aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/SparcV9/ModuloScheduling/MSchedGraph.cpp
diff options
context:
space:
mode:
authorJohn Criswell <criswell@uiuc.edu>2005-11-02 18:05:50 +0000
committerJohn Criswell <criswell@uiuc.edu>2005-11-02 18:05:50 +0000
commitcfa435f79bf39fead32263a8b71c9ae440b55214 (patch)
tree2f1ef0a4c3fb5549b8bbb014891f92866d46e042 /lib/Target/SparcV9/ModuloScheduling/MSchedGraph.cpp
Mark these as failing on sparc instead of sparcv9.
The configure script no longer tells us that we're configuring for SparcV9 specifically. 2004-06-17-UnorderedCompares may work on SparcV8, but it's experiental anyway. 2005-02-20-AggregateSAVEEXPR should fail on any Solaris machine, as Solaris doesn't provide complex number support. git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/release_16@24155 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/SparcV9/ModuloScheduling/MSchedGraph.cpp')
-rw-r--r--lib/Target/SparcV9/ModuloScheduling/MSchedGraph.cpp804
1 files changed, 804 insertions, 0 deletions
diff --git a/lib/Target/SparcV9/ModuloScheduling/MSchedGraph.cpp b/lib/Target/SparcV9/ModuloScheduling/MSchedGraph.cpp
new file mode 100644
index 0000000000..ec68a968e2
--- /dev/null
+++ b/lib/Target/SparcV9/ModuloScheduling/MSchedGraph.cpp
@@ -0,0 +1,804 @@
+//===-- MSchedGraph.cpp - Scheduling Graph ----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// A graph class for dependencies. This graph only contains true, anti, and
+// output data dependencies for a given MachineBasicBlock. Dependencies
+// across iterations are also computed. Unless data dependence analysis
+// is provided, a conservative approach of adding dependencies between all
+// loads and stores is taken.
+//===----------------------------------------------------------------------===//
+#define DEBUG_TYPE "ModuloSched"
+
+#include "MSchedGraph.h"
+#include "../SparcV9RegisterInfo.h"
+#include "../MachineCodeForInstruction.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/Type.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/Debug.h"
+#include <cstdlib>
+#include <algorithm>
+#include <set>
+
+using namespace llvm;
+
+//MSchedGraphNode constructor
+MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst,
+ MSchedGraph *graph, unsigned idx,
+ unsigned late, bool isBranch)
+ : Inst(inst), Parent(graph), index(idx), latency(late),
+ isBranchInstr(isBranch) {
+
+ //Add to the graph
+ graph->addNode(inst, this);
+}
+
+//MSchedGraphNode copy constructor
+MSchedGraphNode::MSchedGraphNode(const MSchedGraphNode &N)
+ : Predecessors(N.Predecessors), Successors(N.Successors) {
+
+ Inst = N.Inst;
+ Parent = N.Parent;
+ index = N.index;
+ latency = N.latency;
+ isBranchInstr = N.isBranchInstr;
+
+}
+
+//Print the node (instruction and latency)
+void MSchedGraphNode::print(std::ostream &os) const {
+ os << "MSchedGraphNode: Inst=" << *Inst << ", latency= " << latency << "\n";
+}
+
+
+//Get the edge from a predecessor to this node
+MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) {
+ //Loop over all the successors of our predecessor
+ //return the edge the corresponds to this in edge
+ for (MSchedGraphNode::succ_iterator I = pred->succ_begin(),
+ E = pred->succ_end(); I != E; ++I) {
+ if (*I == this)
+ return I.getEdge();
+ }
+ assert(0 && "Should have found edge between this node and its predecessor!");
+ abort();
+}
+
+//Get the iteration difference for the edge from this node to its successor
