aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPC64ISelSimple.cpp
diff options
context:
space:
mode:
authorNate Begeman <natebegeman@mac.com>2005-04-05 08:51:15 +0000
committerNate Begeman <natebegeman@mac.com>2005-04-05 08:51:15 +0000
commitd3e6b94020ac6ed827fb1dfe1f4abe9ff39e4ec7 (patch)
treee0817641d9cad491a86add64ce5da1df9f44a5d2 /lib/Target/PowerPC/PPC64ISelSimple.cpp
parentc8c5c8f0fad4d1bd54ccd372255c9802287625f2 (diff)
Remove 64 bit simple ISel, it never worked correctly
Add initial (buggy) implementation of 64 bit pattern ISel git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21096 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/PowerPC/PPC64ISelSimple.cpp')
-rw-r--r--lib/Target/PowerPC/PPC64ISelSimple.cpp2946
1 files changed, 0 insertions, 2946 deletions
diff --git a/lib/Target/PowerPC/PPC64ISelSimple.cpp b/lib/Target/PowerPC/PPC64ISelSimple.cpp
deleted file mode 100644
index 30531b6eee..0000000000
--- a/lib/Target/PowerPC/PPC64ISelSimple.cpp
+++ /dev/null
@@ -1,2946 +0,0 @@
-//===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "isel"
-#include "PowerPC.h"
-#include "PowerPCInstrBuilder.h"
-#include "PowerPCInstrInfo.h"
-#include "PPC64TargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Function.h"
-#include "llvm/Instructions.h"
-#include "llvm/Pass.h"
-#include "llvm/CodeGen/IntrinsicLowering.h"
-#include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/InstVisitor.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/ADT/Statistic.h"
-#include <vector>
-using namespace llvm;
-
-namespace {
- Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
-
- /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
- /// PPC Representation.
- ///
- enum TypeClass {
- cByte, cShort, cInt, cFP32, cFP64, cLong
- };
-}
-
-/// getClass - Turn a primitive type into a "class" number which is based on the
-/// size of the type, and whether or not it is floating point.
-///
-static inline TypeClass getClass(const Type *Ty) {
- switch (Ty->getTypeID()) {
- case Type::SByteTyID:
- case Type::UByteTyID: return cByte; // Byte operands are class #0
- case Type::ShortTyID:
- case Type::UShortTyID: return cShort; // Short operands are class #1
- case Type::IntTyID:
- case Type::UIntTyID: return cInt; // Ints are class #2
-
- case Type::FloatTyID: return cFP32; // Single float is #3
- case Type::DoubleTyID: return cFP64; // Double Point is #4
-
- case Type::PointerTyID:
- case Type::LongTyID:
- case Type::ULongTyID: return cLong; // Longs and pointers are class #5
- default:
- assert(0 && "Invalid type to getClass!");
- return cByte; // not reached
- }
-}
-
-// getClassB - Just like getClass, but treat boolean values as ints.
-static inline TypeClass getClassB(const Type *Ty) {
- if (Ty == Type::BoolTy) return cInt;
- return getClass(Ty);
-}
-
-namespace {
- struct PPC64ISel : public FunctionPass, InstVisitor<PPC64ISel> {
- PPC64TargetMachine &TM;
- MachineFunction *F; // The function we are compiling into
- MachineBasicBlock *BB; // The current MBB we are compiling
- int VarArgsFrameIndex; // FrameIndex for start of varargs area
-
- std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
-
- // External functions used in the Module
- Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__fixsfdiFn, *__fixdfdiFn,
- *__fixunssfdiFn, *__fixunsdfdiFn, *mallocFn, *freeFn;
-
- // MBBMap - Mapping between LLVM BB -> Machine BB
- std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
-
- // AllocaMap - Mapping from fixed sized alloca instructions to the
- // FrameIndex for the alloca.
