*P); - } - } -} - -void ModuloSchedulingSBPass::succIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) { - - for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphSBNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), - E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { - - //Check if we are supposed to ignore this edge or not - if(ignoreEdge(FinalNodeOrder[j],*P)) - continue; - - if(CurrentSet.count(*P)) - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) - IntersectResult.insert(*P); - } - } -} - - - -bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock*> &SB, MSchedGraphSB *MSG) { - - TIME_REGION(X, "computeSchedule"); - - bool success = false; - - //FIXME: Should be set to max II of the original loop - //Cap II in order to prevent infinite loop - int capII = MSG->totalDelay(); - - while(!success) { - - //Keep track of branches, but do not insert into the schedule - std::vector<MSchedGraphSBNode*> branches; - - //Loop over the final node order and process each node - for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), - E = FinalNodeOrder.end(); I != E; ++I) { - - //CalculateEarly and Late start - bool initialLSVal = false; - bool initialESVal = false; - int EarlyStart = 0; - int LateStart = 0; - bool hasSucc = false; - bool hasPred = false; - bool sched; - - if((*I)->isBranch()) - if((*I)->hasPredecessors()) - sched = true; - else - sched = false; - else - sched = true; - - if(sched) { - //Loop over nodes in the schedule and determine if they are predecessors - //or successors of the node we are trying to schedule - for(MSScheduleSB::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); - nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { - - //For this cycle, get the vector of nodes schedule and loop over it - for(std::vector<MSchedGraphSBNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { - - if((*I)->isPredecessor(*schedNode)) { - int diff = (*I)->getInEdge(*schedNode).getIteDiff(); - int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; - DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); - DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); - if(initialESVal) - EarlyStart = std::max(EarlyStart, ES_Temp); - else { - EarlyStart = ES_Temp; - initialESVal = true; - } - hasPred = true; - } - if((*I)->isSuccessor(*schedNode)) { - int diff = (*schedNode)->getInEdge(*I).getIteDiff(); - int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; - DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); - DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); - if(initialLSVal) - LateStart = std::min(LateStart, LS_Temp); - else { - LateStart = LS_Temp; - initialLSVal = true; - } - hasSucc = true; - } - } - } - } - else { - branches.push_back(*I); - continue; - } - - //Check if the node has no pred or successors and set Early Start to its ASAP - if(!hasSucc && !hasPred) - EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; - - DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); - DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); - - //Now, try to schedule this node depending upon its pred and successor in the schedule - //already - if(!hasSucc && hasPred) - success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); - else if(!hasPred && hasSucc) - success = scheduleNode(*I, LateStart, (LateStart - II +1)); - else if(hasPred && hasSucc) { - if(EarlyStart > LateStart) { - success = false; - //LateStart = EarlyStart; - DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n"); - } - else - success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); - } - else - success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); - - if(!success) { - ++II; - schedule.clear(); - break; - } - - } - - if(success) { - DEBUG(std::cerr << "Constructing Schedule Kernel\n"); - success = schedule.constructKernel(II, branches, indVarInstrs[SB]); - DEBUG(std::cerr << "Done Constructing Schedule Kernel\n"); - if(!success) { - ++II; - schedule.clear(); - } - DEBUG(std::cerr << "Final II: " << II << "\n"); - - } - - if(II >= capII) { - DEBUG(std::cerr << "Maximum II reached, giving up\n"); - return false; - } - - assert(II < capII && "The II should not exceed the original loop number of cycles"); - } - return true; -} - - -bool ModuloSchedulingSBPass::scheduleNode(MSchedGraphSBNode *node, - int start, int end) { - bool success = false; - - DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); - - //Make sure start and end are not negative - //if(start < 0) { - //start = 0; - - //} - //if(end < 0) - //end = 0; - - bool forward = true; - if(start > end) - forward = false; - - bool increaseSC = true; - int cycle = start ; - - - while(increaseSC) { - - increaseSC = false; - - increaseSC = schedule.insert(node, cycle, II); - - if(!increaseSC) - return true; - - //Increment cycle to try again - if(forward) { - ++cycle; - DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); - if(cycle > end) - return false; - } - else { - --cycle; - DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); - if(cycle < end) - return false; - } - } - - return success; -} - -void ModuloSchedulingSBPass::reconstructLoop(std::vector<const MachineBasicBlock*> &SB) { - - TIME_REGION(X, "reconstructLoop"); - - - DEBUG(std::cerr << "Reconstructing Loop\n"); - - //First find the value *'s that we need to "save" - std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave; - - //Keep track of instructions we have already seen and their stage because - //we don't want to "save" values if they are used in the kernel immediately - std::map<const MachineInstr*, int> lastInstrs; - - - std::set<MachineBasicBlock*> seenBranchesBB; - const TargetInstrInfo *MTI = target.getInstrInfo(); - std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > instrsMovedDown; - std::map<MachineBasicBlock*, int> branchStage; - - //Loop over kernel and only look at instructions from a stage > 0 - //Look at its operands and save values *'s that are read - for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - - if(I->second !