+unsigned MSchedGraphNode::getIteDiff(MSchedGraphNode *succ) {
+ for(std::vector<MSchedGraphEdge>::iterator I = Successors.begin(),
+ E = Successors.end();
+ I != E; ++I) {
+ if(I->getDest() == succ)
+ return I->getIteDiff();
+ }
+ return 0;
+}
+
+//Get the index into the vector of edges for the edge from pred to this node
+unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) {
+ //Loop over all the successors of our predecessor
+ //return the edge the corresponds to this in edge
+ int count = 0;
+ for(MSchedGraphNode::succ_iterator I = pred->succ_begin(),
+ E = pred->succ_end();
+ I != E; ++I) {
+ if(*I == this)
+ return count;
+ count++;
+ }
+ assert(0 && "Should have found edge between this node and its predecessor!");
+ abort();
+}
+
+//Determine if succ is a successor of this node
+bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) {
+ for(succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
+ if(*I == succ)
+ return true;
+ return false;
+}
+
+//Dtermine if pred is a predecessor of this node
+bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) {
+ if(std::find( Predecessors.begin(), Predecessors.end(),
+ pred) != Predecessors.end())
+ return true;
+ else
+ return false;
+}
+
+//Add a node to the graph
+void MSchedGraph::addNode(const MachineInstr *MI,
+ MSchedGraphNode *node) {
+
+ //Make sure node does not already exist
+ assert(GraphMap.find(MI) == GraphMap.end()
+ && "New MSchedGraphNode already exists for this instruction");
+
+ GraphMap[MI] = node;
+}
+
+//Delete a node to the graph
+void MSchedGraph::deleteNode(MSchedGraphNode *node) {
+
+ //Delete the edge to this node from all predecessors
+ while(node->pred_size() > 0) {
+ //DEBUG(std::cerr << "Delete edge from: " << **P << " to " << *node << "\n");
+ MSchedGraphNode *pred = *(node->pred_begin());
+ pred->deleteSuccessor(node);
+ }
+
+ //Remove this node from the graph
+ GraphMap.erase(node->getInst());
+
+}
+
+
+//Create a graph for a machine block. The ignoreInstrs map is so that
+//we ignore instructions associated to the index variable since this
+//is a special case in Modulo Scheduling. We only want to deal with
+//the body of the loop.
+MSchedGraph::MSchedGraph(const MachineBasicBlock *bb,
+ const TargetMachine &targ,
+ std::map<const MachineInstr*, unsigned> &ignoreInstrs,
+ DependenceAnalyzer &DA,
+ std::map<MachineInstr*, Instruction*> &machineTollvm)
+ : Target(targ) {
+
+ //Make sure BB is not null,
+ assert(bb != NULL && "Basic Block is null");
+
+ BBs.push_back(bb);
+
+ //Create nodes and edges for this BB
+ buildNodesAndEdges(ignoreInstrs, DA, machineTollvm);
+
+ //Experimental!
+ //addBranchEdges();
+}
+
+//Create a graph for a machine block. The ignoreInstrs map is so that
+//we ignore instructions associated to the index variable since this
+//is a special case in Modulo Scheduling. We only want to deal with
+//the body of the loop.
+MSchedGraph::MSchedGraph(std::vector<const MachineBasicBlock*> &bbs,
+ const TargetMachine &targ,
+ std::map<const MachineInstr*, unsigned> &ignoreInstrs,
+ DependenceAnalyzer &DA,
+ std::map<MachineInstr*, Instruction*> &machineTollvm)
+ : BBs(bbs), Target(targ) {
+
+ //Make sure there is at least one BB and it is not null,
+ assert(((bbs.size() >= 1) && bbs[1] != NULL) && "Basic Block is null");
+
+ //Create nodes and edges for this BB
+ buildNodesAndEdges(ignoreInstrs, DA, machineTollvm);
+
+ //Experimental!
