diff options
author | Nate Begeman <natebegeman@mac.com> | 2005-04-05 08:51:15 +0000 |
---|---|---|
committer | Nate Begeman <natebegeman@mac.com> | 2005-04-05 08:51:15 +0000 |
commit | d3e6b94020ac6ed827fb1dfe1f4abe9ff39e4ec7 (patch) | |
tree | e0817641d9cad491a86add64ce5da1df9f44a5d2 /lib/Target/PowerPC/PPC64ISelSimple.cpp | |
parent | c8c5c8f0fad4d1bd54ccd372255c9802287625f2 (diff) |
Remove 64 bit simple ISel, it never worked correctly
Add initial (buggy) implementation of 64 bit pattern ISel
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21096 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/PowerPC/PPC64ISelSimple.cpp')
-rw-r--r-- | lib/Target/PowerPC/PPC64ISelSimple.cpp | 2946 |
1 files changed, 0 insertions, 2946 deletions
diff --git a/lib/Target/PowerPC/PPC64ISelSimple.cpp b/lib/Target/PowerPC/PPC64ISelSimple.cpp deleted file mode 100644 index 30531b6eee..0000000000 --- a/lib/Target/PowerPC/PPC64ISelSimple.cpp +++ /dev/null @@ -1,2946 +0,0 @@ -//===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "isel" -#include "PowerPC.h" -#include "PowerPCInstrBuilder.h" -#include "PowerPCInstrInfo.h" -#include "PPC64TargetMachine.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/CodeGen/MachineConstantPool.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/SSARegMap.h" -#include "llvm/Target/MRegisterInfo.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/Statistic.h" -#include <vector> -using namespace llvm; - -namespace { - Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded"); - - /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic - /// PPC Representation. - /// - enum TypeClass { - cByte, cShort, cInt, cFP32, cFP64, cLong - }; -} - -/// getClass - Turn a primitive type into a "class" number which is based on the -/// size of the type, and whether or not it is floating point. -/// -static inline TypeClass getClass(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::SByteTyID: - case Type::UByteTyID: return cByte; // Byte operands are class #0 - case Type::ShortTyID: - case Type::UShortTyID: return cShort; // Short operands are class #1 - case Type::IntTyID: - case Type::UIntTyID: return cInt; // Ints are class #2 - - case Type::FloatTyID: return cFP32; // Single float is #3 - case Type::DoubleTyID: return cFP64; // Double Point is #4 - - case Type::PointerTyID: - case Type::LongTyID: - case Type::ULongTyID: return cLong; // Longs and pointers are class #5 - default: - assert(0 && "Invalid type to getClass!"); - return cByte; // not reached - } -} - -// getClassB - Just like getClass, but treat boolean values as ints. -static inline TypeClass getClassB(const Type *Ty) { - if (Ty == Type::BoolTy) return cInt; - return getClass(Ty); -} - -namespace { - struct PPC64ISel : public FunctionPass, InstVisitor<PPC64ISel> { - PPC64TargetMachine &TM; - MachineFunction *F; // The function we are compiling into - MachineBasicBlock *BB; // The current MBB we are compiling - int VarArgsFrameIndex; // FrameIndex for start of varargs area - - std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs - - // External functions used in the Module - Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__fixsfdiFn, *__fixdfdiFn, - *__fixunssfdiFn, *__fixunsdfdiFn, *mallocFn, *freeFn; - - // MBBMap - Mapping between LLVM BB -> Machine BB - std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; - - // AllocaMap - Mapping from fixed sized alloca instructions to the - // FrameIndex for the alloca. - std::map<AllocaInst*, unsigned> AllocaMap; - - // Target configuration data - const unsigned ParameterSaveAreaOffset, MaxArgumentStackSpace; - - PPC64ISel(TargetMachine &tm):TM(reinterpret_cast<PPC64TargetMachine&>(tm)), - F(0), BB(0), ParameterSaveAreaOffset(24), MaxArgumentStackSpace(32) {} - - bool doInitialization(Module &M) { - // Add external functions that we may call - Type *i = Type::IntTy; - Type *d = Type::DoubleTy; - Type *f = Type::FloatTy; - Type *l = Type::LongTy; - Type *ul = Type::ULongTy; - Type *voidPtr = PointerType::get(Type::SByteTy); - // float fmodf(float, float); - fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0); - // double fmod(double, double); - fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0); - // int __cmpdi2(long, long); - __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0); - // long __fixsfdi(float) - __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0); - // long __fixdfdi(double) - __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0); - // unsigned long __fixunssfdi(float) - __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0); - // unsigned long __fixunsdfdi(double) - __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0); - // void* malloc(size_t) - mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0); - // void free(void*) - freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0); - return false; - } - - /// runOnFunction - Top level implementation of instruction selection for - /// the entire