- std::map<AllocaInst*, unsigned> AllocaMap;
-
- // Target configuration data
- const unsigned ParameterSaveAreaOffset, MaxArgumentStackSpace;
-
- PPC64ISel(TargetMachine &tm):TM(reinterpret_cast<PPC64TargetMachine&>(tm)),
- F(0), BB(0), ParameterSaveAreaOffset(24), MaxArgumentStackSpace(32) {}
-
- bool doInitialization(Module &M) {
- // Add external functions that we may call
- Type *i = Type::IntTy;
- Type *d = Type::DoubleTy;
- Type *f = Type::FloatTy;
- Type *l = Type::LongTy;
- Type *ul = Type::ULongTy;
- Type *voidPtr = PointerType::get(Type::SByteTy);
- // float fmodf(float, float);
- fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
- // double fmod(double, double);
- fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
- // int __cmpdi2(long, long);
- __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
- // long __fixsfdi(float)
- __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
- // long __fixdfdi(double)
- __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
- // unsigned long __fixunssfdi(float)
- __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
- // unsigned long __fixunsdfdi(double)
- __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
- // void* malloc(size_t)
- mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
- // void free(void*)
- freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
- return false;
- }
-
- /// runOnFunction - Top level implementation of instruction selection for
- /// the entire function.
- ///
- bool runOnFunction(Function &Fn) {
- // First pass over the function, lower any unknown intrinsic functions
- // with the IntrinsicLowering class.
- LowerUnknownIntrinsicFunctionCalls(Fn);
-
- F = &MachineFunction::construct(&Fn, TM);
-
- // Create all of the machine basic blocks for the function...
- for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
- F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
-
- BB = &F->front();
-
- // Copy incoming arguments off of the stack...
- LoadArgumentsToVirtualRegs(Fn);
-
- // Instruction select everything except PHI nodes
- visit(Fn);
-
- // Select the PHI nodes
- SelectPHINodes();
-
- RegMap.clear();
- MBBMap.clear();
- AllocaMap.clear();
- F = 0;
- // We always build a machine code representation for the function
- return true;
- }
-
- virtual const char *getPassName() const {
- return "PowerPC Simple Instruction Selection";
- }
-
- /// visitBasicBlock - This method is called when we are visiting a new basic
- /// block. This simply creates a new MachineBasicBlock to emit code into
- /// and adds it to the current MachineFunction. Subsequent visit* for
- /// instructions will be invoked for all instructions in the basic block.
- ///
- void visitBasicBlock(BasicBlock &LLVM_BB) {
- BB = MBBMap[&LLVM_BB];
- }
-
- /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
- /// function, lowering any calls to unknown intrinsic functions into the
- /// equivalent LLVM code.
- ///
- void LowerUnknownIntrinsicFunctionCalls(Function &F);
-
- /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
- /// from the stack into virtual registers.
- ///
- void LoadArgumentsToVirtualRegs(Function &F);
-
- /// SelectPHINodes - Insert machine code to generate phis. This is tricky
- /// because we have to generate our sources into the source basic blocks,
- /// not the current one.
- ///
- void SelectPHINodes();
-
- // Visitation methods for various instructions. These methods simply emit
- // fixed PowerPC code for each instruction.
-
- // Control flow operators
- void visitReturnInst(ReturnInst &RI);
- void visitBranchInst(BranchInst &BI);
-
- struct ValueRecord {
- Value *Val;
- unsigned Reg;
- const Type *Ty;
- ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
- ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
- };
-
- // This struct is for recording the necessary operations to emit the GEP
- struct CollapsedGepOp {
- bool isMul;
- Value *index;
- ConstantSInt *size;
- CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
- isMul(mul), index(i), size(s) {}
- };
-
- void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
- const std::vector<ValueRecord> &Args, bool isVarArg);
- void visitCallInst(CallInst &I);
- void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
-
- // Arithmetic operators
- void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
- void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
- void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
- void visitMul(BinaryOperator &B);
-
- void visitDiv(BinaryOperator &B) { visitDivRem(B); }
- void visitRem(BinaryOperator &B) { visitDivRem(B); }
- void visitDivRem(BinaryOperator &B);
-
- // Bitwise operators
- void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
- void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
- void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
-
- // Comparison operators...
- void visitSetCondInst(SetCondInst &I);
- unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI);
- void visitSelectInst(SelectInst &SI);
-
-
- // Memory Instructions
- void visitLoadInst(LoadInst &I);
- void visitStoreInst(StoreInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitAllocaInst(AllocaInst &I);
- void visitMallocInst(MallocInst &I);
- void visitFreeInst(FreeInst &I);
-
- // Other operators
- void visitShiftInst(ShiftInst &I);
- void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
- void visitCastInst(CastInst &I);
- void visitVANextInst(VANextInst &I);
- void visitVAArgInst(VAArgInst &I);
-
- void visitInstruction(Instruction &I) {
- std::cerr << "Cannot instruction select: " << I;
- abort();
- }
-
- /// promote32 - Make a value 32-bits wide, and put it somewhere.