+ //addBranchEdges();
+}
+
+
+//Copies the graph and keeps a map from old to new nodes
+MSchedGraph::MSchedGraph(const MSchedGraph &G,
+ std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes)
+ : Target(G.Target) {
+
+ BBs = G.BBs;
+
+ std::map<MSchedGraphNode*, MSchedGraphNode*> oldToNew;
+ //Copy all nodes
+ for(MSchedGraph::const_iterator N = G.GraphMap.begin(),
+ NE = G.GraphMap.end(); N != NE; ++N) {
+
+ MSchedGraphNode *newNode = new MSchedGraphNode(*(N->second));
+ oldToNew[&*(N->second)] = newNode;
+ newNodes[newNode] = &*(N->second);
+ GraphMap[&*(N->first)] = newNode;
+ }
+
+ //Loop over nodes and update edges to point to new nodes
+ for(MSchedGraph::iterator N = GraphMap.begin(), NE = GraphMap.end();
+ N != NE; ++N) {
+
+ //Get the node we are dealing with
+ MSchedGraphNode *node = &*(N->second);
+
+ node->setParent(this);
+
+ //Loop over nodes successors and predecessors and update to the new nodes
+ for(unsigned i = 0; i < node->pred_size(); ++i) {
+ node->setPredecessor(i, oldToNew[node->getPredecessor(i)]);
+ }
+
+ for(unsigned i = 0; i < node->succ_size(); ++i) {
+ MSchedGraphEdge *edge = node->getSuccessor(i);
+ MSchedGraphNode *oldDest = edge->getDest();
+ edge->setDest(oldToNew[oldDest]);
+ }
+ }
+}
+
+//Deconstructor, deletes all nodes in the graph
+MSchedGraph::~MSchedGraph () {
+ for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
+ I != E; ++I)
+ delete I->second;
+}
+
+//Print out graph
+void MSchedGraph::print(std::ostream &os) const {
+ for(MSchedGraph::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
+ N != NE; ++N) {
+
+ //Get the node we are dealing with
+ MSchedGraphNode *node = &*(N->second);
+
+ os << "Node Start\n";
+ node->print(os);
+ os << "Successors:\n";
+ //print successors
+ for(unsigned i = 0; i < node->succ_size(); ++i) {
+ MSchedGraphEdge *edge = node->getSuccessor(i);
+ MSchedGraphNode *oldDest = edge->getDest();
+ oldDest->print(os);
+ }
+ os << "Node End\n";
+ }
+}
+
+//Calculate total delay
+int MSchedGraph::totalDelay() {
+ int sum = 0;
+
+ for(MSchedGraph::const_iterator N = GraphMap.begin(), NE = GraphMap.end();
+ N != NE; ++N) {
+
+ //Get the node we are dealing with
+ MSchedGraphNode *node = &*(N->second);
+ sum += node->getLatency();
+ }
+ return sum;
+}
+//Experimental code to add edges from the branch to all nodes dependent upon it.
+void hasPath(MSchedGraphNode *node, std::set<MSchedGraphNode*> &visited,
+ std::set<MSchedGraphNode*> &branches, MSchedGraphNode *startNode,
+ std::set<std::pair<MSchedGraphNode*,MSchedGraphNode*> > &newEdges ) {
+
+ visited.insert(node);
+ DEBUG(std::cerr << "Visiting: " << *node << "\n");
+ //Loop over successors
+ for(unsigned i = 0; i < node->succ_size(); ++i) {
+ MSchedGraphEdge *edge = node->getSuccessor(i);
+ MSchedGraphNode *dest = edge->getDest();
+ if(branches.count(dest))
+ newEdges.insert(std::make_pair(dest, startNode));
+
+ //only visit if we have not already
+ else if(!visited.count(dest)) {
+ if(edge->getIteDiff() == 0)
+ hasPath(dest, visited, branches, startNode, newEdges);}
+
+ }
+
+}
+
+//Experimental code to add edges from the branch to all nodes dependent upon it.
