diff options
author | Chris Lattner <sabre@nondot.org> | 2006-04-20 17:15:44 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2006-04-20 17:15:44 +0000 |
commit | 2706983c48d001b042896c4302c19a197b802fb6 (patch) | |
tree | 8fc153e045970f846d25e06dbfb6656ee2ee20e0 /lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp | |
parent | 43c40ffa41e4a9f96fb8b47a3e7c0c42c5421fa6 (diff) |
This target is no longer built. The ,v files now live in the reoptimizer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27885 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp')
-rw-r--r-- | lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp | 2964 |
1 files changed, 0 insertions, 2964 deletions
diff --git a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp b/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp deleted file mode 100644 index a5e9661f1c..0000000000 --- a/lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp +++ /dev/null @@ -1,2964 +0,0 @@ -//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This ModuloScheduling pass is based on the Swing Modulo Scheduling -// algorithm. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "ModuloSched" - -#include "ModuloScheduling.h" -#include "llvm/Constants.h" -#include "llvm/Instructions.h" -#include "llvm/Function.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/Passes.h" -#include "llvm/Support/CFG.h" -#include "llvm/Target/TargetSchedInfo.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/ADT/SCCIterator.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Support/Timer.h" -#include <cmath> -#include <algorithm> -#include <fstream> -#include <sstream> -#include <utility> -#include <vector> -#include "../MachineCodeForInstruction.h" -#include "../SparcV9TmpInstr.h" -#include "../SparcV9Internals.h" -#include "../SparcV9RegisterInfo.h" -using namespace llvm; - -/// Create ModuloSchedulingPass -/// -FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { - DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); - return new ModuloSchedulingPass(targ); -} - - -//Graph Traits for printing out the dependence graph -template<typename GraphType> -static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, - const GraphType >) { - std::string Filename = GraphName + ".dot"; - O << "Writing '" << Filename << "'..."; - std::ofstream F(Filename.c_str()); - - if (F.good()) - WriteGraph(F, GT); - else - O << " error opening file for writing!"; - O << "\n"; -}; - - -#if 1 -#define TIME_REGION(VARNAME, DESC) \ - NamedRegionTimer VARNAME(DESC) -#else -#define TIME_REGION(VARNAME, DESC) -#endif - - -//Graph Traits for printing out the dependence graph -namespace llvm { - - //Loop statistics - Statistic<> ValidLoops("modulosched-validLoops", "Number of candidate loops modulo-scheduled"); - Statistic<> JumboBB("modulosched-jumboBB", "Basic Blocks with more then 100 instructions"); - Statistic<> LoopsWithCalls("modulosched-loopCalls", "Loops with calls"); - Statistic<> LoopsWithCondMov("modulosched-loopCondMov", "Loops with conditional moves"); - Statistic<> InvalidLoops("modulosched-invalidLoops", "Loops with unknown trip counts or loop invariant trip counts"); - Statistic<> SingleBBLoops("modulosched-singeBBLoops", "Number of single basic block loops"); - - //Scheduling Statistics - Statistic<> MSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled"); - Statistic<> NoSched("modulosched-noSched", "No schedule"); - Statistic<> SameStage("modulosched-sameStage", "Max stage is 0"); - Statistic<> ResourceConstraint("modulosched-resourceConstraint", "Loops constrained by resources"); - Statistic<> RecurrenceConstraint("modulosched-recurrenceConstraint", "Loops constrained by recurrences"); - Statistic<> FinalIISum("modulosched-finalIISum", "Sum of all final II"); - Statistic<> IISum("modulosched-IISum", "Sum of all theoretical II"); - - template<> - struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits { - static std::string getGraphName(MSchedGraph *F) { - return "Dependence Graph"; - } - - static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { - if (Node->getInst()) { - std::stringstream ss; - ss << *(Node->getInst()); - return ss.str(); //((MachineInstr*)Node->getInst()); - } - else - return "No Inst"; - } - static std::string getEdgeSourceLabel(MSchedGraphNode *Node, - MSchedGraphNode::succ_iterator I) { - //Label each edge with the type of dependence - std::string edgelabel = ""; - switch (I.getEdge().getDepOrderType()) { - - case MSchedGraphEdge::TrueDep: - edgelabel = "True"; - break; - - case MSchedGraphEdge::AntiDep: - edgelabel = "Anti"; - break; - - case MSchedGraphEdge::OutputDep: - edgelabel = "Output"; - break; - - default: - edgelabel = "Unknown"; - break; - } - - //FIXME - int iteDiff = I.getEdge().getIteDiff(); - std::string intStr = "(IteDiff: "; - intStr += itostr(iteDiff); - - intStr += ")"; - edgelabel += intStr; - - return edgelabel; - } - }; -} - - -#include <unistd.h> - -/// ModuloScheduling::runOnFunction - main transformation entry point -/// The Swing Modulo Schedule algorithm has three basic steps: -/// 1) Computation and Analysis of the dependence graph -/// 2) Ordering of the nodes -/// 3) Scheduling -/// -bool ModuloSchedulingPass::runOnFunction(Function &F) { - alarm(100); - - bool Changed = false; - int numMS = 0; - - DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n"); - - //Get MachineFunction - MachineFunction &MF = MachineFunction::get(&F); - - DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>(); - - - //Worklist - std::vector<MachineBasicBlock*> Worklist; - - //Iterate over BasicBlocks and put them into our worklist if they are valid - for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) - if(MachineBBisValid(BI)) { - if(BI->size() < 100) { - Worklist.push_back(&*BI); - ++ValidLoops; - } - else - ++JumboBB; - - } - - defaultInst = 0; - - DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n"); - - //Iterate over the worklist and perform scheduling - for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(), - BE = Worklist.end(); BI != BE; ++BI) { - - //Print out BB for debugging - DEBUG(std::cerr << "BB Size: " << (*BI)->size() << "\n"); - DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr)); - - //Print out LLVM BB - DEBUG(std::cerr << "ModuloScheduling LLVMBB: \n"; (*BI)->getBasicBlock()->print(std::cerr)); - - //Catch the odd case where we only have TmpInstructions and no real Value*s - if(!CreateDefMap(*BI)) { - //Clear out our maps for the next basic block that is processed - nodeToAttributesMap.clear(); - partialOrder.clear(); - recurrenceList.clear(); - FinalNodeOrder.clear(); - schedule.clear(); - defMap.clear(); - continue; - } - - MSchedGraph *MSG = new MSchedGraph(*BI, target, indVarInstrs[*BI], DA, machineTollvm[*BI]); - - //Write Graph out to file - DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); - DEBUG(MSG->print(std::cerr)); - - //Calculate Resource II - int ResMII = calculateResMII(*BI); - - //Calculate Recurrence II - int RecMII = calculateRecMII(MSG, ResMII); - - DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n"); - - //Our starting initiation interval is the maximum of RecMII and ResMII - if(RecMII < ResMII) - ++RecurrenceConstraint; - else - ++ResourceConstraint; - - II = std::max(RecMII, ResMII); - int mII = II; - - //Print out II, RecMII, and ResMII - DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n"); - - //Dump node properties if in debug mode - DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I !=E; ++I) { - std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " - << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth - << " Height: " << I->second.height << "\n"; - }); - - //Calculate Node Properties - calculateNodeAttributes(MSG, ResMII); - - //Dump node properties if in debug mode - DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I !=E; ++I) { - std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " - << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth - << " Height: " << I->second.height << "\n"; - }); - - //Put nodes in order to schedule them - computePartialOrder(); - - //Dump out partial order - DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(), - E = partialOrder.end(); I !=E; ++I) { - std::cerr << "Start set in PO\n"; - for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) - std::cerr << "PO:" << **J << "\n"; - }); - - //Place nodes in final order - orderNodes(); - - //Dump out order of nodes - DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { - std::cerr << "FO:" << **I << "\n"; - }); - - //Finally schedule nodes - bool haveSched = computeSchedule(*BI, MSG); - - //Print out final schedule - DEBUG(schedule.print(std::cerr)); - - //Final scheduling step is to reconstruct the loop only if we actual have - //stage > 0 - if(haveSched) { - reconstructLoop(*BI); - ++MSLoops; - Changed = true; - FinalIISum += II; - IISum += mII; - - if(schedule.getMaxStage() == 0) - ++SameStage; - } - else { - ++NoSched; - } - - //Clear out our maps for the next basic block that is processed - nodeToAttributesMap.clear(); - partialOrder.clear(); - recurrenceList.clear(); - FinalNodeOrder.clear(); - schedule.clear(); - defMap.clear(); - //Clean up. Nuke old MachineBB and llvmBB - //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock(); - //Function *parent = (Function*) llvmBB->getParent(); - //Should't std::find work?? - //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB)); - //parent->getBasicBlockList().erase(llvmBB); - - //delete(llvmBB); - //delete(*BI); - } - - alarm(0); - return Changed; -} - -bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) { - defaultInst = 0; - - for(MachineBasicBlock::iterator I = BI->begin(), E = BI->end(); I != E; ++I) { - for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) { - const MachineOperand &mOp = I->getOperand(opNum); - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { - //assert if this is the second def we have seen - //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n"); - //assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map"); - if(defMap.count(mOp.getVRegValue())) - return false; - - defMap[mOp.getVRegValue()] = &*I; - } - - //See if we can use this Value* as our defaultInst - if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) { - Value *V = mOp.getVRegValue(); - if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V)) - defaultInst = (Instruction*) V; - } - } - } - - if(!defaultInst) - return false; - - return true; - -} -/// This