=0) { - //For this instruction, get the Value*'s that it reads and put them into the set. - //Assert if there is an operand of another type that we need to save - const MachineInstr *inst = I->first; - lastInstrs[inst] = I->second; - - for(unsigned i=0; i < inst->getNumOperands(); ++i) { - //get machine operand - const MachineOperand &mOp = inst->getOperand(i); - - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - //find the value in the map - if (const Value* srcI = mOp.getVRegValue()) { - - if(isa<Constant>(srcI) || isa<Argument>(srcI)) - continue; - - //Before we declare this Value* one that we should save - //make sure its def is not of the same stage as this instruction - //because it will be consumed before its used - Instruction *defInst = (Instruction*) srcI; - - //Should we save this value? - bool save = true; - - //Continue if not in the def map, loop invariant code does not need to be saved - if(!defMap.count(srcI)) - continue; - - MachineInstr *defInstr = defMap[srcI]; - - - if(lastInstrs.count(defInstr)) { - if(lastInstrs[defInstr] == I->second) { - save = false; - - } - } - - if(save) - valuesToSave[srcI] = std::make_pair(I->first, i); - } - } - - if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { - assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); - } - } - } - - - //Do a check to see if instruction was moved below its original branch - if(MTI->isBranch(I->first->getOpcode())) { - seenBranchesBB.insert(I->first->getParent()); - branchStage[I->first->getParent()] = I->second; - } - else { - instrsMovedDown[I->first->getParent()].push_back(std::make_pair(I->first, I->second)); - //assert(seenBranchesBB.count(I->first->getParent()) && "Instruction moved below branch\n"); - } - - } - - //The new loop will consist of one or more prologues, the kernel, and one or more epilogues. - - //Map to keep track of old to new values - std::map<Value*, std::map<int, Value*> > newValues; - - //Map to keep track of old to new values in kernel - std::map<Value*, std::map<int, Value*> > kernelPHIs; - - //Another map to keep track of what machine basic blocks these new value*s are in since - //they have no llvm instruction equivalent - std::map<Value*, MachineBasicBlock*> newValLocation; - - std::vector<std::vector<MachineBasicBlock*> > prologues; - std::vector<std::vector<BasicBlock*> > llvm_prologues; - - //Map to keep track of where the inner branches go - std::map<const MachineBasicBlock*, Value*> sideExits; - - - //Write prologue - if(schedule.getMaxStage() != 0) - writePrologues(prologues, SB, llvm_prologues, valuesToSave, newValues, newValLocation); - - std::vector<BasicBlock*> llvmKernelBBs; - std::vector<MachineBasicBlock*> machineKernelBBs; - Function *parent = (Function*) SB[0]->getBasicBlock()->getParent(); - - for(unsigned i = 0; i < SB.size(); ++i) { - llvmKernelBBs.push_back(new BasicBlock("Kernel", parent)); - - machineKernelBBs.push_back(new MachineBasicBlock(llvmKernelBBs[i])); - (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(machineKernelBBs[i]); - } - - writeKernel(llvmKernelBBs, machineKernelBBs, valuesToSave, newValues, newValLocation, kernelPHIs); - - - std::vector<std::vector<MachineBasicBlock*> > epilogues; - std::vector<std::vector<BasicBlock*> > llvm_epilogues; - - //Write epilogues - if(schedule.getMaxStage() != 0) - writeEpilogues(epilogues, SB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs); - - - //Fix our branches - fixBranches(prologues, llvm_prologues, machineKernelBBs, llvmKernelBBs, epilogues, llvm_epilogues, SB, sideExits); - - //Print out epilogues and prologue - DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end(); - PI != PE; ++PI) { - std::cerr << "PROLOGUE\n"; - for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I) - (*I)->print(std::cerr); - }); - - DEBUG(std::cerr << "KERNEL\n"); - DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);}); - - DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end(); - EI != EE; ++EI) { - std::cerr << "EPILOGUE\n"; - for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I) - (*I)->print(std::cerr); - }); - - - //Remove phis - removePHIs(SB, prologues, epilogues, machineKernelBBs, newValLocation); - - //Print out epilogues and prologue - DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end(); - PI != PE; ++PI) { - std::cerr << "PROLOGUE\n"; - for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I) - (*I)->print(std::cerr); - }); - - DEBUG(std::cerr << "KERNEL\n"); - DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);}); - - DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end(); - EI != EE; ++EI) { - std::cerr << "EPILOGUE\n"; - for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I) - (*I)->print(std::cerr); - }); - - writeSideExits(prologues, llvm_prologues, epilogues, llvm_epilogues, sideExits, instrsMovedDown, SB, machineKernelBBs, branchStage); - - - DEBUG(std::cerr << "New Machine Function" << "\n"); -} - - -void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<MachineBasicBlock*> &machineKernelBB, std::vector<BasicBlock*> &llvmKernelBB, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::vector<const