function. - /// - bool runOnFunction(Function &Fn) { - // First pass over the function, lower any unknown intrinsic functions - // with the IntrinsicLowering class. - LowerUnknownIntrinsicFunctionCalls(Fn); - - F = &MachineFunction::construct(&Fn, TM); - - // Create all of the machine basic blocks for the function... - for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) - F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); - - BB = &F->front(); - - // Copy incoming arguments off of the stack... - LoadArgumentsToVirtualRegs(Fn); - - // Instruction select everything except PHI nodes - visit(Fn); - - // Select the PHI nodes - SelectPHINodes(); - - RegMap.clear(); - MBBMap.clear(); - AllocaMap.clear(); - F = 0; - // We always build a machine code representation for the function - return true; - } - - virtual const char *getPassName() const { - return "PowerPC Simple Instruction Selection"; - } - - /// visitBasicBlock - This method is called when we are visiting a new basic - /// block. This simply creates a new MachineBasicBlock to emit code into - /// and adds it to the current MachineFunction. Subsequent visit* for - /// instructions will be invoked for all instructions in the basic block. - /// - void visitBasicBlock(BasicBlock &LLVM_BB) { - BB = MBBMap[&LLVM_BB]; - } - - /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the - /// function, lowering any calls to unknown intrinsic functions into the - /// equivalent LLVM code. - /// - void LowerUnknownIntrinsicFunctionCalls(Function &F); - - /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function - /// from the stack into virtual registers. - /// - void LoadArgumentsToVirtualRegs(Function &F); - - /// SelectPHINodes - Insert machine code to generate phis. This is tricky - /// because we have to generate our sources into the source basic blocks, - /// not the current one. - /// - void SelectPHINodes(); - - // Visitation methods for various instructions. These methods simply emit - // fixed PowerPC code for each instruction. - - // Control flow operators - void visitReturnInst(ReturnInst &RI); - void visitBranchInst(BranchInst &BI); - - struct ValueRecord { - Value *Val; - unsigned Reg; - const Type *Ty; - ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} - ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} - }; - - // This struct is for recording the necessary operations to emit the GEP - struct CollapsedGepOp { - bool isMul; - Value *index; - ConstantSInt *size; - CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) : - isMul(mul), index(i), size(s) {} - }; - - void doCall(const ValueRecord &Ret, MachineInstr *CallMI, - const std::vector<ValueRecord> &Args, bool isVarArg); - void visitCallInst(CallInst &I); - void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); - - // Arithmetic operators - void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); - void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } - void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } - void visitMul(BinaryOperator &B); - - void visitDiv(BinaryOperator &B) { visitDivRem(B); } - void visitRem(BinaryOperator &B) { visitDivRem(B); } - void visitDivRem(BinaryOperator &B); - - // Bitwise operators - void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } - void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } - void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } - - // Comparison operators... - void visitSetCondInst(SetCondInst &I); - unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI); - void visitSelectInst(SelectInst &SI); - - - // Memory Instructions - void visitLoadInst(LoadInst &I); - void visitStoreInst(StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitAllocaInst(AllocaInst &I); - void visitMallocInst(MallocInst &I); - void visitFreeInst(FreeInst &I); - - // Other operators - void visitShiftInst(ShiftInst &I); - void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass - void visitCastInst(CastInst &I); - void visitVANextInst(VANextInst &I); - void visitVAArgInst(VAArgInst &I); - - void visitInstruction(Instruction &I) { - std::cerr << "Cannot instruction select: " << I; - abort(); - } - - /// promote32 - Make a value 32-bits wide, and put it somewhere. - /// - void promote32(unsigned targetReg, const ValueRecord &VR); - - /// emitGEPOperation - Common code shared between visitGetElementPtrInst and - /// constant expression GEP support. - /// - void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Src, User::op_iterator IdxBegin, - User::op_iterator IdxEnd, unsigned TargetReg, - bool CollapseRemainder, ConstantSInt **Remainder, - unsigned *PendingAddReg); - - /// emitCastOperation - Common code shared between visitCastInst and - /// constant expression cast support. - /// - void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, - Value *Src, const Type *DestTy, unsigned TargetReg); - - /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary - /// and constant expression support. - /// - void emitSimpleBinaryOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - /// emitBinaryFPOperation - This method handles emission of floating point - /// Add (0), Sub (1), Mul (2), and Div (3) operations. - void emitBinaryFPOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, - unsigned OperatorClass, unsigned TargetReg); - - void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned TargetReg); - - void doMultiply(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, Value *Op0, Value *Op1); - - /// doMultiplyConst - This method will multiply the value in Op0Reg by the - /// value of the ContantInt *CI - void doMultiplyConst(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - unsigned DestReg, Value *Op0, ConstantInt *CI); - - void emitDivRemOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, bool isDiv, - unsigned TargetReg); - - /// emitSetCCOperation - Common code shared between visitSetCondInst and - /// constant expression support. - /// - void emitSetCCOperation(MachineBasicBlock *BB, - MachineBasicBlock::iterator IP, - Value *Op0, Value *Op1, unsigned Opcode, - unsigned TargetReg); - - /// emitShiftOperation - Common code shared between visitShiftInst and - /// constant expression support. - /// - void emitShiftOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Op, Value *ShiftAmount, bool isLeftShift, - const Type *ResultTy, unsigned DestReg); - - /// emitSelectOperation - Common code shared between visitSelectInst and the - /// constant expression support. - /// - void emitSelectOperation(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Value *Cond, Value *TrueVal, Value *FalseVal, - unsigned DestReg); - - /// copyConstantToRegister - Output the instructions required to put the - /// specified constant into the specified register. - /// - void copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator MBBI, - Constant *C, unsigned Reg); - - void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, - unsigned LHS, unsigned RHS); - - /// makeAnotherReg - This method returns the next register number we haven't - /// yet used. - /// - unsigned makeAnotherReg(const Type *Ty) { - assert(dynamic_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo()) && - "Current target doesn't have PPC reg info??"); - const PPC64RegisterInfo *PPCRI = - static_cast<const PPC64RegisterInfo*>(TM.getRegisterInfo()); - // Add the mapping of regnumber => reg class to MachineFunction - const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty); - return F->getSSARegMap()->createVirtualRegister(RC); - } - - /// getReg - This method turns an LLVM value into a register number. - /// - unsigned getReg(Value &V) { return getReg(&V); } // Allow references - unsigned getReg(Value *V) { - // Just append to the end of the current bb. - MachineBasicBlock::iterator It = BB->end(); - return getReg(V, BB, It); - } - unsigned getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt); - - /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt - /// is okay to use as an immediate argument to a certain binary operation - bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode); - - /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca - /// that is to be statically allocated with the initial stack frame - /// adjustment. - unsigned getFixedSizedAllocaFI(AllocaInst *AI); - }; -} - -/// dyn_castFixedAlloca - If the specified value is a fixed size alloca -/// instruction in the entry block, return it. Otherwise, return a null -/// pointer. -static AllocaInst *dyn_castFixedAlloca(Value *V) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { - BasicBlock *BB = AI->getParent(); - if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front()) - return AI; - } - return 0; -} - -/// getReg - This method turns an LLVM value into a register number. -/// -unsigned PPC64ISel::getReg(Value *V, MachineBasicBlock *MBB, - MachineBasicBlock::iterator IPt) { - if (Constant *C = dyn_cast<Constant>(V)) { - unsigned Reg = makeAnotherReg(V->getType()); - copyConstantToRegister(MBB, IPt, C, Reg); - return Reg; - } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { - unsigned Reg = makeAnotherReg(V->getType()); - unsigned FI = getFixedSizedAllocaFI(AI); - addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false); - return Reg; - } - - unsigned &Reg = RegMap[V]; - if (Reg == 0) { - Reg = makeAnotherReg(V->getType()); - RegMap[V] = Reg; - } - - return Reg; -} - -/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt -/// is okay to use as an immediate argument to a certain binary operator. -/// -/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor. -bool PPC64ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) { - ConstantSInt *Op1Cs; - ConstantUInt *Op1Cu; - - // ADDI, Compare, and non-indexed Load take SIMM - bool cond1 = (Operator == 0) - && (Op1Cs = dyn_cast<ConstantSInt>(CI)) - && (Op1Cs->getValue() <= 32767) - && (Op1Cs->getValue() >= -32768); - - // SUBI takes -SIMM since it is a