+void MSchedGraph::addBranchEdges() {
+ std::set<MSchedGraphNode*> branches;
+ std::set<MSchedGraphNode*> nodes;
+
+ for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
+ I != E; ++I) {
+ if(I->second->isBranch())
+ if(I->second->hasPredecessors())
+ branches.insert(I->second);
+ }
+
+ //See if there is a path first instruction to the branches, if so, add an
+ //iteration dependence between that node and the branch
+ std::set<std::pair<MSchedGraphNode*, MSchedGraphNode*> > newEdges;
+ for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end();
+ I != E; ++I) {
+ std::set<MSchedGraphNode*> visited;
+ hasPath((I->second), visited, branches, (I->second), newEdges);
+ }
+
+ //Spit out all edges we are going to add
+ unsigned min = GraphMap.size();
+ if(newEdges.size() == 1) {
+ ((newEdges.begin())->first)->addOutEdge(((newEdges.begin())->second),
+ MSchedGraphEdge::BranchDep,
+ MSchedGraphEdge::NonDataDep, 1);
+ }
+ else {
+
+ unsigned count = 0;
+ MSchedGraphNode *start;
+ MSchedGraphNode *end;
+ for(std::set<std::pair<MSchedGraphNode*, MSchedGraphNode*> >::iterator I = newEdges.begin(), E = newEdges.end(); I != E; ++I) {
+
+ DEBUG(std::cerr << "Branch Edge from: " << *(I->first) << " to " << *(I->second) << "\n");
+
+ // if(I->second->getIndex() <= min) {
+ start = I->first;
+ end = I->second;
+ //min = I->second->getIndex();
+ //}
+ start->addOutEdge(end,
+ MSchedGraphEdge::BranchDep,
+ MSchedGraphEdge::NonDataDep, 1);
+ }
+ }
+}
+
+
+//Add edges between the nodes
+void MSchedGraph::buildNodesAndEdges(std::map<const MachineInstr*, unsigned> &ignoreInstrs,
+ DependenceAnalyzer &DA,
+ std::map<MachineInstr*, Instruction*> &machineTollvm) {
+
+
+ //Get Machine target information for calculating latency
+ const TargetInstrInfo *MTI = Target.getInstrInfo();
+
+ std::vector<MSchedGraphNode*> memInstructions;
+ std::map<int, std::vector<OpIndexNodePair> > regNumtoNodeMap;
+ std::map<const Value*, std::vector<OpIndexNodePair> > valuetoNodeMap;
+
+ //Save PHI instructions to deal with later
+ std::vector<const MachineInstr*> phiInstrs;
+ unsigned index = 0;
+
+ for(std::vector<const MachineBasicBlock*>::iterator B = BBs.begin(),
+ BE = BBs.end(); B != BE; ++B) {
+
+ const MachineBasicBlock *BB = *B;
+
+ //Loop over instructions in MBB and add nodes and edges
+ for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end();
+ MI != e; ++MI) {
+
+ //Ignore indvar instructions
+ if(ignoreInstrs.count(MI)) {
+ ++index;
+ continue;
+ }
+
+ //Get each instruction of machine basic block, get the delay
+ //using the op code, create a new node for it, and add to the
+ //graph.
+
+ MachineOpCode opCode = MI->getOpcode();
+ int delay;
+
+#if 0 // FIXME: LOOK INTO THIS
+ //Check if subsequent instructions can be issued before
+ //the result is ready, if so use min delay.
+ if(MTI->hasResultInterlock(MIopCode))
+ delay = MTI->minLatency(MIopCode);
+ else
+#endif
+ //Get delay
+ delay = MTI->maxLatency(opCode);
+
+ //Create new node for this machine instruction and add to the graph.
+ //Create only if not a nop
+ if(MTI->isNop(opCode))
+ continue;
+
+ //Sparc BE does not use PHI opcode, so assert on this case
+ assert(opCode != TargetInstrInfo::PHI && "Did not expect PHI opcode");
+
+ bool isBranch = false;
+
+ //We want to flag the branch node to treat it special
+ if(MTI->isBranch(opCode))
+ isBranch = true;
+
+ //Node is created and added to the graph automatically
+ MSchedGraphNode *node = new MSchedGraphNode(MI, this, index, delay,
+ isBranch);
+
+ DEBUG(std::cerr << "Created Node: " << *node << "\n");
+
+ //Check OpCode to keep track of memory operations to add memory
+ //dependencies later.
+ if(MTI->isLoad(opCode) || MTI->isStore(opCode))
+ memInstructions.push_back(node);
+
+ //Loop over all operands, and put them into the register number to
+ //graph node map for determining dependencies
+ //If an operands is a use/def, we have an anti dependence to itself
+ for(unsigned i=0; i < MI->getNumOperands(); ++i) {
+ //Get Operand
+ const MachineOperand &mOp = MI->getOperand(i);
+
+ //Check if it has an allocated register
+ if(mOp.hasAllocatedReg()) {
+ int regNum = mOp.getReg();
+
+ if(regNum != SparcV9::g0) {
+ //Put into our map
+ regNumtoNodeMap[regNum].push_back(std::make_pair(i, node));
+ }
+ continue;
+ }
+
+
+ //Add virtual registers dependencies
+ //Check if any exist in the value map already and create dependencies
+ //between them.