MachineBasicBlock*> &SB, std::map<const MachineBasicBlock*, Value*> &sideExits) { - - const TargetInstrInfo *TMI = target.getInstrInfo(); - - //Get exit BB - BasicBlock *last = (BasicBlock*) SB[SB.size()-1]->getBasicBlock(); - BasicBlock *kernel_exit = 0; - bool sawFirst = false; - - for(succ_iterator I = succ_begin(last), - E = succ_end(last); I != E; ++I) { - if (*I != SB[0]->getBasicBlock()) { - kernel_exit = *I; - break; - } - else - sawFirst = true; - } - if(!kernel_exit && sawFirst) { - kernel_exit = (BasicBlock*) SB[0]->getBasicBlock(); - } - - assert(kernel_exit && "Kernel Exit can not be null"); - - if(schedule.getMaxStage() != 0) { - //Fix prologue branches - for(unsigned i = 0; i < prologues.size(); ++i) { - - for(unsigned j = 0; j < prologues[i].size(); ++j) { - - MachineBasicBlock *currentMBB = prologues[i][j]; - - //Find terminator since getFirstTerminator does not work! - for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { - MachineOpCode OC = mInst->getOpcode(); - //If its a branch update its branchto - if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Check if we are branching to the kernel, if not branch to epilogue - if(mOp.getVRegValue() == SB[0]->getBasicBlock()) { - if(i >= prologues.size()-1) - mOp.setValueReg(llvmKernelBB[0]); - else - mOp.setValueReg(llvm_prologues[i+1][0]); - } - else if( (mOp.getVRegValue() == kernel_exit) && (j == prologues[i].size()-1)) { - mOp.setValueReg(llvm_epilogues[i][0]); - } - else if(mOp.getVRegValue() == SB[j+1]->getBasicBlock()) { - mOp.setValueReg(llvm_prologues[i][j+1]); - } - - } - } - - DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); - } - } - - //Update llvm basic block with our new branch instr - DEBUG(std::cerr << SB[i]->getBasicBlock()->getTerminator() << "\n"); - - const BranchInst *branchVal = dyn_cast<BranchInst>(SB[i]->getBasicBlock()->getTerminator()); - - //Check for inner branch - if(j < prologues[i].size()-1) { - //Find our side exit LLVM basic block - BasicBlock *sideExit = 0; - for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { - if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) - sideExit = branchVal->getSuccessor(s); - } - assert(sideExit && "Must have side exit llvm basic block"); - TerminatorInst *newBranch = new BranchInst(sideExit, - llvm_prologues[i][j+1], - branchVal->getCondition(), - llvm_prologues[i][j]); - } - else { - //If last prologue - if(i == prologues.size()-1) { - TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], - llvm_epilogues[i][0], - branchVal->getCondition(), - llvm_prologues[i][j]); - } - else { - TerminatorInst *newBranch = new BranchInst(llvm_prologues[i+1][0], - llvm_epilogues[i][0], - branchVal->getCondition(), - llvm_prologues[i][j]); - } - } - } - } - } - - //Fix up kernel machine branches - for(unsigned i = 0; i < machineKernelBB.size(); ++i) { - MachineBasicBlock *currentMBB = machineKernelBB[i]; - - for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { - MachineOpCode OC = mInst->getOpcode(); - if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - - if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Deal with inner kernel branches - if(i < machineKernelBB.size()-1) { - if(mOp.getVRegValue() == SB[i+1]->getBasicBlock()) - mOp.setValueReg(llvmKernelBB[i+1]); - //Side exit! - else { - sideExits[SB[i]] = mOp.getVRegValue(); - } - } - else { - if(mOp.getVRegValue() == SB[0]->getBasicBlock()) - mOp.setValueReg(llvmKernelBB[0]); - else { - if(llvm_epilogues.size() > 0) - mOp.setValueReg(llvm_epilogues[0][0]); - } - } - } - } - } - } - - //Update kernelLLVM branches - const BranchInst *branchVal = dyn_cast<BranchInst>(SB[0]->getBasicBlock()->getTerminator()); - - //deal with inner branch - if(i < machineKernelBB.size()-1) { - - //Find our side exit LLVM basic block - BasicBlock *sideExit = 0; - for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { - if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) - sideExit = branchVal->getSuccessor(s); - } - assert(sideExit && "Must have side exit llvm basic block"); - TerminatorInst *newBranch = new BranchInst(sideExit, - llvmKernelBB[i+1], - branchVal->getCondition(), - llvmKernelBB[i]); - } - else { - //Deal with outter branches - if(epilogues.size() > 0) { - TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], - llvm_epilogues[0][0], - branchVal->getCondition(), - llvmKernelBB[i]); - } - else { - TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], - kernel_exit, - branchVal->getCondition(), - llvmKernelBB[i]); - } - } - } - - if(schedule.getMaxStage() != 0) { - - //Lastly add unconditional branches for the epilogues - for(unsigned i = 0; i < epilogues.size(); ++i) { - - for(unsigned j=0; j < epilogues[i].size(); ++j) { - //Now since we don't have fall throughs, add a unconditional - //branch to the next prologue - - //Before adding these, we need to check if the epilogue already has - //a branch in it - bool hasBranch = false; - /*if(j < epilogues[i].size()-1) { - MachineBasicBlock *currentMBB = epilogues[i][j]; - for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { - - MachineOpCode OC = mInst->getOpcode(); - - //If its a branch update its branchto - if(TMI->isBranch(OC)) { - hasBranch = true; - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - - if(mOp.getVRegValue() != sideExits[SB[j]]) { - mOp.setValueReg(llvm_epilogues[i][j+1]); - } - - } - } - - - DEBUG(std::cerr << "New Epilogue Branch: " << *mInst << "\n"); - } - } - if(hasBranch) { - const BranchInst *branchVal = dyn_cast<BranchInst>(SB[j]->getBasicBlock()->getTerminator()); - TerminatorInst *newBranch = new BranchInst((BasicBlock*)sideExits[SB[j]], - llvm_epilogues[i][j+1], - branchVal->getCondition(), - llvm_epilogues[i][j]); - } - }*/ - - if(!hasBranch) { - - //Handle inner branches - if(j < epilogues[i].size()-1) { - BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i][j+1]); - TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i][j+1], - llvm_epilogues[i][j]); - } - else { - - //Check if this is the last epilogue - if(i != epilogues.size()-1) { - BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i+1][0]); - //Add unconditional branch to end of epilogue - TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i+1][0], - llvm_epilogues[i][j]); - - } - else { - BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(kernel_exit); - TerminatorInst *newBranch = new BranchInst(kernel_exit, llvm_epilogues[i][j]); - } - } - - //Add one more nop! - BuildMI(epilogues[i][j], V9::NOP, 0); - - } - } - } - } - - //Find all llvm basic blocks that branch to the loop entry and - //change to our first prologue. - const BasicBlock *llvmBB = SB[0]->getBasicBlock(); - - std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB)); - - for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), - PE = Preds.end(); P != PE; ++P) { - if(*P == SB[SB.size()-1]->getBasicBlock()) - continue; - else { - DEBUG(std::cerr << "Found our entry BB\n"); - DEBUG((*P)->print(std::cerr)); - //Get the Terminator instruction for this basic block and print it out - //DEBUG(std::cerr << *((*P)->getTerminator()) << "\n"); - - //Update the terminator - TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); - for(unsigned i=0; i < term->getNumSuccessors(); ++i) { - if(term->getSuccessor(i) == llvmBB) { - DEBUG(std::cerr << "Replacing successor bb\n"); - if(llvm_prologues.size() > 0) { - term->setSuccessor(i, llvm_prologues[0][0]); - - DEBUG(std::cerr << "New Term" << *((*P)->getTerminator()) << "\n"); - - //Also update its corresponding machine instruction - MachineCodeForInstruction & tempMvec = - MachineCodeForInstruction::get(term); - for (unsigned j = 0; j < tempMvec.size(); j++) { - MachineInstr *temp = tempMvec[j]; - MachineOpCode opc = temp->getOpcode(); - if(TMI->isBranch(opc)) { - DEBUG(std::cerr << *temp << "\n"); - //Update branch - for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { - MachineOperand &mOp = temp->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - if(mOp.getVRegValue() == llvmBB) - mOp.setValueReg(llvm_prologues[0][0]); - } - } - } - } - } - else { - term->setSuccessor(i, llvmKernelBB[0]); - - //Also update its corresponding machine instruction - MachineCodeForInstruction & tempMvec = - MachineCodeForInstruction::get(term); - for(unsigned j = 0; j < tempMvec.size(); j++) { - MachineInstr *temp = tempMvec[j]; - MachineOpCode opc = temp->getOpcode(); - if(TMI->isBranch(opc)) { - DEBUG(std::cerr << *temp << "\n"); - //Update branch - for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { - MachineOperand &mOp = temp->getOperand(opNum); - if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - if(mOp.getVRegValue() == llvmBB) - mOp.setValueReg(llvmKernelBB[0]); - } - } - } - } - } - } - } - break; - } - } - -} - - -void ModuloSchedulingSBPass::writePrologues(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) { - - //Keep a map to easily know whats in the kernel - std::map<int, std::set<const MachineInstr*> > inKernel; - int maxStageCount = 0; - - //Keep a map of new values we consumed in case they need to be added back - std::map<Value*, std::map<int, Value*> > consumedValues; - - DEBUG(schedule.print(std::cerr)); - - for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - maxStageCount = std::max(maxStageCount, I->second); - - //Put int the map so we know what instructions in each stage are in the kernel - DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n"); - inKernel[I->second].insert(I->first); - } - - //Get target information to look at machine operands - const TargetInstrInfo *mii = target.getInstrInfo(); - - //Now write the prologues - for(int i = 0; i < maxStageCount; ++i) { - std::vector<MachineBasicBlock*> current_prologue; - std::vector<BasicBlock*> current_llvm_prologue; - - for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), - MBE = origSB.end(); MB != MBE; ++MB) { - const MachineBasicBlock *MBB = *MB; - //Create new llvm and machine bb - BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (MBB->getBasicBlock()->getParent())); - MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); - - DEBUG(std::cerr << "i=" << i << "\n"); - - for(int j = i; j >= 0; --j) { - //iterate over instructions in original bb - for(MachineBasicBlock::const_iterator MI = MBB->begin(), - ME = MBB->end(); ME != MI; ++MI) { - if(inKernel[j].count(&*MI)) { - MachineInstr *instClone = MI->clone(); - machineBB->push_back(instClone); - - //If its a branch, insert a nop - if(mii->isBranch(instClone->getOpcode())) - BuildMI(machineBB, V9::NOP, 0); - - - DEBUG(std::cerr << "Cloning: " << *MI << "\n"); - - //After cloning, we may need to save the value that this instruction defines - for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { - Instruction *tmp; - - //get machine operand - MachineOperand &mOp = instClone->getOperand(opNum); - if(mOp.getType() == MachineOperand::MO_VirtualRegister - && mOp.isDef()) { - - //Check if this is a value we should save - if(valuesToSave.count(mOp.getVRegValue())) { - //Save copy in tmpInstruction - tmp = new TmpInstruction(mOp.getVRegValue()); - - //Add