function checks if a Machine Basic Block is valid for modulo -/// scheduling. This means that it has no control flow (if/else or -/// calls) in the block. Currently ModuloScheduling only works on -/// single basic block loops. -bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { - - bool isLoop = false; - - //Check first if its a valid loop - for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), - E = succ_end(BI->getBasicBlock()); I != E; ++I) { - if (*I == BI->getBasicBlock()) // has single block loop - isLoop = true; - } - - if(!isLoop) - return false; - - //Check that we have a conditional branch (avoiding MS infinite loops) - if(BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator())) - if(b->isUnconditional()) - return false; - - //Check size of our basic block.. make sure we have more then just the terminator in it - if(BI->getBasicBlock()->size() == 1) - return false; - - //Increase number of single basic block loops for stats - ++SingleBBLoops; - - //Get Target machine instruction info - const TargetInstrInfo *TMI = target.getInstrInfo(); - - //Check each instruction and look for calls, keep map to get index later - std::map<const MachineInstr*, unsigned> indexMap; - - unsigned count = 0; - for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { - //Get opcode to check instruction type - MachineOpCode OC = I->getOpcode(); - - //Look for calls - if(TMI->isCall(OC)) { - ++LoopsWithCalls; - return false; - } - - //Look for conditional move - if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi - || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi - || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr - || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr - || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi - || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi - || OC == V9::MOVFNEr || OC == V9::MOVFNEi || OC == V9::MOVGr || OC == V9::MOVGi) { - ++LoopsWithCondMov; - return false; - } - - indexMap[I] = count; - - if(TMI->isNop(OC)) - continue; - - ++count; - } - - //Apply a simple pattern match to make sure this loop can be modulo scheduled - //This means only loops with a branch associated to the iteration count - - //Get the branch - BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator()); - - //Get the condition for the branch (we already checked if it was conditional) - Value *cond = b->getCondition(); - - DEBUG(std::cerr << "Condition: " << *cond << "\n"); - - //List of instructions associated with induction variable - std::set<Instruction*> indVar; - std::vector<Instruction*> stack; - - BasicBlock *BB = (BasicBlock*) BI->getBasicBlock(); - - //Add branch - indVar.insert(b); - - if(Instruction *I = dyn_cast<Instruction>(cond)) - if(I->getParent() == BB) { - if (!assocIndVar(I, indVar, stack, BB)) { - ++InvalidLoops; - return false; - } - } - else { - ++InvalidLoops; - return false; - } - else { - ++InvalidLoops; - return false; - } - //The indVar set must be >= 3 instructions for this loop to match (FIX ME!) - if(indVar.size() < 3 ) - return false; - - //Dump out instructions associate with indvar for debug reasons - DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) { - std::cerr << **N << "\n"; - }); - - //Create map of machine instr to llvm instr - std::map<MachineInstr*, Instruction*> mllvm; - for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I); - for (unsigned j = 0; j < tempMvec.size(); j++) { - mllvm[tempMvec[j]] = I; - } - } - - //Convert list of LLVM Instructions to list of Machine instructions - std::map<const MachineInstr*, unsigned> mIndVar; - for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) { - - //If we have a load, we can't handle this loop because there is no way to preserve dependences - //between loads and stores - if(isa<LoadInst>(*N)) - return false; - - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N); - for (unsigned j = 0; j < tempMvec.size(); j++) { - MachineOpCode OC = (tempMvec[j])->getOpcode(); - if(TMI->isNop(OC)) - continue; - if(!indexMap.count(tempMvec[j])) - continue; - mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]]; - DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n"); - } - } - - //Must have some guts to the loop body (more then 1 instr, dont count nops in size) - if(mIndVar.size() >= (BI->size()-3)) - return false; - - //Put into a map for future access - indVarInstrs[BI] = mIndVar; - machineTollvm[BI] = mllvm; - return true; -} - -bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &indVar, - std::vector<Instruction*> &stack, BasicBlock *BB) { - - stack.push_back(I); - - //If this is a phi node, check if its the canonical indvar - if(PHINode *PN = dyn_cast<PHINode>(I)) { - if (Instruction *Inc = - dyn_cast<Instruction>(PN->getIncomingValueForBlock(BB))) - if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) - if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) - if (CI->equalsInt(1)) { - //We have found the indvar, so add the stack, and inc instruction to the set - indVar.insert(stack.begin(), stack.end()); - indVar.insert(Inc); - stack.pop_back(); - return true; - } - return false; - } - else { - //Loop over each of the instructions operands, check if they are an instruction and in this BB - for(unsigned i = 0; i < I->getNumOperands(); ++i) { - if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) { - if(N->getParent() == BB) - if(!assocIndVar(N, indVar, stack, BB)) - return false; - } - } - } - - stack.pop_back(); - return true; -} - -//ResMII is calculated by determining the usage count for each resource -//and using the maximum. -//FIXME: In future there should be a way to get alternative resources -//for each instruction -int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { - - TIME_REGION(X, "calculateResMII"); - - const TargetInstrInfo *mii = target.getInstrInfo(); - const TargetSchedInfo *msi = target.getSchedInfo(); - - int ResMII = 0; - - //Map to keep track of usage count of each resource - std::map<unsigned, unsigned> resourceUsageCount; - - for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { - - //Get resource usage for this instruction - InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); - std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle; - - //Loop over resources in each cycle and increments their usage count - for(unsigned i=0; i < resources.size(); ++i) - for(unsigned j=0; j < resources[i].size(); ++j) { - if(!resourceUsageCount.count(resources[i][j])) { - resourceUsageCount[resources[i][j]] = 1; - } - else { - resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; - } - } - } - - //Find maximum usage count - - //Get max number of instructions that can be issued at once. (FIXME) - int issueSlots = msi->maxNumIssueTotal; - - for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { - - //Get the total number of the resources in our cpu - int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; - - //Get total usage count for this resources - unsigned usageCount = RB->second; - - //Divide the usage count by either the max number we can issue or the number of - //resources (whichever is its upper bound) - double finalUsageCount; - DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n"); - - if( resourceNum <= issueSlots) - finalUsageCount = ceil(1.0 * usageCount / resourceNum); - else - finalUsageCount = ceil(1.0 * usageCount / issueSlots); - - - //Only keep track of the max - ResMII = std::max( (int) finalUsageCount, ResMII); - - } - - return ResMII; - -} - -/// calculateRecMII - Calculates the value of the highest recurrence -/// By value we mean the total latency -int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { - /*std::vector<MSchedGraphNode*> vNodes; - //Loop over all nodes in the graph - for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { - findAllReccurrences(I->second, vNodes, MII); - vNodes.clear(); - }*/ - - TIME_REGION(X, "calculateRecMII"); - - findAllCircuits(graph, MII); - int RecMII = 0; - - for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { - RecMII = std::max(RecMII, I->first); - } - - return MII; -} - -/// calculateNodeAttributes - The following properties are calculated for -/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and -/// MOB. -void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { - - TIME_REGION(X, "calculateNodeAttributes"); - - assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared"); - - //Loop over the nodes and add them to the map - for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { - - DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n"); - - //Assert if its already in the map - assert(nodeToAttributesMap.count(I->second) == 0 && - "Node attributes are already in the map"); - - //Put into the map with default attribute values - nodeToAttributesMap[I->second] = MSNodeAttributes(); - } - - //Create set to deal with reccurrences - std::set<MSchedGraphNode*> visitedNodes; - - //Now Loop over map and calculate the node attributes - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - calculateASAP(I->first, MII, (MSchedGraphNode*) 0); - visitedNodes.clear(); - } - - int maxASAP = findMaxASAP(); - //Calculate ALAP which depends on ASAP being totally calculated - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0); - visitedNodes.clear(); - } - - //Calculate MOB which depends on ASAP being totally calculated, also do depth and height - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { - (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); - - DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); - calculateDepth(I->first, (MSchedGraphNode*) 0); - calculateHeight(I->first, (MSchedGraphNode*) 0); - } - - -} - -/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not -bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { - if(destNode == 0 || srcNode ==0) - return false; - - bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); - - DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n"); - - return findEdge; -} - - -/// calculateASAP - Calculates the -int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { - - DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); - - //Get current node attributes - MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.ASAP != -1) - return attributes.ASAP; - - int maxPredValue = 0; - - //Iterate over all of the predecessors and find max - for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - - //Only process if we are not ignoring the edge - if(!ignoreEdge(*P, node)) { - int predASAP = -1; - predASAP = calculateASAP(*P, MII, node); - - assert(predASAP != -1 && "ASAP has not been calculated"); - int iteDiff = node->getInEdge(*P).getIteDiff(); - - int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); - DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); - maxPredValue = std::max(maxPredValue, currentPredValue); - } - } - - attributes.ASAP = maxPredValue; - - DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); - - return maxPredValue; -} - - -int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, - int maxASAP, MSchedGraphNode *srcNode) { - - DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); - - MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.ALAP != -1) - return attributes.ALAP; - - if(node->hasSuccessors()) { - - //Trying to deal with the issue where the node has successors, but - //we are ignoring all of the edges to them. So this is my hack for - //now.. there is probably a more elegant way of doing this (FIXME) - bool processedOneEdge = false; - - //FIXME, set to something high to start - int minSuccValue = 9999999; - - //Iterate over all of the predecessors and fine max - for(MSchedGraphNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { - - //Only process if we are not ignoring the edge - if(!ignoreEdge(node, *P)) { - processedOneEdge = true; - int succALAP = -1; - succALAP = calculateALAP(*P, MII, maxASAP, node); - - assert(succALAP != -1 && "Successors ALAP should have been caclulated"); - - int iteDiff = P.getEdge().getIteDiff(); - - int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; - - DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); - - minSuccValue = std::min(minSuccValue, currentSuccValue); - } - } - - if(processedOneEdge) - attributes.ALAP = minSuccValue; - - else - attributes.ALAP = maxASAP; - } - else - attributes.ALAP = maxASAP; - - DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); - - if(attributes.ALAP < 0) - attributes.ALAP = 0; - - return attributes.ALAP; -} - -int ModuloSchedulingPass::findMaxASAP() { - int maxASAP = 0; - - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I != E; ++I) - maxASAP = std::max(maxASAP, I->second.ASAP); - return maxASAP; -} - - -int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { - - MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.height != -1) - return attributes.height; - - int maxHeight = 0; - - //Iterate over all of the predecessors and find max - for(MSchedGraphNode::succ_iterator P = node->succ_begin(), - E = node->succ_end(); P != E; ++P) { - - - if(!ignoreEdge(node, *P)) { - int succHeight = calculateHeight(*P, node); - - assert(succHeight != -1 && "Successors Height should have been caclulated"); - - int currentHeight = succHeight + node->getLatency(); - maxHeight = std::max(maxHeight, currentHeight); - } - } - attributes.height = maxHeight; - DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); - return maxHeight; -} - - -int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, - MSchedGraphNode *destNode) { - - MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; - - if(attributes.depth != -1) - return attributes.depth; - - int maxDepth = 0; - - //Iterate over all of the predecessors and fine max - for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { - - if(!ignoreEdge(*P, node)) { - int predDepth = -1; - predDepth = calculateDepth(*P, node); - - assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); - - int currentDepth = predDepth + (*P)->getLatency(); - maxDepth = std::max(maxDepth, currentDepth); - } - } - attributes.depth = maxDepth; - - DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); - return maxDepth; -} - - - -void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) { - //Check to make sure that this recurrence is unique - bool same = false; - - - //Loop over all recurrences already in our list - for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { - - bool all_same = true; - //First compare size - if(R->second.size() == recurrence.size()) { - - for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { - if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { - all_same = all_same && false; - break; - } - else - all_same = all_same && true; - } - if(all_same) { - same = true; - break; - } - } - } - - if(!same) { - srcBENode = recurrence.back(); - destBENode = recurrence.front(); - - //FIXME - if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) { - //DEBUG(std::cerr << "NOT A BACKEDGE\n"); - //find actual backedge HACK HACK - for(unsigned i=0; i< recurrence.size()-1; ++i) { - if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) { - srcBENode = recurrence[i]; - destBENode = recurrence[i+1]; - break; - } - - } - - } - DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); - edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); - recurrenceList.insert(std::make_pair(II, recurrence)); - } - -} - -int CircCount; - -void ModuloSchedulingPass::unblock(MSchedGraphNode *u, std::set<MSchedGraphNode*> &blocked, - std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B) { - - //Unblock u - DEBUG(std::cerr << "Unblocking: " << *u << "\n"); - blocked.erase(u); - - //std::set<MSchedGraphNode*> toErase; - while (!B[u].empty()) { - MSchedGraphNode *W = *B[u].begin(); - B[u].erase(W); - //toErase.insert(*W); - DEBUG(std::cerr << "Removed: " << *W << "from B-List\n"); - if(blocked.count(W)) - unblock(W, blocked, B); - } - -} - -bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack, - std::set<MSchedGraphNode*> &blocked, std::vector<MSchedGraphNode*> &SCC, - MSchedGraphNode *s, std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > &B, - int II, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) { - bool f = false; - - DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n"); - - //Push node onto the stack - stack.push_back(v); - - //block this node - blocked.insert(v); - - //Loop over all successors of node v that are in the scc, create Adjaceny list - std::set<MSchedGraphNode*> AkV; - for(MSchedGraphNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) { - if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) { - AkV.insert(*I); - } - } - - for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) { - if(*I == s) { - //We have a circuit, so add it to our list - addRecc(stack, newNodes); - f = true; - } - else if(!blocked.count(*I)) { - if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes)) - f = true; - } - else - DEBUG(std::cerr << "Blocked: " << **I << "\n"); - } - - - if(f) { - unblock(v, blocked, B); - } - else { - for(std::set<MSchedGraphNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) - B[*I].insert(v); - - } - - //Pop v - stack.pop_back(); - - return f; - -} - -void ModuloSchedulingPass::addRecc(std::vector<MSchedGraphNode*> &stack, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) { - std::vector<MSchedGraphNode*> recc; - //Dump recurrence for now - DEBUG(std::cerr << "Starting Recc\n"); - - int totalDelay = 0; - int totalDistance = 0; - MSchedGraphNode *lastN = 0; - MSchedGraphNode *start = 0; - MSchedGraphNode *end = 0; - - //Loop over recurrence, get delay and distance - for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) { - DEBUG(std::cerr << **N << "\n"); - totalDelay += (*N)->getLatency(); - if(lastN) { - int iteDiff = (*N)->getInEdge(lastN).getIteDiff(); - totalDistance += iteDiff; - - if(iteDiff > 0) { - start = lastN; - end = *N; - } - } - //Get the original node - lastN = *N; - recc.push_back(newNodes[*N]); - - - } - - //Get the loop edge - totalDistance += lastN->getIteDiff(*stack.begin()); - - DEBUG(std::cerr << "End Recc\n"); - CircCount++; - - if(start && end) { - //Insert reccurrence into the list - DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); - edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); - } - else { - //Insert reccurrence into the list - DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n"); - edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN]))); - - } - //Adjust II until we get close to the inequality delay - II*distance <= 0 - int RecMII = II; //Starting value - int value = totalDelay-(RecMII * totalDistance); - int lastII = II; - while(value < 0) { - - lastII = RecMII; - RecMII--; - value = totalDelay-(RecMII * totalDistance); - } - - recurrenceList.insert(std::make_pair(lastII, recc)); - -} - -void ModuloSchedulingPass::addSCC(std::vector<MSchedGraphNode*> &SCC, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) { - - int totalDelay = 0; - int totalDistance = 0; - std::vector<MSchedGraphNode*> recc; - MSchedGraphNode *start = 0; - MSchedGraphNode *end = 0; - - //Loop over recurrence, get delay and distance - for(std::vector<MSchedGraphNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) { - DEBUG(std::cerr << **N << "\n"); - totalDelay += (*N)->getLatency(); - - for(unsigned i = 0; i < (*N)->succ_size(); ++i) { - MSchedGraphEdge *edge = (*N)->getSuccessor(i); - if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) { - totalDistance += edge->getIteDiff(); - if(edge->getIteDiff() > 0) - if(!start && !end) { - start = *N; - end = edge->getDest(); - } - - } - } - - - //Get the original node - recc.push_back(newNodes[*N]); - - - } - - DEBUG(std::cerr << "End Recc\n"); - CircCount++; - - assert( (start && end) && "Must have start and end node to ignore edge for SCC"); - - if(start && end) { - //Insert reccurrence into the list - DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); - edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); - } - - int lastII = totalDelay / totalDistance; - - - recurrenceList.insert(std::make_pair(lastII, recc)); - -} - -void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) { - - CircCount = 0; - - //Keep old to new node mapping information - std::map<MSchedGraphNode*, MSchedGraphNode*> newNodes; - - //copy the graph - MSchedGraph *MSG = new MSchedGraph(*g, newNodes); - - DEBUG(std::cerr << "Finding All Circuits\n"); - - //Set of blocked nodes - std::set<MSchedGraphNode*> blocked; - - //Stack holding current circuit - std::vector<MSchedGraphNode*> stack; - - //Map for B Lists - std::map<MSchedGraphNode*, std::set<MSchedGraphNode*> > B; - - //current node - MSchedGraphNode *s; - - - //Iterate over the graph until its down to one node or empty - while(MSG->size() > 1) { - - //Write Graph out to file - //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG); - - DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n"); - DEBUG(std::cerr << "Finding strong component Vk with least vertex\n"); - - //Iterate