+ if(mOp.getType() == MachineOperand::MO_VirtualRegister
+ || mOp.getType() == MachineOperand::MO_CCRegister) {
+
+ //Make sure virtual register value is not null
+ assert((mOp.getVRegValue() != NULL) && "Null value is defined");
+
+ //Check if this is a read operation in a phi node, if so DO NOT PROCESS
+ if(mOp.isUse() && (opCode == TargetInstrInfo::PHI)) {
+ DEBUG(std::cerr << "Read Operation in a PHI node\n");
+ continue;
+ }
+
+ if (const Value* srcI = mOp.getVRegValue()) {
+
+ //Find value in the map
+ std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
+ = valuetoNodeMap.find(srcI);
+
+ //If there is something in the map already, add edges from
+ //those instructions
+ //to this one we are processing
+ if(V != valuetoNodeMap.end()) {
+ addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), phiInstrs);
+
+ //Add to value map
+ V->second.push_back(std::make_pair(i,node));
+ }
+ //Otherwise put it in the map
+ else
+ //Put into value map
+ valuetoNodeMap[mOp.getVRegValue()].push_back(std::make_pair(i, node));
+ }
+ }
+ }
+ ++index;
+ }
+
+ //Loop over LLVM BB, examine phi instructions, and add them to our
+ //phiInstr list to process
+ const BasicBlock *llvm_bb = BB->getBasicBlock();
+ for(BasicBlock::const_iterator I = llvm_bb->begin(), E = llvm_bb->end();
+ I != E; ++I) {
+ if(const PHINode *PN = dyn_cast<PHINode>(I)) {
+ MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(PN);
+ for (unsigned j = 0; j < tempMvec.size(); j++) {
+ if(!ignoreInstrs.count(tempMvec[j])) {
+ DEBUG(std::cerr << "Inserting phi instr into map: " << *tempMvec[j] << "\n");
+ phiInstrs.push_back((MachineInstr*) tempMvec[j]);
+ }
+ }
+ }
+
+ }
+
+ addMemEdges(memInstructions, DA, machineTollvm);
+ addMachRegEdges(regNumtoNodeMap);
+
+ //Finally deal with PHI Nodes and Value*
+ for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(),
+ E = phiInstrs.end(); I != E; ++I) {
+
+ //Get Node for this instruction
+ std::map<const MachineInstr*, MSchedGraphNode*>::iterator X;
+ X = find(*I);
+
+ if(X == GraphMap.end())
+ continue;
+
+ MSchedGraphNode *node = X->second;
+
+ DEBUG(std::cerr << "Adding ite diff edges for node: " << *node << "\n");
+
+ //Loop over operands for this instruction and add value edges
+ for(unsigned i=0; i < (*I)->getNumOperands(); ++i) {
+ //Get Operand
+ const MachineOperand &mOp = (*I)->getOperand(i);
+ if((mOp.getType() == MachineOperand::MO_VirtualRegister
+ || mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
+
+ //find the value in the map
+ if (const Value* srcI = mOp.getVRegValue()) {
+
+ //Find value in the map
+ std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
+ = valuetoNodeMap.find(srcI);
+
+ //If there is something in the map already, add edges from
+ //those instructions
+ //to this one we are processing
+ if(V != valuetoNodeMap.end()) {
+ addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(),
+ phiInstrs, 1);
+ }
+ }
+ }
+ }
+ }
+ }
+}
+//Add dependencies for Value*s
+void MSchedGraph::addValueEdges(std::vector<OpIndexNodePair> &NodesInMap,
+ MSchedGraphNode *destNode, bool nodeIsUse,
+ bool nodeIsDef, std::vector<const MachineInstr*> &phiInstrs, int diff) {
+
+ for(std::vector<OpIndexNodePair>::iterator I = NodesInMap.begin(),
+ E = NodesInMap.end(); I != E; ++I) {
+
+ //Get node in vectors machine operand that is the same value as node
+ MSchedGraphNode *srcNode = I->second;
+ MachineOperand mOp = srcNode->getInst()->getOperand(I->first);
+
+ if(diff > 0)
+ if(std::find(phiInstrs.begin(), phiInstrs.end(), srcNode->getInst()) == phiInstrs.end())
+ continue;
+
+ //Node is a Def, so add output dep.