TmpInstruction to safe LLVM Instruction MCFI - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) - << " New Value: " << *tmp << " Stage: " << i << "\n"); - - newValues[mOp.getVRegValue()][i]= tmp; - newValLocation[tmp] = machineBB; - - DEBUG(std::cerr << "Machine Instr Operands: " - << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n"); - - //Create machine instruction and put int machineBB - MachineInstr *saveValue; - if(mOp.getVRegValue()->getType() == Type::FloatTy) - saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); - } - } - - //We may also need to update the value that we use if - //its from an earlier prologue - if(j != 0) { - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - if(newValues.count(mOp.getVRegValue())) { - if(newValues[mOp.getVRegValue()].count(i-1)) { - Value *oldV = mOp.getVRegValue(); - DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n"); - //Update the operand with the right value - mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]); - - //Remove this value since we have consumed it - //NOTE: Should this only be done if j != maxStage? - consumedValues[oldV][i-1] = (newValues[oldV][i-1]); - DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n"); - newValues[oldV].erase(i-1); - } - } - else - if(consumedValues.count(mOp.getVRegValue())) - assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value"); - } - } - } - } - } - } - (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); - current_prologue.push_back(machineBB); - current_llvm_prologue.push_back(llvmBB); - } - prologues.push_back(current_prologue); - llvm_prologues.push_back(current_llvm_prologue); - - } -} - - -void ModuloSchedulingSBPass::writeEpilogues(std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) { - - std::map<int, std::set<const MachineInstr*> > inKernel; - const TargetInstrInfo *MTI = target.getInstrInfo(); - - for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - - //Put int the map so we know what instructions in each stage are in the kernel - inKernel[I->second].insert(I->first); - } - - std::map<Value*, Value*> valPHIs; - - //some debug stuff, will remove later - DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) { - std::cerr << "Old Value: " << *(V->first) << "\n"; - for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) - std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; - }); - - - //Now write the epilogues - for(int i = schedule.getMaxStage()-1; i >= 0; --i) { - std::vector<MachineBasicBlock*> current_epilogue; - std::vector<BasicBlock*> current_llvm_epilogue; - - for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), MBE = origSB.end(); MB != MBE; ++MB) { - const MachineBasicBlock *MBB = *MB; - - BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (MBB->getBasicBlock()->getParent())); - MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); - - DEBUG(std::cerr << " Epilogue #: " << i << "\n"); - - std::map<Value*, int> inEpilogue; - - for(MachineBasicBlock::const_iterator MI = MBB->begin(), ME = MBB->end(); ME != MI; ++MI) { - for(int j=schedule.getMaxStage(); j > i; --j) { - if(inKernel[j].count(&*MI)) { - DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); - MachineInstr *clone = MI->clone(); - - //Update operands that need to use the result from the phi - for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { - //get machine operand - const MachineOperand &mOp = clone->getOperand(opNum); - - if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { - - DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n"); - - //If this is the last instructions for the max iterations ago, don't update operands - if(inEpilogue.count(mOp.getVRegValue())) - if(inEpilogue[mOp.getVRegValue()] == i) - continue; - - //Quickly write appropriate phis for this operand - if(newValues.count(mOp.getVRegValue())) { - if(newValues[mOp.getVRegValue()].count(i)) { - Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - //assert of no kernelPHI for this value - assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi"); - - MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - valPHIs[mOp.getVRegValue()] = tmp; - } - } - - if(valPHIs.count(mOp.getVRegValue())) { - //Update the operand in the cloned instruction - clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); - } - } - else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) { - inEpilogue[mOp.getVRegValue()] = i; - } - - } - machineBB->push_back(clone); - //if(MTI->isBranch(clone->getOpcode())) - //BuildMI(machineBB, V9::NOP, 0); - } - } - } - (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); - current_epilogue.push_back(machineBB); - current_llvm_epilogue.push_back(llvmBB); - } - - DEBUG(std::cerr << "EPILOGUE #" << i << "\n"); - DEBUG(for(std::vector<MachineBasicBlock*>::iterator B = current_epilogue.begin(), BE = current_epilogue.end(); B != BE; ++B) { - (*B)->print(std::cerr);}); - - epilogues.push_back(current_epilogue); - llvm_epilogues.push_back(current_llvm_epilogue); - } -} - -void ModuloSchedulingSBPass::writeKernel(std::vector<BasicBlock*> &llvmBB, std::vector<MachineBasicBlock*> &machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) { - - //Keep track of operands that are read and saved from a previous iteration. The new clone - //instruction will use the result of the phi instead. - std::map<Value*, Value*> finalPHIValue; - std::map<Value*, Value*> kernelValue; - - //Branches are a special case - std::vector<MachineInstr*> branches; - - //Get target information to look at machine operands - const TargetInstrInfo *mii = target.getInstrInfo(); - unsigned index = 0; - int numBr = 0; - bool seenBranch = false; - - //Create TmpInstructions for the final phis - for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - - DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";); - - //Clone instruction - const MachineInstr *inst = I->first; - MachineInstr *instClone = inst->clone(); - - if(seenBranch && !mii->isBranch(instClone->getOpcode())) { - index++; - seenBranch = false; - numBr = 0; - } - else if(seenBranch && (numBr == 2)) { - index++; - numBr = 0; - } - - //Insert into machine basic block - assert(index < machineBB.size() && "Must have a valid index into kernel MBBs"); - machineBB[index]->push_back(instClone); - - if(mii->isBranch(instClone->getOpcode())) { - BuildMI(machineBB[index], V9::NOP, 0); - - seenBranch = true; - numBr++; - } - - DEBUG(std::cerr << "Cloned Inst: " << *instClone << "\n"); - - //Loop over Machine Operands - for(unsigned i=0; i < inst->getNumOperands(); ++i) { - //get machine operand - const MachineOperand &mOp = inst->getOperand(i); - - if(I->second != 0) { - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - - //Check to see where this operand is defined if this instruction is from max stage - if(I->second == schedule.getMaxStage()) { - DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n"); - } - - //If its in the value saved, we need to create a temp instruction and use that instead - if(valuesToSave.count(mOp.getVRegValue())) { - - //Check if we already have a final PHI value for this - if(!finalPHIValue.count(mOp.getVRegValue())) { - //Only create phi if the operand def is from a stage before this one - if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) { - TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - //Update the operand in the cloned instruction - instClone->getOperand(i).setValueReg(tmp); - - //save this as our final phi - finalPHIValue[mOp.getVRegValue()] = tmp; - newValLocation[tmp] = machineBB[index]; - } - } - else { - //Use the previous final phi value - instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); - } - } - } - } - if(I->second != schedule.getMaxStage()) { - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { - if(valuesToSave.count(mOp.getVRegValue())) { - - TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); - - //Get machine code for this instruction - MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst); - tempVec.addTemp((Value*) tmp); - - //Create new machine instr and put in MBB - MachineInstr *saveValue; - if(mOp.getVRegValue()->getType() == Type::FloatTy) - saveValue = BuildMI(machineBB[index], V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - saveValue = BuildMI(machineBB[index], V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - saveValue = BuildMI(machineBB[index], V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - //Save for future cleanup - kernelValue[mOp.getVRegValue()] = tmp; - newValLocation[tmp] = machineBB[index]; - kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp; - } - } - } - } - - } - - //Loop over each value we need to generate phis for - for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), - E = newValues.end(); V != E; ++V) { - - - DEBUG(std::cerr << "Writing phi for" << *(V->first)); - DEBUG(std::cerr << "\nMap of Value* for this phi\n"); - DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(), - IE = V->second.end(); I != IE; ++I) { - std::cerr << "Stage: " << I->first; - std::cerr << " Value: " << *(I->second) << "\n"; - }); - - //If we only have one current iteration live, its safe to set - //lastPhi = to kernel value - if(V->second.size() == 1) { - assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi"); - MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); - DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n"); - kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first]; - DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n"); - } - else { - - //Keep track of last phi created. - Instruction *lastPhi = 0; - - unsigned count = 1; - //Loop over the the map backwards to generate phis - for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); - I != IE; ++I) { - - if(count < (V->second).size()) { - if(lastPhi == 0) { - lastPhi = new TmpInstruction(I->second); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) lastPhi); - - MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - newValLocation[lastPhi] = machineBB[0]; - } - else { - Instruction *tmp = new TmpInstruction(I->second); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - - MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - lastPhi = tmp; - kernelPHIs[V->first][I->first] = lastPhi; - newValLocation[lastPhi] = machineBB[0]; - } - } - //Final phi value - else { - //The resulting value must be the Value* we created earlier - assert(lastPhi != 0 && "Last phi is NULL!