mnemonic for ADDI - bool cond2 = (Operator == 1) - && (Op1Cs = dyn_cast<ConstantSInt>(CI)) - && (Op1Cs->getValue() <= 32768) - && (Op1Cs->getValue() >= -32767); - - // ANDIo, ORI, and XORI take unsigned values - bool cond3 = (Operator >= 2) - && (Op1Cs = dyn_cast<ConstantSInt>(CI)) - && (Op1Cs->getValue() >= 0) - && (Op1Cs->getValue() <= 32767); - - // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit - bool cond4 = (Operator < 2) - && (Op1Cu = dyn_cast<ConstantUInt>(CI)) - && (Op1Cu->getValue() <= 32767); - - // ANDIo, ORI, and XORI take UIMMs, so they can be larger - bool cond5 = (Operator >= 2) - && (Op1Cu = dyn_cast<ConstantUInt>(CI)) - && (Op1Cu->getValue() <= 65535); - - if (cond1 || cond2 || cond3 || cond4 || cond5) - return true; - - return false; -} - -/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca -/// that is to be statically allocated with the initial stack frame -/// adjustment. -unsigned PPC64ISel::getFixedSizedAllocaFI(AllocaInst *AI) { - // Already computed this? - std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI); - if (I != AllocaMap.end() && I->first == AI) return I->second; - - const Type *Ty = AI->getAllocatedType(); - ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize()); - unsigned TySize = TM.getTargetData().getTypeSize(Ty); - TySize *= CUI->getValue(); // Get total allocated size... - unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); - - // Create a new stack object using the frame manager... - int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); - AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); - return FrameIdx; -} - - -/// copyConstantToRegister - Output the instructions required to put the -/// specified constant into the specified register. -/// -void PPC64ISel::copyConstantToRegister(MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP, - Constant *C, unsigned R) { - if (C->getType()->isIntegral()) { - unsigned Class = getClassB(C->getType()); - - if (Class == cLong) { - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) { - uint64_t uval = CUI->getValue(); - if (uval < (1LL << 32)) { - ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval); - copyConstantToRegister(MBB, IP, CU, R); - return; - } - } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) { - int64_t val = CUI->getValue(); - if (val < (1LL << 31)) { - ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val); - copyConstantToRegister(MBB, IP, CU, R); - return; - } - } else { - std::cerr << "Unhandled long constant type!\n"; - abort(); - } - // Spill long to the constant pool and load it - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(C); - BuildMI(*MBB, IP, PPC::LD, 1, R) - .addReg(PPC::R2).addConstantPoolIndex(CPI); - return; - } - - assert(Class <= cInt && "Type not handled yet!"); - - // Handle bool - if (C->getType() == Type::BoolTy) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True); - return; - } - - // Handle int - if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) { - unsigned uval = CUI->getValue(); - if (uval < 32768) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval); - } else { - unsigned Temp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16); - BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval); - } - return; - } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) { - int sval = CSI->getValue(); - if (sval < 32768 && sval >= -32768) { - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval); - } else { - unsigned Temp = makeAnotherReg(Type::IntTy); - BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16); - BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval); - } - return; - } - std::cerr << "Unhandled integer constant!\n"; - abort(); - } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - // We need to spill the constant to memory... - MachineConstantPool *CP = F->getConstantPool(); - unsigned CPI = CP->getConstantPoolIndex(CFP); - const Type *Ty = CFP->getType(); - unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD; - BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2); - } else if (isa<ConstantPointerNull>(C)) { - // Copy zero (null pointer) to the register. - BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0); - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) { - static unsigned OpcodeTable[] = { - PPC::LBZ, PPC::LHZ, PPC::LWZ, PPC::LFS, PPC::LFD, PPC::LD - }; - unsigned Opcode = OpcodeTable[getClassB(GV->getType())]; - BuildMI(*MBB, IP, Opcode, 2, R).addGlobalAddress(GV).addReg(PPC::R2); - } else { - std::cerr << "Offending constant: " << *C << "\n"; - assert(0 && "Type not handled yet!"); - } -} - -/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from -/// the stack into virtual registers. -void PPC64ISel::LoadArgumentsToVirtualRegs(Function &Fn) { - unsigned ArgOffset = ParameterSaveAreaOffset; - unsigned GPR_remaining = 8; - unsigned FPR_remaining = 13; - unsigned GPR_idx = 0, FPR_idx = 0; - static const unsigned