over all the SCCs in the graph - std::set<MSchedGraphNode*> Visited; - std::vector<MSchedGraphNode*> Vk; - MSchedGraphNode* s = 0; - int numEdges = 0; - - //Find scc with the least vertex - for (MSchedGraph::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI) - if (Visited.insert(GI->second).second) { - for (scc_iterator<MSchedGraphNode*> SCCI = scc_begin(GI->second), - E = scc_end(GI->second); SCCI != E; ++SCCI) { - std::vector<MSchedGraphNode*> &nextSCC = *SCCI; - - if (Visited.insert(nextSCC[0]).second) { - Visited.insert(nextSCC.begin()+1, nextSCC.end()); - - if(nextSCC.size() > 1) { - std::cerr << "SCC size: " << nextSCC.size() << "\n"; - - for(unsigned i = 0; i < nextSCC.size(); ++i) { - //Loop over successor and see if in scc, then count edge - MSchedGraphNode *node = nextSCC[i]; - for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { - if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end()) - numEdges++; - } - } - std::cerr << "Num Edges: " << numEdges << "\n"; - } - - //Ignore self loops - if(nextSCC.size() > 1) { - - //Get least vertex in Vk - if(!s) { - s = nextSCC[0]; - Vk = nextSCC; - } - - for(unsigned i = 0; i < nextSCC.size(); ++i) { - if(nextSCC[i] < s) { - s = nextSCC[i]; - Vk = nextSCC; - } - } - } - } - } - } - - - - //Process SCC - DEBUG(for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end(); - N != NE; ++N) { std::cerr << *((*N)->getInst()); }); - - //Iterate over all nodes in this scc - for(std::vector<MSchedGraphNode*>::iterator N = Vk.begin(), NE = Vk.end(); - N != NE; ++N) { - blocked.erase(*N); - B[*N].clear(); - } - if(Vk.size() > 1) { - if(numEdges < 98) - circuit(s, stack, blocked, Vk, s, B, II, newNodes); - else - addSCC(Vk, newNodes); - - //Delete nodes from the graph - //Find all nodes up to s and delete them - std::vector<MSchedGraphNode*> nodesToRemove; - nodesToRemove.push_back(s); - for(MSchedGraph::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) { - if(N->second < s ) - nodesToRemove.push_back(N->second); - } - for(std::vector<MSchedGraphNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) { - DEBUG(std::cerr << "Deleting Node: " << **N << "\n"); - MSG->deleteNode(*N); - } - } - else - break; - } - DEBUG(std::cerr << "Num Circuits found: " << CircCount << "\n"); -} - - -void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, - std::vector<MSchedGraphNode*> &visitedNodes, - int II) { - - - if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { - std::vector<MSchedGraphNode*> recurrence; - bool first = true; - int delay = 0; - int distance = 0; - int RecMII = II; //Starting value - MSchedGraphNode *last = node; - MSchedGraphNode *srcBackEdge = 0; - MSchedGraphNode *destBackEdge = 0; - - - - for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end(); - I !=E; ++I) { - - if(*I == node) - first = false; - if(first) - continue; - - delay = delay + (*I)->getLatency(); - - if(*I != node) { - int diff = (*I)->getInEdge(last).getIteDiff(); - distance += diff; - if(diff > 0) { - srcBackEdge = last; - destBackEdge = *I; - } - } - - recurrence.push_back(*I); - last = *I; - } - - - - //Get final distance calc - distance += node->getInEdge(last).getIteDiff(); - DEBUG(std::cerr << "Reccurrence Distance: " << distance << "\n"); - - //Adjust II until we get close to the inequality delay - II*distance <= 0 - - int value = delay-(RecMII * distance); - int lastII = II; - while(value <= 0) { - - lastII = RecMII; - RecMII--; - value = delay-(RecMII * distance); - } - - - DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); - addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); - assert(distance != 0 && "Recurrence distance should not be zero"); - return; - } - - unsigned count = 0; - for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { - visitedNodes.push_back(node); - //if(!edgesToIgnore.count(std::make_pair(node, count))) - findAllReccurrences(*I, visitedNodes, II); - visitedNodes.pop_back(); - count++; - } -} - -void ModuloSchedulingPass::searchPath(MSchedGraphNode *node, - std::vector<MSchedGraphNode*> &path, - std::set<MSchedGraphNode*> &nodesToAdd, - std::set<MSchedGraphNode*> &new_reccurrence) { - //Push node onto the path - path.push_back(node); - - //Loop over all successors and see if there is a path from this node to - //a recurrence in the partial order, if so.. add all nodes to be added to recc - for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; - ++S) { - - //Check if we should ignore this edge first - if(ignoreEdge(node,*S)) - continue; - - //check if successor is in this recurrence, we will get to it eventually - if(new_reccurrence.count(*S)) - continue; - - //If this node exists in a recurrence already in the partial - //order, then add all nodes in the path to the set of nodes to add - //Check if its already in our partial order, if not add it to the - //final vector - bool found = false; - for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - - if(PO->count(*S)) { - found = true; - break; - } - } - - if(!found) { - nodesToAdd.insert(*S); - searchPath(*S, path, nodesToAdd, new_reccurrence); - } - } - - //Pop Node off the path - path.pop_back(); -} - -void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node, - std::vector<MSchedGraphNode*> &path, - std::set<MSchedGraphNode*> &poSet, - std::set<MSchedGraphNode*> &lastNodes) { - //Push node onto the path - path.push_back(node); - - DEBUG(std::cerr << "Current node: " << *node << "\n"); - - //Loop over all successors and see if there is a path from this node to - //a recurrence in the partial order, if so.. add all nodes to be added to recc - for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; - ++S) { - DEBUG(std::cerr << "Succ:" << **S << "\n"); - //Check if we should ignore this edge first - if(ignoreEdge(node,*S)) - continue; - - if(poSet.count(*S)) { - DEBUG(std::cerr << "Found path to recc from no pred\n"); - //Loop over path, if it exists in lastNodes, then add to poset, and remove from lastNodes - for(std::vector<MSchedGraphNode*>::iterator I = path.begin(), IE = path.end(); I != IE; ++I) { - if(lastNodes.count(*I)) { - DEBUG(std::cerr << "Inserting node into recc: " << **I << "\n"); - poSet.insert(*I); - lastNodes.erase(*I); - } - } - } - else - pathToRecc(*S, path, poSet, lastNodes); - } - - //Pop Node off the path - path.pop_back(); -} - -void ModuloSchedulingPass::computePartialOrder() { - - TIME_REGION(X, "calculatePartialOrder"); - - DEBUG(std::cerr << "Computing Partial Order\n"); - - //Only push BA branches onto the final node order, we put other - //branches after it FIXME: Should we really be pushing branches on - //it a specific order instead of relying on BA being there? - - std::vector<MSchedGraphNode*> branches; - - //Steps to add a recurrence to the partial order 1) Find reccurrence - //with the highest RecMII. Add it to the partial order. 2) For each - //recurrence with decreasing RecMII, add it to the partial order - //along with any nodes that connect this recurrence to recurrences - //already in the partial order - for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator - I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { - - std::set<MSchedGraphNode*> new_recurrence; - - //Loop through recurrence and remove any nodes already in the partial order - for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), - NE = I->second.end(); N != NE; ++N) { - - bool found = false; - for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - if(PO->count(*N)) - found = true; - } - - //Check if its a branch, and remove to handle special - if(!found) { - if((*N)->isBranch() && !(*N)->hasPredecessors()) { - branches.push_back(*N); - } - else - new_recurrence.insert(*N); - } - - } - - - if(new_recurrence.size() > 0) { - - std::vector<MSchedGraphNode*> path; - std::set<MSchedGraphNode*> nodesToAdd; - - //Dump recc we are dealing with (minus nodes already in PO) - DEBUG(std::cerr << "Recc: "); - DEBUG(for(std::set<MSchedGraphNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; }); - - //Add nodes that connect this recurrence to recurrences in the partial path - for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(), - NE = new_recurrence.end(); N != NE; ++N) - searchPath(*N, path, nodesToAdd, new_recurrence); - - //Add nodes to this recurrence if they are not already in the partial order - for(std::set<MSchedGraphNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end(); - N != NE; ++N) { - bool found = false; - for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - if(PO->count(*N)) - found = true; - } - if(!found) { - assert("FOUND CONNECTOR"); - new_recurrence.insert(*N); - } - } - - partialOrder.push_back(new_recurrence); - - - //Dump out partial order - DEBUG(for(std::vector<std::set<MSchedGraphNode*> >::iterator I = partialOrder.begin(), - E = partialOrder.end(); I !=E; ++I) { - std::cerr << "Start set in PO\n"; - for(std::set<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J) - std::cerr << "PO:" << **J << "\n"; - }); - - } - } - - //Add any nodes that are not already in the partial order - //Add them in a set, one set per connected component - std::set<MSchedGraphNode*> lastNodes; - std::set<MSchedGraphNode*> noPredNodes; - for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), - E = nodeToAttributesMap.end(); I != E; ++I) { - - bool found = false; - - //Check if its already in our partial order, if not add it to the final vector - for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - if(PO->count(I->first)) - found = true; - } - if(!found) - lastNodes.insert(I->first); - } - - //For each node w/out preds, see if there is a path to one of the - //recurrences, and if so add them to that current recc - /*for(std::set<MSchedGraphNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end(); - N != NE; ++N) { - DEBUG(std::cerr << "No Pred Path from: " << **N << "\n"); - for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), - PE = partialOrder.end(); PO != PE; ++PO) { - std::vector<MSchedGraphNode*> path; - pathToRecc(*N, path, *PO, lastNodes); - } - }*/ - - - //Break up remaining nodes that are not in the partial order - ///into their connected compoenents - while(lastNodes.size() > 0) { - std::set<MSchedGraphNode*> ccSet; - connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes); - if(ccSet.size() > 0) - partialOrder.push_back(ccSet); - } - - - //Clean up branches by putting them in final order - assert(branches.size() == 0 && "We should not have any branches in our graph"); -} - - -void