+ if(nodeIsDef) {
+ if(mOp.isUse()) {
+ DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=anti)\n");
+ srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
+ MSchedGraphEdge::AntiDep, diff);
+ }
+ if(mOp.isDef()) {
+ DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=output)\n");
+ srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
+ MSchedGraphEdge::OutputDep, diff);
+ }
+ }
+ if(nodeIsUse) {
+ if(mOp.isDef()) {
+ DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=true)\n");
+ srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
+ MSchedGraphEdge::TrueDep, diff);
+ }
+ }
+ }
+}
+
+//Add dependencies for machine registers across iterations
+void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >& regNumtoNodeMap) {
+ //Loop over all machine registers in the map, and add dependencies
+ //between the instructions that use it
+ typedef std::map<int, std::vector<OpIndexNodePair> > regNodeMap;
+ for(regNodeMap::iterator I = regNumtoNodeMap.begin();
+ I != regNumtoNodeMap.end(); ++I) {
+ //Get the register number
+ int regNum = (*I).first;
+
+ //Get Vector of nodes that use this register
+ std::vector<OpIndexNodePair> Nodes = (*I).second;
+
+ //Loop over nodes and determine the dependence between the other
+ //nodes in the vector
+ for(unsigned i =0; i < Nodes.size(); ++i) {
+
+ //Get src node operator index that uses this machine register
+ int srcOpIndex = Nodes[i].first;
+
+ //Get the actual src Node
+ MSchedGraphNode *srcNode = Nodes[i].second;
+
+ //Get Operand
+ const MachineOperand &srcMOp = srcNode->getInst()->getOperand(srcOpIndex);
+
+ bool srcIsUseandDef = srcMOp.isDef() && srcMOp.isUse();
+ bool srcIsUse = srcMOp.isUse() && !srcMOp.isDef();
+
+
+ //Look at all instructions after this in execution order
+ for(unsigned j=i+1; j < Nodes.size(); ++j) {
+
+ //Sink node is a write
+ if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
+ //Src only uses the register (read)
+ if(srcIsUse)
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::AntiDep);
+
+ else if(srcIsUseandDef) {
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::AntiDep);
+
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::OutputDep);
+ }
+ else
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::OutputDep);
+ }
+ //Dest node is a read
+ else {
+ if(!srcIsUse || srcIsUseandDef)
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::TrueDep);
+ }
+
+ }
+
+ //Look at all the instructions before this one since machine registers
+ //could live across iterations.
+ for(unsigned j = 0; j < i; ++j) {
+ //Sink node is a write
+ if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
+ //Src only uses the register (read)
+ if(srcIsUse)
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::AntiDep, 1);
+ else if(srcIsUseandDef) {
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::AntiDep, 1);
+
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::OutputDep, 1);
+ }
+ else
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::OutputDep, 1);
+ }
+ //Dest node is a read
+ else {
+ if(!srcIsUse || srcIsUseandDef)
+ srcNode->addOutEdge(Nodes[j].second,
+ MSchedGraphEdge::MachineRegister,
+ MSchedGraphEdge::TrueDep,1 );
+ }
+
+
+ }
+
+ }
+
+ }
+
+}
+
+//Add edges between all loads and stores
+//Can be less strict with alias analysis and data dependence analysis.
+void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst,
+ DependenceAnalyzer &DA,
+ std::map<MachineInstr*, Instruction*> &machineTollvm) {
+
+ //Get Target machine instruction info
+ const TargetInstrInfo *TMI = Target.getInstrInfo();
+
+ //Loop over all memory instructions in the vector
+ //Knowing that they are in execution, add true, anti, and output dependencies
+ for (unsigned srcIndex = 0; srcIndex < memInst.size(); ++srcIndex) {
+
+ MachineInstr *srcInst = (MachineInstr*) memInst[srcIndex]->getInst();
+
+ //Get the machine opCode to determine type of memory instruction
+ MachineOpCode srcNodeOpCode = srcInst->getOpcode();
+
+ //All instructions after this one in execution order have an
+ //iteration delay of 0
+ for(unsigned destIndex = 0; destIndex < memInst.size(); ++destIndex) {
+
+ //No self loops
+ if(destIndex == srcIndex)
+ continue;
+
+ MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
+
+ DEBUG(std::cerr << "MInst1: " << *srcInst << "\n");
+ DEBUG(std::cerr << "MInst2: " << *destInst << "\n");
+
+ //Assuming instructions without corresponding llvm instructions
+ //are from constant pools.