\n"); - MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - kernelPHIs[V->first][I->first] = finalPHIValue[V->first]; - } - - ++count; - } - - } - } -} - - -void ModuloSchedulingSBPass::removePHIs(std::vector<const MachineBasicBlock*> &SB, std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<MachineBasicBlock*> &kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) { - - //Worklist to delete things - std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist; - - //Worklist of TmpInstructions that need to be added to a MCFI - std::vector<Instruction*> addToMCFI; - - //Worklist to add OR instructions to end of kernel so not to invalidate the iterator - //std::vector<std::pair<Instruction*, Value*> > newORs; - - const TargetInstrInfo *TMI = target.getInstrInfo(); - - //Start with the kernel and for each phi insert a copy for the phi - //def and for each arg - //phis are only in the first BB in the kernel - for(MachineBasicBlock::iterator I = kernelBB[0]->begin(), E = kernelBB[0]->end(); - I != E; ++I) { - - DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); - - //Get op code and check if its a phi - if(I->getOpcode() == V9::PHI) { - - DEBUG(std::cerr << "Replacing PHI: " << *I << "\n"); - Instruction *tmp = 0; - - for(unsigned i = 0; i < I->getNumOperands(); ++i) { - - //Get Operand - const MachineOperand &mOp = I->getOperand(i); - assert(mOp.getType() == MachineOperand::MO_VirtualRegister - && "Should be a Value*\n"); - - if(!tmp) { - tmp = new TmpInstruction(mOp.getVRegValue()); - addToMCFI.push_back(tmp); - } - - //Now for all our arguments we read, OR to the new - //TmpInstruction that we created - if(mOp.isUse()) { - DEBUG(std::cerr << "Use: " << mOp << "\n"); - //Place a copy at the end of its BB but before the branches - assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); - //Reverse iterate to find the branches, we can safely assume no instructions have been - //put in the nop positions - for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { - MachineOpCode opc = inst->getOpcode(); - if(TMI->isBranch(opc) || TMI->isNop(opc)) - continue; - else { - if(mOp.getVRegValue()->getType() == Type::FloatTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - break; - } - - } - - } - else { - //Remove the phi and replace it with an OR - DEBUG(std::cerr << "Def: " << mOp << "\n"); - //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue())); - if(tmp->getType() == Type::FloatTy) - BuildMI(*kernelBB[0], I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else if(tmp->getType() == Type::DoubleTy) - BuildMI(*kernelBB[0], I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else - BuildMI(*kernelBB[0], I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); - - - worklist.push_back(std::make_pair(kernelBB[0], I)); - } - - } - - } - - - } - - //Add TmpInstructions to some MCFI - if(addToMCFI.size() > 0) { - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - for(unsigned x = 0; x < addToMCFI.size(); ++x) { - tempMvec.addTemp(addToMCFI[x]); - } - addToMCFI.clear(); - } - - - //Remove phis from epilogue - for(std::vector<std::vector<MachineBasicBlock*> >::iterator MB = epilogues.begin(), - ME = epilogues.end(); MB != ME; ++MB) { - - for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB->begin(), currentME = MB->end(); currentMBB != currentME; ++currentMBB) { - - for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), - E = (*currentMBB)->end(); I != E; ++I) { - - DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); - //Get op code and check if its a phi - if(I->getOpcode() == V9::PHI) { - Instruction *tmp = 0; - - for(unsigned i = 0; i < I->getNumOperands(); ++i) { - //Get Operand - const MachineOperand &mOp = I->getOperand(i); - assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); - - if(!tmp) { - tmp = new TmpInstruction(mOp.getVRegValue()); - addToMCFI.push_back(tmp); - } - - //Now for all our arguments we read, OR to the new TmpInstruction that we created - if(mOp.isUse()) { - DEBUG(std::cerr << "Use: " << mOp << "\n"); - //Place a copy at the end of its BB but before the branches - assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); - //Reverse iterate to find the branches, we can safely assume no instructions have been - //put in the nop positions - for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { - MachineOpCode opc = inst->getOpcode(); - if(TMI->isBranch(opc) || TMI->isNop(opc)) - continue; - else { - if(mOp.getVRegValue()->getType() == Type::FloatTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - break; - } - - } - - } - else { - //Remove the phi and replace it with an OR - DEBUG(std::cerr << "Def: " << mOp << "\n"); - if(tmp->getType() == Type::FloatTy) - BuildMI(**currentMBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else if(tmp->getType() == Type::DoubleTy) - BuildMI(**currentMBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else - BuildMI(**currentMBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); - - worklist.push_back(std::make_pair(*currentMBB,I)); - } - } - } - } - } - } - - - if(addToMCFI.size() > 0) { - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - for(unsigned x = 0; x < addToMCFI.size(); ++x) { - tempMvec.addTemp(addToMCFI[x]); - } - addToMCFI.clear(); - } - - //Delete the phis - for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { - DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n"); - I->first->erase(I->second); - - } - - - assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction"); -} - - - - -void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<std::vector<MachineBasicBlock *> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const MachineBasicBlock*, Value*> &sideExits, std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > &instrsMovedDown, std::vector<const MachineBasicBlock*> &SB, std::vector<MachineBasicBlock*> &kernelMBBs, std::map<MachineBasicBlock*, int> branchStage) { - - const TargetInstrInfo *TMI = target.getInstrInfo(); - - //Repeat for each side exit - for(unsigned sideExitNum = 0; sideExitNum < SB.size()-1; ++sideExitNum) { - - std::vector<std::vector<BasicBlock*> > side_llvm_epilogues; - std::vector<std::vector<MachineBasicBlock*> > side_epilogues; - MachineBasicBlock* sideMBB; - BasicBlock* sideBB; - - //Create