GPR[] = { - PPC::R3, PPC::R4, PPC::R5, PPC::R6, - PPC::R7, PPC::R8, PPC::R9, PPC::R10, - }; - static const unsigned FPR[] = { - PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, - PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 - }; - - MachineFrameInfo *MFI = F->getFrameInfo(); - - for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); I != E; ++I) { - bool ArgLive = !I->use_empty(); - unsigned Reg = ArgLive ? getReg(*I) : 0; - int FI; // Frame object index - - switch (getClassB(I->getType())) { - case cByte: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI); - } - } - break; - case cShort: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI); - } - } - break; - case cInt: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - if (GPR_remaining > 0) { - BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI); - } - } - break; - case cLong: - if (ArgLive) { - FI = MFI->CreateFixedObject(8, ArgOffset); - if (GPR_remaining > 1) { - BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]); - BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx]) - .addReg(GPR[GPR_idx]); - } else { - addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI); - } - } - // longs require 4 additional bytes - ArgOffset += 4; - break; - case cFP32: - if (ArgLive) { - FI = MFI->CreateFixedObject(4, ArgOffset); - - if (FPR_remaining > 0) { - BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); - BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); - FPR_remaining--; - FPR_idx++; - } else { - addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI); - } - } - break; - case cFP64: - if (ArgLive) { - FI = MFI->CreateFixedObject(8, ArgOffset); - - if (FPR_remaining > 0) { - BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]); - BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]); - FPR_remaining--; - FPR_idx++; - } else { - addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI); - } - } - - // doubles require 4 additional bytes and use 2 GPRs of param space - ArgOffset += 4; - if (GPR_remaining > 0) { - GPR_remaining--; - GPR_idx++; - } - break; - default: - assert(0 && "Unhandled argument type!"); - } - ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... - if (GPR_remaining > 0) { - GPR_remaining--; // uses up 2 GPRs - GPR_idx++; - } - } - - // If the function takes variable number of arguments, add a frame offset for - // the start of the first vararg value... this is used to expand - // llvm.va_start. - if (Fn.getFunctionType()->isVarArg()) - VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); -} - - -/// SelectPHINodes - Insert machine code to generate phis. This is tricky -/// because we have to generate our sources into the source basic blocks, not -/// the current one. -/// -void PPC64ISel::SelectPHINodes() { - const TargetInstrInfo &TII = *TM.getInstrInfo(); - const Function &LF = *F->getFunction(); // The LLVM function... - for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { - const BasicBlock *BB = I; - MachineBasicBlock &MBB = *MBBMap[I]; - - // Loop over all of the PHI nodes in the LLVM basic block... - MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); - for (BasicBlock::const_iterator I = BB->begin(); - PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { - - // Create a new machine instr PHI node, and insert it. - unsigned PHIReg = getReg(*PN); - MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, - PPC::PHI, PN->getNumOperands(), PHIReg); - - // PHIValues - Map of blocks to incoming virtual registers. We use this - // so that we only initialize one incoming value for a particular block, - // even if the block has multiple entries in the PHI node. - // - std::map<MachineBasicBlock*, unsigned> PHIValues; - - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - MachineBasicBlock *PredMBB = 0; - for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (), - PE = MBB.pred_end (); PI != PE; ++PI) - if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) { - PredMBB = *PI; - break; - } - assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi"); - - unsigned ValReg; - std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = - PHIValues.lower_bound(PredMBB); - - if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { - // We already inserted an initialization of the register for this - // predecessor. Recycle it. - ValReg = EntryIt->second; - } else { - // Get the incoming value into a virtual register. - // - Value *Val = PN->getIncomingValue(i); - - // If this is a constant or GlobalValue, we may have to insert code - // into the basic block to compute it into a virtual register. - if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) || - isa<GlobalValue>(Val)) { - // Simple constants get emitted at the end of the basic block, - // before any terminator instructions. We "know" that the code to - // move a constant into a register will never clobber any flags. - ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); - } else { - // Because we don't