+ if (!machineTollvm.count(srcInst) || !machineTollvm.count(destInst))
+ continue;
+
+ bool useDepAnalyzer = true;
+
+ //Some machine loads and stores are generated by casts, so be
+ //conservative and always add deps
+ Instruction *srcLLVM = machineTollvm[srcInst];
+ Instruction *destLLVM = machineTollvm[destInst];
+ if(!isa<LoadInst>(srcLLVM)
+ && !isa<StoreInst>(srcLLVM)) {
+ if(isa<BinaryOperator>(srcLLVM)) {
+ if(isa<ConstantFP>(srcLLVM->getOperand(0)) || isa<ConstantFP>(srcLLVM->getOperand(1)))
+ continue;
+ }
+ useDepAnalyzer = false;
+ }
+ if(!isa<LoadInst>(destLLVM)
+ && !isa<StoreInst>(destLLVM)) {
+ if(isa<BinaryOperator>(destLLVM)) {
+ if(isa<ConstantFP>(destLLVM->getOperand(0)) || isa<ConstantFP>(destLLVM->getOperand(1)))
+ continue;
+ }
+ useDepAnalyzer = false;
+ }
+
+ //Use dep analysis when we have corresponding llvm loads/stores
+ if(useDepAnalyzer) {
+ bool srcBeforeDest = true;
+ if(destIndex < srcIndex)
+ srcBeforeDest = false;
+
+ DependenceResult dr = DA.getDependenceInfo(machineTollvm[srcInst],
+ machineTollvm[destInst],
+ srcBeforeDest);
+
+ for(std::vector<Dependence>::iterator d = dr.dependences.begin(),
+ de = dr.dependences.end(); d != de; ++d) {
+ //Add edge from load to store
+ memInst[srcIndex]->addOutEdge(memInst[destIndex],
+ MSchedGraphEdge::MemoryDep,
+ d->getDepType(), d->getIteDiff());
+
+ }
+ }
+ //Otherwise, we can not do any further analysis and must make a dependence
+ else {
+
+ //Get the machine opCode to determine type of memory instruction
+ MachineOpCode destNodeOpCode = destInst->getOpcode();
+
+ //Get the Value* that we are reading from the load, always the first op
+ const MachineOperand &mOp = srcInst->getOperand(0);
+ const MachineOperand &mOp2 = destInst->getOperand(0);
+
+ if(mOp.hasAllocatedReg())
+ if(mOp.getReg() == SparcV9::g0)
+ continue;
+ if(mOp2.hasAllocatedReg())
+ if(mOp2.getReg() == SparcV9::g0)
+ continue;
+
+ DEBUG(std::cerr << "Adding dependence for machine instructions\n");
+ //Load-Store deps
+ if(TMI->isLoad(srcNodeOpCode)) {
+
+ if(TMI->isStore(destNodeOpCode))
+ memInst[srcIndex]->addOutEdge(memInst[destIndex],
+ MSchedGraphEdge::MemoryDep,
+ MSchedGraphEdge::AntiDep, 0);
+ }
+ else if(TMI->isStore(srcNodeOpCode)) {
+ if(TMI->isStore(destNodeOpCode))
+ memInst[srcIndex]->addOutEdge(memInst[destIndex],
+ MSchedGraphEdge::MemoryDep,
+ MSchedGraphEdge::OutputDep, 0);
+
+ else
+ memInst[srcIndex]->addOutEdge(memInst[destIndex],
+ MSchedGraphEdge::MemoryDep,
+ MSchedGraphEdge::TrueDep, 0);
+ }
+ }
+ }
+ }
+}