ModuloSchedulingPass::connectedComponentSet(MSchedGraphNode *node, std::set<MSchedGraphNode*> &ccSet, std::set<MSchedGraphNode*> &lastNodes) { - -//Add to final set - if( !ccSet.count(node) && lastNodes.count(node)) { - lastNodes.erase(node); - ccSet.insert(node); - } - else - return; - - //Loop over successors and recurse if we have not seen this node before - for(MSchedGraphNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) { - connectedComponentSet(*node_succ, ccSet, lastNodes); - } - -} - -void ModuloSchedulingPass::predIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult) { - - for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), - E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { - - //Check if we are supposed to ignore this edge or not - if(ignoreEdge(*P,FinalNodeOrder[j])) - continue; - - if(CurrentSet.count(*P)) - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) - IntersectResult.insert(*P); - } - } -} - - - - - -void ModuloSchedulingPass::succIntersect(std::set<MSchedGraphNode*> &CurrentSet, std::set<MSchedGraphNode*> &IntersectResult) { - - for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { - for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), - E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { - - //Check if we are supposed to ignore this edge or not - if(ignoreEdge(FinalNodeOrder[j],*P)) - continue; - - if(CurrentSet.count(*P)) - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) - IntersectResult.insert(*P); - } - } -} - -void dumpIntersection(std::set<MSchedGraphNode*> &IntersectCurrent) { - std::cerr << "Intersection ("; - for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) - std::cerr << **I << ", "; - std::cerr << ")\n"; -} - - - -void ModuloSchedulingPass::orderNodes() { - - TIME_REGION(X, "orderNodes"); - - int BOTTOM_UP = 0; - int TOP_DOWN = 1; - - //Set default order - int order = BOTTOM_UP; - - - //Loop over all the sets and place them in the final node order - for(std::vector<std::set<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { - - DEBUG(std::cerr << "Processing set in S\n"); - DEBUG(dumpIntersection(*CurrentSet)); - - //Result of intersection - std::set<MSchedGraphNode*> IntersectCurrent; - - predIntersect(*CurrentSet, IntersectCurrent); - - //If the intersection of predecessor and current set is not empty - //sort nodes bottom up - if(IntersectCurrent.size() != 0) { - DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); - order = BOTTOM_UP; - } - //If empty, use successors - else { - DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); - - succIntersect(*CurrentSet, IntersectCurrent); - - //sort top-down - if(IntersectCurrent.size() != 0) { - DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); - order = TOP_DOWN; - } - else { - DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); - //Find node with max ASAP in current Set - MSchedGraphNode *node; - int maxASAP = 0; - DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); - for(std::set<MSchedGraphNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) { - //Get node attributes - MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*J)->second; - //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); - - if(maxASAP <= nodeAttr.ASAP) { - maxASAP = nodeAttr.ASAP; - node = *J; - } - } - assert(node != 0 && "In node ordering node should not be null"); - IntersectCurrent.insert(node); - order = BOTTOM_UP; - } - } - - //Repeat until all nodes are put into the final order from current set - while(IntersectCurrent.size() > 0) { - - if(order == TOP_DOWN) { - DEBUG(std::cerr << "Order is TOP DOWN\n"); - - while(IntersectCurrent.size() > 0) { - DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); - - int MOB = 0; - int height = 0; - MSchedGraphNode *highestHeightNode = *(IntersectCurrent.begin()); - - //Find node in intersection with highest heigh and lowest MOB - for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), - E = IntersectCurrent.end(); I != E; ++I) { - - //Get current nodes properties - MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - - if(height < nodeAttr.height) { - highestHeightNode = *I; - height = nodeAttr.height; - MOB = nodeAttr.MOB; - } - else if(height == nodeAttr.height) { - if(MOB > nodeAttr.height) { - highestHeightNode = *I; - height = nodeAttr.height; - MOB = nodeAttr.MOB; - } - } - } - - //Append our node with greatest height to the NodeOrder - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { - DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); - FinalNodeOrder.push_back(highestHeightNode); - } - - //Remove V from IntersectOrder - IntersectCurrent.erase(std::find(IntersectCurrent.begin(), - IntersectCurrent.end(), highestHeightNode)); - - - //Intersect V's successors with CurrentSet - for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), - E = highestHeightNode->succ_end(); P != E; ++P) { - //if(lower_bound(CurrentSet->begin(), - // CurrentSet->end(), *P) != CurrentSet->end()) { - if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { - if(ignoreEdge(highestHeightNode, *P)) - continue; - //If not already in Intersect, add - if(!IntersectCurrent.count(*P)) - IntersectCurrent.insert(*P); - } - } - } //End while loop over Intersect Size - - //Change direction - order = BOTTOM_UP; - - //Reset Intersect to reflect changes in OrderNodes - IntersectCurrent.clear(); - predIntersect(*CurrentSet, IntersectCurrent); - - } //End If TOP_DOWN - - //Begin if BOTTOM_UP - else { - DEBUG(std::cerr << "Order is BOTTOM UP\n"); - while(IntersectCurrent.size() > 0) { - DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); - - //dump intersection - DEBUG(dumpIntersection(IntersectCurrent)); - //Get node with highest depth, if a tie, use one with lowest - //MOB - int MOB = 0; - int depth = 0; - MSchedGraphNode *highestDepthNode = *(IntersectCurrent.begin()); - - for(std::set<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), - E = IntersectCurrent.end(); I != E; ++I) { - //Find node attribute in graph - MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; - - if(depth < nodeAttr.depth) { - highestDepthNode = *I; - depth = nodeAttr.depth; - MOB = nodeAttr.MOB; - } - else if(depth == nodeAttr.depth) { - if(MOB > nodeAttr.MOB) { - highestDepthNode = *I; - depth = nodeAttr.depth; - MOB = nodeAttr.MOB; - } - } - } - - - - //Append highest depth node to the NodeOrder - if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { - DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); - FinalNodeOrder.push_back(highestDepthNode); - } - //Remove heightestDepthNode from IntersectOrder - IntersectCurrent.erase(highestDepthNode); - - - //Intersect heightDepthNode's pred with CurrentSet - for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), - E = highestDepthNode->pred_end(); P != E; ++P) { - if(CurrentSet->count(*P)) { - if(ignoreEdge(*P, highestDepthNode)) - continue; - - //If not already in Intersect, add - if(!IntersectCurrent.count(*P)) - IntersectCurrent.insert(*P); - } - } - - } //End while loop over Intersect Size - - //Change order - order = TOP_DOWN; - - //Reset IntersectCurrent to reflect changes in OrderNodes - IntersectCurrent.clear(); - succIntersect(*CurrentSet, IntersectCurrent); - } //End if BOTTOM_DOWN - - DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); - } - //End Wrapping while loop - DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); - }//End for over all sets of nodes - - //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no - //data dependencies) to the final order. We add this manually. It will always be - //in the last set of S since its not part of a recurrence - //Loop over all the sets and place them in the final node order - std::vector<std::set<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin(); - for(std::set<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end(); - CurrentNode != LastNode; ++CurrentNode) { - if((*CurrentNode)->getInst()->getOpcode() == V9::BA) - FinalNodeOrder.push_back(*CurrentNode); - } - //Return final Order - //return FinalNodeOrder; -} - -bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB, MSchedGraph *MSG) { - - TIME_REGION(X, "computeSchedule"); - - bool success = false; - - //FIXME: Should be set to max II of the original loop - //Cap II in order to prevent infinite loop - int capII = MSG->totalDelay(); - - while(!success) { - - //Keep track of branches, but do not insert into the schedule - std::vector<MSchedGraphNode*> branches; - - //Loop over the final node order and process each node - for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), - E = FinalNodeOrder.end(); I != E; ++I) { - - //CalculateEarly and Late start - bool initialLSVal = false; - bool initialESVal = false; - int EarlyStart = 0; - int LateStart = 0; - bool hasSucc = false; - bool hasPred = false; - bool sched; - - if((*I)->isBranch()) - if((*I)->hasPredecessors()) - sched = true; - else - sched = false; - else - sched = true; - - if(sched) { - //Loop over nodes in the schedule and determine if they are predecessors - //or successors of the node we are trying to schedule - for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); - nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { - - //For this cycle, get the vector of nodes schedule and loop over it - for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { - - if((*I)->isPredecessor(*schedNode)) { - int diff = (*I)->getInEdge(*schedNode).getIteDiff(); - int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; - DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); - DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); - if(initialESVal) - EarlyStart = std::max(EarlyStart, ES_Temp); - else { - EarlyStart = ES_Temp; - initialESVal = true; - } - hasPred = true; - } - if((*I)->isSuccessor(*schedNode)) { - int diff = (*schedNode)->getInEdge(*I).getIteDiff(); - int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; - DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); - DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); - if(initialLSVal) - LateStart = std::min(LateStart, LS_Temp); - else { - LateStart = LS_Temp; - initialLSVal = true; - } - hasSucc = true; - } - } - } - } - else { - branches.push_back(*I); - continue; - } - - //Check if this node is a pred or succ to a branch, and restrict its placement - //even though the branch is not in the schedule - /*int count = branches.size(); - for(std::vector<MSchedGraphNode*>::iterator B = branches.begin(), BE = branches.end(); - B != BE; ++B) { - if((*I)->isPredecessor(*B)) { - int