want to clobber any values which might be in - // physical registers with the computation of this constant (which - // might be arbitrarily complex if it is a constant expression), - // just insert the computation at the top of the basic block. - MachineBasicBlock::iterator PI = PredMBB->begin(); - - // Skip over any PHI nodes though! - while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI) - ++PI; - - ValReg = getReg(Val, PredMBB, PI); - } - - // Remember that we inserted a value for this PHI for this predecessor - PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); - } - - PhiMI->addRegOperand(ValReg); - PhiMI->addMachineBasicBlockOperand(PredMBB); - } - - // Now that we emitted all of the incoming values for the PHI node, make - // sure to reposition the InsertPoint after the PHI that we just added. - // This is needed because we might have inserted a constant into this - // block, right after the PHI's which is before the old insert point! - PHIInsertPoint = PhiMI; - ++PHIInsertPoint; - } - } -} - - -// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold -// it into the conditional branch or select instruction which is the only user -// of the cc instruction. This is the case if the conditional branch is the -// only user of the setcc, and if the setcc is in the same basic block as the -// conditional branch. -// -static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { - if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) - if (SCI->hasOneUse()) { - Instruction *User = cast<Instruction>(SCI->use_back()); - if ((isa<BranchInst>(User) || isa<SelectInst>(User)) && - SCI->getParent() == User->getParent()) - return SCI; - } - return 0; -} - - -// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into -// the load or store instruction that is the only user of the GEP. -// -static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) { - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) - if (GEPI->hasOneUse()) { - Instruction *User = cast<Instruction>(GEPI->use_back()); - if (isa<StoreInst>(User) && - GEPI->getParent() == User->getParent() && - User->getOperand(0) != GEPI && - User->getOperand(1) == GEPI) { - ++GEPFolds; - return GEPI; - } - if (isa<LoadInst>(User) && - GEPI->getParent() == User->getParent() && - User->getOperand(0) == GEPI) { - ++GEPFolds; - return GEPI; - } - } - return 0; -} - - -// Return a fixed numbering for setcc instructions which does not depend on the -// order of the opcodes. -// -static unsigned getSetCCNumber(unsigned Opcode) { - switch (Opcode) { - default: assert(0 && "Unknown setcc instruction!"); - case Instruction::SetEQ: return 0; - case Instruction::SetNE: return 1; - case Instruction::SetLT: return 2; - case Instruction::SetGE: return 3; - case Instruction::SetGT: return 4; - case Instruction::SetLE: return 5; - } -} - -static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) { - switch (Opcode) { - default: assert(0 && "Unknown setcc instruction!"); - case Instruction::SetEQ: return PPC::BEQ; - case Instruction::SetNE: return PPC::BNE; - case Instruction::SetLT: return PPC::BLT; - case Instruction::SetGE: return PPC::BGE; - case Instruction::SetGT: return PPC::BGT; - case Instruction::SetLE: return PPC::BLE; - } -} - -/// emitUCOM - emits an unordered FP compare. -void PPC64ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, - unsigned LHS, unsigned RHS) { - BuildMI(*MBB, IP, PPC::FCMPU, 2, PPC::CR0).addReg(LHS).addReg(RHS); -} - -/// EmitComparison - emits a comparison of the two operands, returning the -/// extended setcc code to use. The result is in CR0. -/// -unsigned PPC64ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, - MachineBasicBlock *MBB, - MachineBasicBlock::iterator IP) { - // The arguments are already supposed to be of the same type. - const Type *CompTy = Op0->getType(); - unsigned Class = getClassB(CompTy); - unsigned Op0r = getReg(Op0, MBB, IP); - - // Before we do a comparison, we have to make sure that we're truncating our - // registers appropriately. - if (Class == cByte) { - unsigned TmpReg = makeAnotherReg(CompTy); - if (CompTy->isSigned()) - BuildMI(*MBB, IP, PPC::EXTSB, 1, TmpReg).addReg(Op0r); - else - BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0) - .addImm(24).addImm(31); - Op0r = TmpReg; - } else if (Class == cShort) { - unsigned TmpReg = makeAnotherReg(CompTy); - if (CompTy->isSigned()) - BuildMI(*MBB, IP, PPC::EXTSH, 1, TmpReg).addReg(Op0r); - else - BuildMI(*MBB, IP, PPC::RLWINM, 4, TmpReg).addReg(Op0r).addImm(0) - .addImm(16).addImm(31); - Op0r = TmpReg; - } - - // Use crand for lt, gt and crandc for le, ge - unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC::CRAND : PPC::CRANDC; - unsigned Opcode = CompTy->isSigned() ? PPC::CMPW : PPC::CMPLW; - unsigned OpcodeImm = CompTy->isSigned() ? PPC::CMPWI : PPC::CMPLWI; - if (Class == cLong) { - Opcode = CompTy->isSigned() ? PPC::CMPD : PPC::CMPLD; - OpcodeImm = CompTy->isSigned() ? PPC::CMPDI : PPC::CMPLDI; - } - |