side exit blocks - //Get the LLVM basic block - BasicBlock *bb = (BasicBlock*) SB[sideExitNum]->getBasicBlock(); - MachineBasicBlock *mbb = (MachineBasicBlock*) SB[sideExitNum]; - - int stage = branchStage[mbb]; - - //Create new basic blocks for our side exit instructios that were moved below the branch - sideBB = new BasicBlock("SideExit", (Function*) bb->getParent()); - sideMBB = new MachineBasicBlock(sideBB); - (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(sideMBB); - - - if(instrsMovedDown.count(mbb)) { - for(std::vector<std::pair<MachineInstr*, int> >::iterator I = instrsMovedDown[mbb].begin(), E = instrsMovedDown[mbb].end(); I != E; ++I) { - if(branchStage[mbb] == I->second) - sideMBB->push_back((I->first)->clone()); - } - - //Add unconditional branches to original exits - BuildMI(sideMBB, V9::BA, 1).addPCDisp(sideExits[mbb]); - BuildMI(sideMBB, V9::NOP, 0); - - //Add unconditioal branch to llvm BB - BasicBlock *extBB = dyn_cast<BasicBlock>(sideExits[mbb]); - assert(extBB && "Side exit basicblock can not be null"); - TerminatorInst *newBranch = new BranchInst(extBB, sideBB); - } - - //Clone epilogues and update their branches, one cloned epilogue set per side exit - //only clone epilogues that are from a greater stage! - for(unsigned i = 0; i < epilogues.size()-stage; ++i) { - std::vector<MachineBasicBlock*> MB = epilogues[i]; - - std::vector<MachineBasicBlock*> newEp; - std::vector<BasicBlock*> newLLVMEp; - - for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB.begin(), - lastMBB = MB.end(); currentMBB != lastMBB; ++currentMBB) { - BasicBlock *tmpBB = new BasicBlock("SideEpilogue", (Function*) (*currentMBB)->getBasicBlock()->getParent()); - MachineBasicBlock *tmp = new MachineBasicBlock(tmpBB); - - //Clone instructions and insert into new MBB - for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), - E = (*currentMBB)->end(); I != E; ++I) { - - MachineInstr *clone = I->clone(); - if(clone->getOpcode() == V9::BA && (currentMBB+1 == lastMBB)) { - //update branch to side exit - for(unsigned i = 0; i < clone->getNumOperands(); ++i) { - MachineOperand &mOp = clone->getOperand(i); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - mOp.setValueReg(sideBB); - } - } - } - - tmp->push_back(clone); - - } - - //Add llvm branch - TerminatorInst *newBranch = new BranchInst(sideBB, tmpBB); - - newEp.push_back(tmp); - (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(tmp); - - newLLVMEp.push_back(tmpBB); - - } - side_llvm_epilogues.push_back(newLLVMEp); - side_epilogues.push_back(newEp); - } - - //Now stich up all the branches - - //Loop over prologues, and if its an inner branch and branches to our original side exit - //then have it branch to the appropriate epilogue first (if it exists) - for(unsigned P = 0; P < prologues.size(); ++P) { - - //Get BB side exit we are dealing with - MachineBasicBlock *currentMBB = prologues[P][sideExitNum]; - if(P >= (unsigned) stage) { - //Iterate backwards of machine instructions to find the branch we need to update - for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { - MachineOpCode OC = mInst->getOpcode(); - - //If its a branch update its branchto - if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Check if we branch to side exit - if(mOp.getVRegValue() == sideExits[mbb]) { - mOp.setValueReg(side_llvm_epilogues[P][0]); - } - } - } - DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); - } - } - - //Update llvm branch - TerminatorInst *branchVal = ((BasicBlock*) currentMBB->getBasicBlock())->getTerminator(); - DEBUG(std::cerr << *branchVal << "\n"); - - for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { - if(branchVal->getSuccessor(i) == sideExits[mbb]) { - DEBUG(std::cerr << "Replacing successor bb\n"); - branchVal->setSuccessor(i, side_llvm_epilogues[P][0]); - } - } - } - else { - //must add BA branch because another prologue or kernel has the actual side exit branch - //Add unconditional branches to original exits - assert( (sideExitNum+1) < prologues[P].size() && "must have valid prologue to branch to"); - BuildMI(prologues[P][sideExitNum], V9::BA, 1).addPCDisp((BasicBlock*)(prologues[P][sideExitNum+1])->getBasicBlock()); - BuildMI(prologues[P][sideExitNum], V9::NOP, 0); - - TerminatorInst *newBranch = new BranchInst((BasicBlock*) (prologues[P][sideExitNum+1])->getBasicBlock(), (BasicBlock*) (prologues[P][sideExitNum])->getBasicBlock()); - - } - } - - - //Update side exits in kernel - MachineBasicBlock *currentMBB = kernelMBBs[sideExitNum]; - //Iterate backwards of machine instructions to find the branch we need to update - for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { - MachineOpCode OC = mInst->getOpcode(); - - //If its a branch update its branchto - if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Check if we branch to side exit - if(mOp.getVRegValue() == sideExits[mbb]) { - if(side_llvm_epilogues.size() > 0) - mOp.setValueReg(side_llvm_epilogues[0][0]); - else - mOp.setValueReg(sideBB); - } - } - } - DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); - } - } - - //Update llvm branch - //Update llvm branch - TerminatorInst *branchVal = ((BasicBlock*)currentMBB->getBasicBlock())->getTerminator(); - DEBUG(std::cerr << *branchVal << "\n"); - - for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { - if(branchVal->getSuccessor(i) == sideExits[mbb]) { - DEBUG(std::cerr << "Replacing successor bb\n"); - if(side_llvm_epilogues.size() > 0) - branchVal->setSuccessor(i, side_llvm_epilogues[0][0]); - else - branchVal->setSuccessor(i, sideBB); - } - } - } -} - |