diff = (*I)->getInEdge(*B).getIteDiff(); - int ES_Temp = (II+count-1) + (*B)->getLatency() - diff * II; - DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count)-1 << "\n"); - DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); - EarlyStart = std::max(EarlyStart, ES_Temp); - hasPred = true; - } - - if((*I)->isSuccessor(*B)) { - int diff = (*B)->getInEdge(*I).getIteDiff(); - int LS_Temp = (II+count-1) - (*I)->getLatency() + diff * II; - DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count-1) << "\n"); - DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); - LateStart = std::min(LateStart, LS_Temp); - hasSucc = true; - } - - count--; - }*/ - - //Check if the node has no pred or successors and set Early Start to its ASAP - if(!hasSucc && !hasPred) - EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; - - DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); - DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); - - //Now, try to schedule this node depending upon its pred and successor in the schedule - //already - if(!hasSucc && hasPred) - success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); - else if(!hasPred && hasSucc) - success = scheduleNode(*I, LateStart, (LateStart - II +1)); - else if(hasPred && hasSucc) { - if(EarlyStart > LateStart) { - success = false; - //LateStart = EarlyStart; - DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n"); - } - else - success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); - } - else - success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); - - if(!success) { - ++II; - schedule.clear(); - break; - } - - } - - if(success) { - DEBUG(std::cerr << "Constructing Schedule Kernel\n"); - success = schedule.constructKernel(II, branches, indVarInstrs[BB]); - DEBUG(std::cerr << "Done Constructing Schedule Kernel\n"); - if(!success) { - ++II; - schedule.clear(); - } - DEBUG(std::cerr << "Final II: " << II << "\n"); - } - - - if(II >= capII) { - DEBUG(std::cerr << "Maximum II reached, giving up\n"); - return false; - } - - assert(II < capII && "The II should not exceed the original loop number of cycles"); - } - return true; -} - - -bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, - int start, int end) { - bool success = false; - - DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); - - //Make sure start and end are not negative - //if(start < 0) { - //start = 0; - - //} - //if(end < 0) - //end = 0; - - bool forward = true; - if(start > end) - forward = false; - - bool increaseSC = true; - int cycle = start ; - - - while(increaseSC) { - - increaseSC = false; - - increaseSC = schedule.insert(node, cycle, II); - - if(!increaseSC) - return true; - - //Increment cycle to try again - if(forward) { - ++cycle; - DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); - if(cycle > end) - return false; - } - else { - --cycle; - DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); - if(cycle < end) - return false; - } - } - - return success; -} - -void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) { - - //Keep a map to easily know whats in the kernel - std::map<int, std::set<const MachineInstr*> > inKernel; - int maxStageCount = 0; - - //Keep a map of new values we consumed in case they need to be added back - std::map<Value*, std::map<int, Value*> > consumedValues; - - MSchedGraphNode *branch = 0; - MSchedGraphNode *BAbranch = 0; - - DEBUG(schedule.print(std::cerr)); - - std::vector<MSchedGraphNode*> branches; - - for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - maxStageCount = std::max(maxStageCount, I->second); - - //Put int the map so we know what instructions in each stage are in the kernel - DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n"); - inKernel[I->second].insert(I->first); - } - - //Get target information to look at machine operands - const TargetInstrInfo *mii = target.getInstrInfo(); - - //Now write the prologues - for(int i = 0; i < maxStageCount; ++i) { - BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent())); - MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); - - DEBUG(std::cerr << "i=" << i << "\n"); - for(int j = i; j >= 0; --j) { - for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { - if(inKernel[j].count(&*MI)) { - MachineInstr *instClone = MI->clone(); - machineBB->push_back(instClone); - - //If its a branch, insert a nop - if(mii->isBranch(instClone->getOpcode())) - BuildMI(machineBB, V9::NOP, 0); - - - DEBUG(std::cerr << "Cloning: " << *MI << "\n"); - - //After cloning, we may need to save the value that this instruction defines - for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { - Instruction *tmp; - - //get machine operand - MachineOperand &mOp = instClone->getOperand(opNum); - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { - - //Check if this is a value we should save - if(valuesToSave.count(mOp.getVRegValue())) { - //Save copy in tmpInstruction - tmp = new TmpInstruction(mOp.getVRegValue()); - - //Add TmpInstruction to safe LLVM Instruction MCFI - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n"); - - newValues[mOp.getVRegValue()][i]= tmp; - newValLocation[tmp] = machineBB; - - DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n"); - - //Create machine instruction and put int machineBB - MachineInstr *saveValue; - if(mOp.getVRegValue()->getType() == Type::FloatTy) - saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); - } - } - - //We may also need to update the value that we use if its from an earlier prologue - if(j != 0) { - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - if(newValues.count(mOp.getVRegValue())) { - if(newValues[mOp.getVRegValue()].count(i-1)) { - Value *oldV = mOp.getVRegValue(); - DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n"); - //Update the operand with the right value - mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]); - - //Remove this value since we have consumed it - //NOTE: Should this only be done if j != maxStage? - consumedValues[oldV][i-1] = (newValues[oldV][i-1]); - DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n"); - newValues[oldV].erase(i-1); - } - } - else - if(consumedValues.count(mOp.getVRegValue())) - assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value"); - } - } - } - } - } - } - - MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent()); - MachineFunction::BasicBlockListType &BL = F->getBasicBlockList(); - MachineFunction::BasicBlockListType::iterator BLI = origBB; - assert(BLI != BL.end() && "Must find original BB in machine function\n"); - BL.insert(BLI,machineBB); - prologues.push_back(machineBB); - llvm_prologues.push_back(llvmBB); - } -} - -void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) { - - std::map<int, std::set<const MachineInstr*> > inKernel; - - for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - - //Ignore the branch, we will handle this separately - //if(I->first->isBranch()) - //continue; - - //Put int the map so we know what instructions in each stage are in the kernel - inKernel[I->second].insert(I->first); - } - - std::map<Value*, Value*> valPHIs; - - //some debug stuff, will remove later - DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) { - std::cerr << "Old Value: " << *(V->first) << "\n"; - for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) - std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; - }); - - //some debug stuff, will remove later - DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = kernelPHIs.begin(), E = kernelPHIs.end(); V !=E; ++V) { - std::cerr << "Old Value: " << *(V->first) << "\n"; - for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) - std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; - }); - - //Now write the epilogues - for(int i = schedule.getMaxStage()-1; i >= 0; --i) { - BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent())); - MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); - - DEBUG(std::cerr << " Epilogue #: " << i << "\n"); - - - std::map<Value*, int> inEpilogue; - - for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { - for(int j=schedule.getMaxStage(); j > i; --j) { - if(inKernel[j].count(&*MI)) { - DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); - MachineInstr *clone = MI->clone(); - - //Update operands that need to use the result from the phi - for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { - //get machine operand - const MachineOperand &mOp = clone->getOperand(opNum); - - if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { - - DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n"); - - //If this is the last instructions for the max iterations ago, don't update operands - if(inEpilogue.count(mOp.getVRegValue())) - if(inEpilogue[mOp.getVRegValue()] == i) - continue; - - //Quickly write appropriate phis for this operand - if(newValues.count(mOp.getVRegValue())) { - if(newValues[mOp.getVRegValue()].count(i)) { - Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - //assert of no kernelPHI for this value - assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi"); - - MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - valPHIs[mOp.getVRegValue()] = tmp; - } - } - - if(valPHIs.count(mOp.getVRegValue())) { - //Update the operand in the cloned instruction - clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); - } - } - else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) { - inEpilogue[mOp.getVRegValue()] = i; - } - } - machineBB->push_back(clone); - } - } - } - - MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent()); - MachineFunction::BasicBlockListType &BL = F->getBasicBlockList(); - MachineFunction::BasicBlockListType::iterator BLI = (MachineBasicBlock*) origBB; - assert(BLI != BL.end() && "Must find original BB in machine function\n"); - BL.insert(BLI,machineBB); - epilogues.push_back(machineBB); - llvm_epilogues.push_back(llvmBB); - - DEBUG(std::cerr << "EPILOGUE #" << i << "\n"); - DEBUG(machineBB->print(std::cerr)); - } -} - -void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) { - - //Keep track of operands that are read and saved from a previous iteration. The new clone - //instruction will use the result of the phi instead. - std::map<Value*, Value*> finalPHIValue; - std::map<Value*, Value*> kernelValue; - - //Branches are a special case - std::vector<MachineInstr*> branches; - - //Get target information to look at machine operands - const TargetInstrInfo *mii = target.getInstrInfo(); - - //Create TmpInstructions for the final phis - for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - - DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";); - - //Clone instruction - const MachineInstr *inst = I->first; - MachineInstr *instClone = inst->clone(); - - //Insert into machine basic block - machineBB->push_back(instClone); - - if(mii->isBranch(instClone->getOpcode())) - BuildMI(machineBB, V9::NOP, 0); - - DEBUG(std::cerr << "Cloned Inst: " << *instClone << "\n"); - - //Loop over Machine Operands - for(unsigned i=0; i < inst->getNumOperands(); ++i) { - //get machine operand - const MachineOperand &mOp = inst->getOperand(i); - - if(I->second != 0) { - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - - //Check to see where this operand is defined if this instruction is from max stage - if(I->second == schedule.getMaxStage()) { - DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n"); - } - - //If its in the value saved, we need to create a temp instruction and use that instead - if(valuesToSave.count(mOp.getVRegValue())) { - - //Check if we already have a final PHI value for this - if(!finalPHIValue.count(mOp.getVRegValue())) { - //Only create phi if the operand def is from a stage before this one - if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) { - TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - //Update the operand in the cloned instruction - instClone->getOperand(i).setValueReg(tmp); - - //save this as our final phi - finalPHIValue[mOp.getVRegValue()] = tmp; - newValLocation[tmp] = machineBB; - } - } - else { - //Use the previous final phi value - instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); - } - } - } - } - if(I->second != schedule.getMaxStage()) { - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { - if(valuesToSave.count(mOp.getVRegValue())) { - - TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); - - //Get machine code for this instruction - MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst); - tempVec.addTemp((Value*) tmp); - - //Create new machine instr and put in MBB - MachineInstr *saveValue; - if(mOp.getVRegValue()->getType() == Type::FloatTy) - saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - //Save for future cleanup - kernelValue[mOp.getVRegValue()] = tmp; - newValLocation[tmp] = machineBB; - kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp; - } - } - } - } - - } - - //Add branches - for(std::vector<MachineInstr*>::iterator I = branches.begin(), E = branches.end(); I != E; ++I) { - machineBB->push_back(*I); - BuildMI(machineBB, V9::NOP, 0); - } - - - DEBUG(std::cerr << "KERNEL before PHIs\n"); - DEBUG(machineBB->print(std::cerr)); - - - //Loop over each value we need to generate phis for - for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), - E = newValues.end(); V != E; ++V) { - - - DEBUG(std::cerr << "Writing phi for" << *(V->first)); - DEBUG(std::cerr << "\nMap of Value* for this phi\n"); - DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(), - IE = V->second.end(); I != IE; ++I) { - std::cerr << "Stage: " << I->first; - std::cerr << " Value: " << *(I->second) << "\n"; - }); - - //If we only have one current iteration live, its safe to set lastPhi = to kernel value - if(V->second.size() == 1) { - assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi"); - MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); - DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n"); - kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first]; - DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n"); - } - else { - - //Keep track of last phi created. - Instruction *lastPhi = 0; - - unsigned count = 1; - //Loop over the the map backwards to generate phis - for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); - I != IE; ++I) { - - if(count < (V->second).size()) { - if(lastPhi == 0) { - lastPhi = new TmpInstruction(I->second); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) lastPhi); - - MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - newValLocation[lastPhi] = machineBB; - } - else { - Instruction *tmp = new TmpInstruction(I->second); - - //Get machine code for this instruction - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - tempMvec.addTemp((Value*) tmp); - - - MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - lastPhi = tmp; - kernelPHIs[V->first][I->first] = lastPhi; - newValLocation[lastPhi] = machineBB; - } - } - //Final phi value - else { - //The resulting value must be the Value* we created earlier - assert(lastPhi != 0 && "Last phi is NULL!\n"); - MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]); - DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); - kernelPHIs[V->first][I->first] = finalPHIValue[V->first]; - } - - ++count; - } - - } - } - - DEBUG(std::cerr << "KERNEL after PHIs\n"); - DEBUG(machineBB->print(std::cerr)); -} - - -void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) { - - //Worklist to delete things - std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist; - - //Worklist of TmpInstructions that need to be added to a MCFI - std::vector<Instruction*> addToMCFI; - - //Worklist to add OR instructions to end of kernel so not to invalidate the iterator - //std::vector<std::pair<Instruction*, Value*> > newORs; - - const TargetInstrInfo *TMI = target.getInstrInfo(); - - //Start with the kernel and for each phi insert a copy for the phi def and for each arg - for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) { - - DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); - //Get op code and check if its a phi - if(I->getOpcode() == V9::PHI) { - - DEBUG(std::cerr << "Replacing PHI: " << *I << "\n"); - Instruction *tmp = 0; - - for(unsigned i = 0; i < I->getNumOperands(); ++i) { - //Get Operand - const MachineOperand &mOp = I->getOperand(i); - assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); - - if(!tmp) { - tmp = new TmpInstruction(mOp.getVRegValue()); - addToMCFI.push_back(tmp); - } - - //Now for all our arguments we read, OR to the new TmpInstruction that we created - if(mOp.isUse()) { - DEBUG(std::cerr << "Use: " << mOp << "\n"); - //Place a copy at the end of its BB but before the branches - assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); - //Reverse iterate to find the branches, we can safely assume no instructions have been - //put in the nop positions - for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { - MachineOpCode opc = inst->getOpcode(); - if(TMI->isBranch(opc) || TMI->isNop(opc)) - continue; - else { - if(mOp.getVRegValue()->getType() == Type::FloatTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - break; - } - - } - - } - else { - //Remove the phi and replace it with an OR - DEBUG(std::cerr << "Def: " << mOp << "\n"); - //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue())); - if(tmp->getType() == Type::FloatTy) - BuildMI(*kernelBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else if(tmp->getType() == Type::DoubleTy) - BuildMI(*kernelBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else - BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); - - - worklist.push_back(std::make_pair(kernelBB, I)); - } - - } - - } - - - } - - //Add TmpInstructions to some MCFI - if(addToMCFI.size() > 0) { - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - for(unsigned x = 0; x < addToMCFI.size(); ++x) { - tempMvec.addTemp(addToMCFI[x]); - } - addToMCFI.clear(); - } - - - //Remove phis from epilogue - for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) { - for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) { - - DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); - //Get op code and check if its a phi - if(I->getOpcode() == V9::PHI) { - Instruction *tmp = 0; - - for(unsigned i = 0; i < I->getNumOperands(); ++i) { - //Get Operand - const MachineOperand &mOp = I->getOperand(i); - assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); - - if(!tmp) { - tmp = new TmpInstruction(mOp.getVRegValue()); - addToMCFI.push_back(tmp); - } - - //Now for all our arguments we read, OR to the new TmpInstruction that we created - if(mOp.isUse()) { - DEBUG(std::cerr << "Use: " << mOp << "\n"); - //Place a copy at the end of its BB but before the branches - assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); - //Reverse iterate to find the branches, we can safely assume no instructions have been - //put in the nop positions - for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { - MachineOpCode opc = inst->getOpcode(); - if(TMI->isBranch(opc) || TMI->isNop(opc)) - continue; - else { - if(mOp.getVRegValue()->getType() == Type::FloatTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else if(mOp.getVRegValue()->getType() == Type::DoubleTy) - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); - else - BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); - - - break; - } - - } - - } - else { - //Remove the phi and replace it with an OR - DEBUG(std::cerr << "Def: " << mOp << "\n"); - if(tmp->getType() == Type::FloatTy) - BuildMI(**MB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else if(tmp->getType() == Type::DoubleTy) - BuildMI(**MB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); - else - BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); - - worklist.push_back(std::make_pair(*MB,I)); - } - - } - } - - - } - } - - - if(addToMCFI.size() > 0) { - MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); - for(unsigned x = 0; x < addToMCFI.size(); ++x) { - tempMvec.addTemp(addToMCFI[x]); - } - addToMCFI.clear(); - } - - //Delete the phis - for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { - - DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n"); - I->first->erase(I->second); - - } - - - assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction"); -} - - -void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { - - TIME_REGION(X, "reconstructLoop"); - - - DEBUG(std::cerr << "Reconstructing Loop\n"); - - //First find the value *'s that we need to "save" - std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave; - - //Keep track of instructions we have already seen and their stage because - //we don't want to "save" values if they are used in the kernel immediately - std::map<const MachineInstr*, int> lastInstrs; - std::map<const Value*, int> phiUses; - - //Loop over kernel and only look at instructions from a stage > 0 - //Look at its operands and save values *'s that are read - for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { - - if(I->second !