- ///
- void promote32(unsigned targetReg, const ValueRecord &VR);
-
- /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
- /// constant expression GEP support.
- ///
- void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg,
- bool CollapseRemainder, ConstantSInt **Remainder,
- unsigned *PendingAddReg);
-
- /// emitCastOperation - Common code shared between visitCastInst and
- /// constant expression cast support.
- ///
- void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
- Value *Src, const Type *DestTy, unsigned TargetReg);
-
- /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
- /// and constant expression support.
- ///
- void emitSimpleBinaryOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- /// emitBinaryFPOperation - This method handles emission of floating point
- /// Add (0), Sub (1), Mul (2), and Div (3) operations.
- void emitBinaryFPOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1,
- unsigned OperatorClass, unsigned TargetReg);
-
- void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned TargetReg);
-
- void doMultiply(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, Value *Op1);
-
- /// doMultiplyConst - This method will multiply the value in Op0Reg by the
- /// value of the ContantInt *CI
- void doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- unsigned DestReg, Value *Op0, ConstantInt *CI);
-
- void emitDivRemOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, bool isDiv,
- unsigned TargetReg);
-
- /// emitSetCCOperation - Common code shared between visitSetCondInst and
- /// constant expression support.
- ///
- void emitSetCCOperation(MachineBasicBlock *BB,
- MachineBasicBlock::iterator IP,
- Value *Op0, Value *Op1, unsigned Opcode,
- unsigned TargetReg);
-
- /// emitShiftOperation - Common code shared between visitShiftInst and
- /// constant expression support.
- ///
- void emitShiftOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Op, Value *ShiftAmount, bool isLeftShift,
- const Type *ResultTy, unsigned DestReg);
-
- /// emitSelectOperation - Common code shared between visitSelectInst and the
- /// constant expression support.
- ///
- void emitSelectOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Cond, Value *TrueVal, Value *FalseVal,
- unsigned DestReg);
-
- /// copyConstantToRegister - Output the instructions required to put the
- /// specified constant into the specified register.
- ///
- void copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- Constant *C, unsigned Reg);
-
- void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned LHS, unsigned RHS);
-
- /// makeAnotherReg - This method returns the next register number we haven't
- /// yet used.
- ///
- unsigned makeAnotherReg(const Type *Ty) {
- assert(dynamic_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo()) &&
- "Current target doesn't have PPC reg info??");
- const PPC64RegisterInfo *PPCRI =
- static_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo());
- // Add the mapping of regnumber => reg class to MachineFunction
- const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
- return F->getSSARegMap()->createVirtualRegister(RC);
- }
-
- /// getReg - This method turns an LLVM value into a register number.
- ///
- unsigned getReg(Value &V) { return getReg(&V); } // Allow references
- unsigned getReg(Value *V) {
- // Just append to the end of the current bb.
- MachineBasicBlock::iterator It = BB->end();
- return getReg(V, BB, It);
- }
- unsigned getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt);
-
- /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
- /// is okay to use as an immediate argument to a certain binary operation
- bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
-
- /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
- /// that is to be statically allocated with the initial stack frame
- /// adjustment.
- unsigned getFixedSizedAllocaFI(AllocaInst *AI);
- };
-}
-
-/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
-/// instruction in the entry block, return it. Otherwise, return a null
-/// pointer.
-static AllocaInst *dyn_castFixedAlloca(Value *V) {
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- BasicBlock *BB = AI->getParent();
- if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
- return AI;
- }
- return 0;
-}
-
-/// getReg - This method turns an LLVM value into a register number.
-///
-unsigned PPC64ISel::getReg(Value *V, MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IPt) {
- if (Constant *C = dyn_cast<Constant>(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- copyConstantToRegister(MBB, IPt, C, Reg);
- return Reg;
- } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
- unsigned Reg = makeAnotherReg(V->getType());
- unsigned FI = getFixedSizedAllocaFI(AI);
- addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
- return Reg;
- }
-
- unsigned &Reg = RegMap[V];
- if (Reg == 0) {
- Reg = makeAnotherReg(V->getType());
- RegMap[V] = Reg;
- }
-
- return Reg;
-}
-
-/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
-/// is okay to use as an immediate argument to a certain binary operator.