=0) { - //For this instruction, get the Value*'s that it reads and put them into the set. - //Assert if there is an operand of another type that we need to save - const MachineInstr *inst = I->first; - lastInstrs[inst] = I->second; - - for(unsigned i=0; i < inst->getNumOperands(); ++i) { - //get machine operand - const MachineOperand &mOp = inst->getOperand(i); - - if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { - //find the value in the map - if (const Value* srcI = mOp.getVRegValue()) { - - if(isa<Constant>(srcI) || isa<Argument>(srcI)) - continue; - - //Before we declare this Value* one that we should save - //make sure its def is not of the same stage as this instruction - //because it will be consumed before its used - Instruction *defInst = (Instruction*) srcI; - - //Should we save this value? - bool save = true; - - //Continue if not in the def map, loop invariant code does not need to be saved - if(!defMap.count(srcI)) - continue; - - MachineInstr *defInstr = defMap[srcI]; - - - if(lastInstrs.count(defInstr)) { - if(lastInstrs[defInstr] == I->second) { - save = false; - - } - } - - if(save) { - assert(!phiUses.count(srcI) && "Did not expect to see phi use twice"); - if(isa<PHINode>(srcI)) - phiUses[srcI] = I->second; - - valuesToSave[srcI] = std::make_pair(I->first, i); - - } - } - } - else if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { - if (const Value* destI = mOp.getVRegValue()) { - if(!isa<PHINode>(destI)) - continue; - if(phiUses.count(destI)) { - if(phiUses[destI] == I->second) { - //remove from save list - valuesToSave.erase(destI); - } - } - } - } - - if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { - assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); - } - } - } - } - - //The new loop will consist of one or more prologues, the kernel, and one or more epilogues. - - //Map to keep track of old to new values - std::map<Value*, std::map<int, Value*> > newValues; - - //Map to keep track of old to new values in kernel - std::map<Value*, std::map<int, Value*> > kernelPHIs; - - //Another map to keep track of what machine basic blocks these new value*s are in since - //they have no llvm instruction equivalent - std::map<Value*, MachineBasicBlock*> newValLocation; - - std::vector<MachineBasicBlock*> prologues; - std::vector<BasicBlock*> llvm_prologues; - - - //Write prologue - if(schedule.getMaxStage() != 0) - writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation); - - //Print out epilogues and prologue - DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); - I != E; ++I) { - std::cerr << "PROLOGUE\n"; - (*I)->print(std::cerr); - }); - - BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent())); - MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB); - - MachineFunction *F = (((MachineBasicBlock*)BB)->getParent()); - MachineFunction::BasicBlockListType &BL = F->getBasicBlockList(); - MachineFunction::BasicBlockListType::iterator BLI = BB; - assert(BLI != BL.end() && "Must find original BB in machine function\n"); - BL.insert(BLI,machineKernelBB); - - //(((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB); - writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs); - - - std::vector<MachineBasicBlock*> epilogues; - std::vector<BasicBlock*> llvm_epilogues; - - //Write epilogues - if(schedule.getMaxStage() != 0) - writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs); - - - //Fix our branches - fixBranches(prologues, llvm_prologues, machineKernelBB, llvmKernelBB, epilogues, llvm_epilogues, BB); - - //Remove phis - removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation); - - //Print out epilogues and prologue - DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end(); - I != E; ++I) { - std::cerr << "PROLOGUE\n"; - (*I)->print(std::cerr); - }); - - DEBUG(std::cerr << "KERNEL\n"); - DEBUG(machineKernelBB->print(std::cerr)); - - DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end(); - I != E; ++I) { - std::cerr << "EPILOGUE\n"; - (*I)->print(std::cerr); - }); - - - DEBUG(std::cerr << "New Machine Function" << "\n"); - DEBUG(std::cerr << BB->getParent() << "\n"); - - -} - -void ModuloSchedulingPass::fixBranches(std::vector<MachineBasicBlock *> &prologues, std::vector<BasicBlock*> &llvm_prologues, MachineBasicBlock *machineKernelBB, BasicBlock *llvmKernelBB, std::vector<MachineBasicBlock *> &epilogues, std::vector<BasicBlock*> &llvm_epilogues, MachineBasicBlock *BB) { - - const TargetInstrInfo *TMI = target.getInstrInfo(); - - if(schedule.getMaxStage() != 0) { - //Fix prologue branches - for(unsigned I = 0; I < prologues.size(); ++I) { - - //Find terminator since getFirstTerminator does not work! - for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) { - MachineOpCode OC = mInst->getOpcode(); - //If its a branch update its branchto - if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - //Check if we are branching to the kernel, if not branch to epilogue - if(mOp.getVRegValue() == BB->getBasicBlock()) { - if(I == prologues.size()-1) - mOp.setValueReg(llvmKernelBB); - else - mOp.setValueReg(llvm_prologues[I+1]); - } - else { - mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]); - } - } - } - - DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); - } - } - - - //Update llvm basic block with our new branch instr - DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n"); - const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); - - if(I == prologues.size()-1) { - TerminatorInst *newBranch = new BranchInst(llvmKernelBB, - llvm_epilogues[(llvm_epilogues.size()-1-I)], - branchVal->getCondition(), - llvm_prologues[I]); - } - else - TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1], - llvm_epilogues[(llvm_epilogues.size()-1-I)], - branchVal->getCondition(), - llvm_prologues[I]); - - } - } - - Value *origBranchExit = 0; - - //Fix up kernel machine branches - for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) { - MachineOpCode OC = mInst->getOpcode(); - if(TMI->isBranch(OC)) { - for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { - MachineOperand &mOp = mInst->getOperand(opNum); - - if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - if(mOp.getVRegValue() == BB->getBasicBlock()) - mOp.setValueReg(llvmKernelBB); - else - if(llvm_epilogues.size() > 0) { - assert(origBranchExit == 0 && "There should only be one branch out of the loop"); - - origBranchExit = mOp.getVRegValue(); - mOp.setValueReg(llvm_epilogues[0]); - } - else - origBranchExit = mOp.getVRegValue(); - } - } - } - } - - //Update kernelLLVM branches - const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); - - assert(origBranchExit != 0 && "We must have the original bb the kernel exits to!"); - - if(epilogues.size() > 0) { - TerminatorInst *newBranch = new BranchInst(llvmKernelBB, - llvm_epilogues[0], - branchVal->getCondition(), - llvmKernelBB); - } - else { - BasicBlock *origBBExit = dyn_cast<BasicBlock>(origBranchExit); - assert(origBBExit !=0 && "Original exit basic block must be set"); - TerminatorInst *newBranch = new BranchInst(llvmKernelBB, - origBBExit, - branchVal->getCondition(), - llvmKernelBB); - } - - if(schedule.getMaxStage() != 0) { - //Lastly add unconditional branches for the epilogues - for(unsigned I = 0; I < epilogues.size(); ++I) { - - //Now since we don't have fall throughs, add a unconditional branch to the next prologue - if(I != epilogues.size()-1) { - BuildMI(epilogues[I], V9::BA, 1).addPCDisp(llvm_epilogues[I+1]); - //Add unconditional branch to end of epilogue - TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1], - llvm_epilogues[I]); - - } - else { - BuildMI(epilogues[I], V9::BA, 1).addPCDisp(origBranchExit); - - - //Update last epilogue exit branch - BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator()); - //Find where we are supposed to branch to - BasicBlock *nextBlock = 0; - for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) { - if(branchVal->getSuccessor(j) != BB->getBasicBlock()) - nextBlock = branchVal->getSuccessor(j); - } - - assert((nextBlock != 0) && "Next block should not be null!"); - TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]); - } - //Add one more nop! - BuildMI(epilogues[I], V9::NOP, 0); - - } - } - - //FIX UP Machine BB entry!! - //We are looking at the predecesor of our loop basic block and we want to change its ba instruction - - - //Find all llvm basic blocks that branch to the loop entry and change to our first prologue. - const BasicBlock *llvmBB = BB->getBasicBlock(); - - std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB)); - - //for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) { - for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), PE = Preds.end(); P != PE; ++P) { - if(*P == llvmBB) - continue; - else { - DEBUG(std::cerr << "Found our entry BB\n"); - //Get the Terminator instruction for this basic block and print it out - DEBUG(std::cerr << *((*P)->getTerminator()) << "\n"); - //Update the terminator - TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); - for(unsigned i=0; i < term->getNumSuccessors(); ++i) { - if(term->getSuccessor(i) == llvmBB) { - DEBUG(std::cerr << "Replacing successor bb\n"); - if(llvm_prologues.size() > 0) { - term->setSuccessor(i, llvm_prologues[0]); - //Also update its corresponding machine instruction - MachineCodeForInstruction & tempMvec = - MachineCodeForInstruction::get(term); - for (unsigned j = 0; j < tempMvec.size(); j++) { - MachineInstr *temp = tempMvec[j]; - MachineOpCode opc = temp->getOpcode(); - if(TMI->isBranch(opc)) { - DEBUG(std::cerr << *temp << "\n"); - //Update branch - for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { - MachineOperand &mOp = temp->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - if(mOp.getVRegValue() == llvmBB) - mOp.setValueReg(llvm_prologues[0]); - } - } - } - } - } - else { - term->setSuccessor(i, llvmKernelBB); - //Also update its corresponding machine instruction - MachineCodeForInstruction & tempMvec = - MachineCodeForInstruction::get(term); - for (unsigned j = 0; j < tempMvec.size(); j++) { - MachineInstr *temp = tempMvec[j]; - MachineOpCode opc = temp->getOpcode(); - if(TMI->isBranch(opc)) { - DEBUG(std::cerr << *temp << "\n"); - //Update branch - for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { - MachineOperand &mOp = temp->getOperand(opNum); - if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { - if(mOp.getVRegValue() == llvmBB) - mOp.setValueReg(llvmKernelBB); - } - } - } - } - } - } - } - break; - } - } - - - //BB->getParent()->getBasicBlockList().erase(BB); - -} - |