-///
-/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
-bool PPC64ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
- ConstantSInt *Op1Cs;
- ConstantUInt *Op1Cu;
-
- // ADDI, Compare, and non-indexed Load take SIMM
- bool cond1 = (Operator == 0)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() <= 32767)
- && (Op1Cs->getValue() >= -32768);
-
- // SUBI takes -SIMM since it is a mnemonic for ADDI
- bool cond2 = (Operator == 1)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() <= 32768)
- && (Op1Cs->getValue() >= -32767);
-
- // ANDIo, ORI, and XORI take unsigned values
- bool cond3 = (Operator >= 2)
- && (Op1Cs = dyn_cast<ConstantSInt>(CI))
- && (Op1Cs->getValue() >= 0)
- && (Op1Cs->getValue() <= 32767);
-
- // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
- bool cond4 = (Operator < 2)
- && (Op1Cu = dyn_cast<ConstantUInt>(CI))
- && (Op1Cu->getValue() <= 32767);
-
- // ANDIo, ORI, and XORI take UIMMs, so they can be larger
- bool cond5 = (Operator >= 2)
- && (Op1Cu = dyn_cast<ConstantUInt>(CI))
- && (Op1Cu->getValue() <= 65535);
-
- if (cond1 || cond2 || cond3 || cond4 || cond5)
- return true;
-
- return false;
-}
-
-/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
-/// that is to be statically allocated with the initial stack frame
-/// adjustment.
-unsigned PPC64ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
- // Already computed this?
- std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
- if (I != AllocaMap.end() && I->first == AI) return I->second;
-
- const Type *Ty = AI->getAllocatedType();
- ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
- unsigned TySize = TM.getTargetData().getTypeSize(Ty);
- TySize *= CUI->getValue(); // Get total allocated size...
- unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
-
- // Create a new stack object using the frame manager...
- int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
- AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
- return FrameIdx;
-}
-
-
-/// copyConstantToRegister - Output the instructions required to put the
-/// specified constant into the specified register.
-///
-void PPC64ISel::copyConstantToRegister(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Constant *C, unsigned R) {
- if (C->getType()->isIntegral()) {
- unsigned Class = getClassB(C->getType());
-
- if (Class == cLong) {
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
- uint64_t uval = CUI->getValue();
- if (uval < (1LL << 32)) {
- ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
- copyConstantToRegister(MBB, IP, CU, R);
- return;
- }
- } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
- int64_t val = CUI->getValue();
- if (val < (1LL << 31)) {
- ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
- copyConstantToRegister(MBB, IP, CU, R);
- return;
- }
- } else {
- std::cerr << "Unhandled long constant type!\n";
- abort();
- }
- // Spill long to the constant pool and load it
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(C);
- BuildMI(*MBB, IP, PPC::LD, 1, R)
- .addReg(PPC::R2).addConstantPoolIndex(CPI);
- return;
- }
-
- assert(Class <= cInt && "Type not handled yet!");
-
- // Handle bool
- if (C->getType() == Type::BoolTy) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
- return;
- }
-
- // Handle int
- if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
- unsigned uval = CUI->getValue();
- if (uval < 32768) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
- } else {
- unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
- BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
- }
- return;
- } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
- int sval = CSI->getValue();
- if (sval < 32768 && sval >= -32768) {
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
- } else {
- unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
- BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
- }
- return;
- }
- std::cerr << "Unhandled integer constant!\n";
- abort();
- } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- // We need to spill the constant to memory...
- MachineConstantPool *CP = F->getConstantPool();
- unsigned CPI = CP->getConstantPoolIndex(CFP);
- const Type *Ty = CFP->getType();
- unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
- BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
- } else if (isa<ConstantPointerNull>(C)) {
- // Copy zero (null pointer) to the register.
- BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
- static unsigned OpcodeTable[] = {
- PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LD
- };
- unsigned Opcode = OpcodeTable[getClassB(GV->getType())];
- BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(PPC::R2);
- } else {
- std::cerr << "Offending constant: " << *C << "\n";
- assert(0 && "Type not handled yet!");
- }
-}
-
-/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
-/// the stack into virtual registers.
-void PPC64ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
- unsigned ArgOffset = ParameterSaveAreaOffset;
- unsigned GPR_remaining = 8;
- unsigned FPR_remaining = 13;
- unsigned GPR_idx = 0, FPR_idx = 0;
- static const unsigned GPR[] = {
- PPC::R3, PPC::R4, PPC::R5, PPC::R6,
- PPC::R7, PPC::R8, PPC::R9, PPC::R10,
- };
- static const unsigned FPR[] = {
- PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
- PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
- };
-
- MachineFrameInfo *MFI = F->getFrameInfo();
-
- for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); I != E; ++I) {
- bool ArgLive = !I->use_empty();
- unsigned Reg = ArgLive ? getReg(*I) : 0;
- int FI; // Frame object index
-
- switch (getClassB(I->getType())) {
- case cByte:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
- }
- }
- break;
- case cShort:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
- }
- }
- break;
- case cInt:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
- if (GPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
- }
- }
- break;
- case cLong:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
- if (GPR_remaining > 1) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
- BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
- .addReg(GPR[GPR_idx]);
- } else {
- addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
- }
- }
- // longs require 4 additional bytes
- ArgOffset += 4;
- break;
- case cFP32:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(4, ArgOffset);
-
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
- BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
- FPR_remaining--;
- FPR_idx++;
- } else {
- addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
- }
- }
- break;
- case cFP64:
- if (ArgLive) {
- FI = MFI->CreateFixedObject(8, ArgOffset);
-
- if (FPR_remaining > 0) {
- BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
- BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
- FPR_remaining--;
- FPR_idx++;
- } else {
- addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
- }
- }
-
- // doubles require 4 additional bytes and use 2 GPRs of param space
- ArgOffset += 4;
- if (GPR_remaining > 0) {
- GPR_remaining--;
- GPR_idx++;
- }
- break;
- default:
- assert(0 && "Unhandled argument type!");
- }
- ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
- if (GPR_remaining > 0) {
- GPR_remaining--; // uses up 2 GPRs
- GPR_idx++;
- }
- }
-
- // If the function takes variable number of arguments, add a frame offset for
- // the start of the first vararg value... this is used to expand
- // llvm.va_start.
- if (Fn.getFunctionType()->isVarArg())
- VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
-}
-
-
-/// SelectPHINodes - Insert machine code to generate phis. This is tricky
-/// because we have to generate our sources into the source basic blocks, not
-/// the current one.
-///
-void PPC64ISel::SelectPHINodes() {
- const TargetInstrInfo &TII = *TM.getInstrInfo();
- const Function &LF = *F->getFunction(); // The LLVM function...
- for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
- const BasicBlock *BB = I;
- MachineBasicBlock &MBB = *MBBMap[I];
-
- // Loop over all of the PHI nodes in the LLVM basic block...
- MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
- for (BasicBlock::const_iterator I = BB->begin();
- PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
-
- // Create a new machine instr PHI node, and insert it.
- unsigned PHIReg = getReg(*PN);
- MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
- PPC::PHI, PN->getNumOperands(), PHIReg);
-
- // PHIValues - Map of blocks to incoming virtual registers. We use this
- // so that we only initialize one incoming value for a particular block,
- // even if the block has multiple entries in the PHI node.
- //
- std::map<MachineBasicBlock*, unsigned> PHIValues;
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- MachineBasicBlock *PredMBB = 0;
- for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
- PE = MBB.pred_end (); PI != PE; ++PI)
- if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
- PredMBB = *PI;
- break;
- }
- assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
-
- unsigned ValReg;
- std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
- PHIValues.lower_bound(PredMBB);
-
- if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
- // We already inserted an initialization of the register for this
- // predecessor. Recycle it.
- ValReg = EntryIt->second;
- } else {
- // Get the incoming value into a virtual register.
- //
- Value *Val = PN->getIncomingValue(i);
-
- // If this is a constant or GlobalValue, we may have to insert code
- // into the basic block to compute it into a virtual register.
- if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
- isa<GlobalValue>(Val)) {
- // Simple constants get emitted at the end of the basic block,
- // before any terminator instructions. We "know" that the code to
- // move a constant into a register will never clobber any flags.
- ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
- } else {
- // Because we don't want to clobber any values which might be in
- // physical registers with the computation of this constant (which
- // might be arbitrarily complex if it is a constant expression),
- // just insert the computation at the top of the basic block.
- MachineBasicBlock::iterator PI = PredMBB->begin();
-
- // Skip over any PHI nodes though!
- while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
- ++PI;
-
- ValReg = getReg(Val, PredMBB, PI);
- }
-
- // Remember that we inserted a value for this PHI for this predecessor
- PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
- }
-
- PhiMI->addRegOperand(ValReg);
- PhiMI->addMachineBasicBlockOperand(PredMBB);
- }
-
- // Now that we emitted all of the incoming values for the PHI node, make
- // sure to reposition the InsertPoint after the PHI that we just added.
- // This is needed because we might have inserted a constant into this
- // block, right after the PHI's which is before the old insert point!
- PHIInsertPoint = PhiMI;
- ++PHIInsertPoint;
- }
- }
-}
-
-
-// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
-// it into the conditional branch or select instruction which is the only user
-// of the cc instruction. This is the case if the conditional branch is the
-// only user of the setcc, and if the setcc is in the same basic block as the
-// conditional branch.
-//
-static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
- if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
- if (SCI->hasOneUse()) {
- Instruction *User = cast<Instruction>(SCI->use_back());
- if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
- SCI->getParent() == User->getParent())
- return SCI;
- }
- return 0;
-}
-
-
-// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
-// the load or store instruction that is the only user of the GEP.
-//
-static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
- if (GEPI->hasOneUse()) {
- Instruction *User = cast<Instruction>(GEPI->use_back());
- if (isa<StoreInst>(User) &&
- GEPI->getParent() == User->getParent() &&
- User->getOperand(0) != GEPI &&
- User->getOperand(1) == GEPI) {
- ++GEPFolds;
- return GEPI;
- }
- if (isa<LoadInst>(User) &&
- GEPI->getParent() == User->getParent() &&
- User->getOperand(0) == GEPI) {
- ++GEPFolds;
- return GEPI;
- }
- }
- return 0;
-}
-
-
-// Return a fixed numbering for setcc instructions which does not depend on the
-// order of the opcodes.
-//
-static unsigned getSetCCNumber(unsigned Opcode) {
- switch (Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return 0;
- case Instruction::SetNE: return 1;
- case Instruction::SetLT: return 2;
- case Instruction::SetGE: return 3;
- case Instruction::SetGT: return 4;
- case Instruction::SetLE: return 5;
- }
-}
-
-static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
- switch (Opcode) {
- default: assert(0 && "Unknown setcc instruction!");
- case Instruction::SetEQ: return PPC::BEQ;
- case Instruction::SetNE: return PPC::BNE;
- case Instruction::SetLT: return PPC::BLT;
- case Instruction::SetGE: return PPC::BGE;
- case Instruction::SetGT: return PPC::BGT;
- case Instruction::SetLE: return PPC::BLE;
- }
-}
-
-/// emitUCOM - emits an unordered FP compare.
-void PPC64ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
- unsigned LHS, unsigned RHS) {
- BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS);
-}
-
-/// EmitComparison - emits a comparison of the two operands, returning the
-/// extended setcc code to use. The result is in CR0.
-///
-unsigned PPC64ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
- MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP) {
- // The arguments are already supposed to be of the same type.
- const Type *CompTy = Op0->getType();
- unsigned Class = getClassB(CompTy);
- unsigned Op0r = getReg(Op0, MBB, IP);
-
- // Before we do a comparison, we have to make sure that we're truncating our
- // registers appropriately.
- if (Class == cByte) {
- unsigned TmpReg = makeAnotherReg(CompTy);
- if (CompTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
- .addImm(24).addImm(31);
- Op0r = TmpReg;
- } else if (Class == cShort) {
- unsigned TmpReg = makeAnotherReg(CompTy);
- if (CompTy->isSigned())
- BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r);
- else
- BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0)
- .addImm(16).addImm(31);
- Op0r = TmpReg;
- }
-
- // Use crand for lt, gt and crandc for le, ge
- unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC;
- unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW;
- unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI;
- if (Class == cLong) {
- Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD;
- OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI;
- }
-