aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/PowerPC/PPC64ISelSimple.cpp
diff options
context:
space:
mode:
authorMisha Brukman <brukman+llvm@gmail.com>2004-08-11 23:42:15 +0000
committerMisha Brukman <brukman+llvm@gmail.com>2004-08-11 23:42:15 +0000
commitca9309f22e626db9019de371cf7b61a7e35d08e2 (patch)
treee5d9582707f35a5589d32395bff60242a9d7994d /lib/Target/PowerPC/PPC64ISelSimple.cpp
parent55eee3dc7aa74164e5e223420855e7740141da56 (diff)
64-bit instruction selector and AIX-specific 64-bit asm printer
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15669 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/PowerPC/PPC64ISelSimple.cpp')
-rw-r--r--lib/Target/PowerPC/PPC64ISelSimple.cpp3199
1 files changed, 3199 insertions, 0 deletions
diff --git a/lib/Target/PowerPC/PPC64ISelSimple.cpp b/lib/Target/PowerPC/PPC64ISelSimple.cpp
new file mode 100644
index 0000000000..9695c7d698
--- /dev/null
+++ b/lib/Target/PowerPC/PPC64ISelSimple.cpp
@@ -0,0 +1,3199 @@
+//===-- PPC64ISelSimple.cpp - A simple instruction selector for PowerPC ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "isel"
+#include "PowerPC.h"
+#include "PowerPCInstrBuilder.h"
+#include "PowerPCInstrInfo.h"
+#include "PPC64TargetMachine.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/Pass.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/InstVisitor.h"
+#include "Support/Debug.h"
+#include "Support/Statistic.h"
+#include <vector>
+using namespace llvm;
+
+namespace {
+ Statistic<> GEPFolds("ppc64-codegen", "Number of GEPs folded");
+
+ /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
+ /// PPC Representation.
+ ///
+ enum TypeClass {
+ cByte, cShort, cInt, cFP32, cFP64, cLong
+ };
+}
+
+/// getClass - Turn a primitive type into a "class" number which is based on the
+/// size of the type, and whether or not it is floating point.
+///
+static inline TypeClass getClass(const Type *Ty) {
+ switch (Ty->getTypeID()) {
+ case Type::SByteTyID:
+ case Type::UByteTyID: return cByte; // Byte operands are class #0
+ case Type::ShortTyID:
+ case Type::UShortTyID: return cShort; // Short operands are class #1
+ case Type::IntTyID:
+ case Type::UIntTyID:
+ case Type::PointerTyID: return cInt; // Ints and pointers are class #2
+
+ case Type::FloatTyID: return cFP32; // Single float is #3
+ case Type::DoubleTyID: return cFP64; // Double Point is #4
+
+ case Type::LongTyID:
+ case Type::ULongTyID: return cLong; // Longs are class #5
+ default:
+ assert(0 && "Invalid type to getClass!");
+ return cByte; // not reached
+ }
+}
+
+// getClassB - Just like getClass, but treat boolean values as ints.
+static inline TypeClass getClassB(const Type *Ty) {
+ if (Ty == Type::BoolTy) return cInt;
+ return getClass(Ty);
+}
+
+namespace {
+ struct ISel : public FunctionPass, InstVisitor<ISel> {
+ PPC64TargetMachine &TM;
+ MachineFunction *F; // The function we are compiling into
+ MachineBasicBlock *BB; // The current MBB we are compiling
+ int VarArgsFrameIndex; // FrameIndex for start of varargs area
+
+ std::map<Value*, unsigned> RegMap; // Mapping between Values and SSA Regs
+
+ // External functions used in the Module
+ Function *fmodfFn, *fmodFn, *__cmpdi2Fn, *__moddi3Fn, *__divdi3Fn,
+ *__umoddi3Fn, *__udivdi3Fn, *__fixsfdiFn, *__fixdfdiFn, *__fixunssfdiFn,
+ *__fixunsdfdiFn, *__floatdisfFn, *__floatdidfFn, *mallocFn, *freeFn;
+
+ // MBBMap - Mapping between LLVM BB -> Machine BB
+ std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
+
+ // AllocaMap - Mapping from fixed sized alloca instructions to the
+ // FrameIndex for the alloca.
+ std::map<AllocaInst*, unsigned> AllocaMap;
+
+ // A Reg to hold the base address used for global loads and stores, and a
+ // flag to set whether or not we need to emit it for this function.
+ unsigned GlobalBaseReg;
+ bool GlobalBaseInitialized;
+
+ ISel(TargetMachine &tm) : TM(reinterpret_cast<PPC64TargetMachine&>(tm)),
+ F(0), BB(0) {}
+
+ bool doInitialization(Module &M) {
+ // Add external functions that we may call
+ Type *i = Type::IntTy;
+ Type *d = Type::DoubleTy;
+ Type *f = Type::FloatTy;
+ Type *l = Type::LongTy;
+ Type *ul = Type::ULongTy;
+ Type *voidPtr = PointerType::get(Type::SByteTy);
+ // float fmodf(float, float);
+ fmodfFn = M.getOrInsertFunction("fmodf", f, f, f, 0);
+ // double fmod(double, double);
+ fmodFn = M.getOrInsertFunction("fmod", d, d, d, 0);
+ // int __cmpdi2(long, long);
+ __cmpdi2Fn = M.getOrInsertFunction("__cmpdi2", i, l, l, 0);
+ // long __moddi3(long, long);
+ __moddi3Fn = M.getOrInsertFunction("__moddi3", l, l, l, 0);
+ // long __divdi3(long, long);
+ __divdi3Fn = M.getOrInsertFunction("__divdi3", l, l, l, 0);
+ // unsigned long __umoddi3(unsigned long, unsigned long);
+ __umoddi3Fn = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
+ // unsigned long __udivdi3(unsigned long, unsigned long);
+ __udivdi3Fn = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
+ // long __fixsfdi(float)
+ __fixsfdiFn = M.getOrInsertFunction("__fixsfdi", l, f, 0);
+ // long __fixdfdi(double)
+ __fixdfdiFn = M.getOrInsertFunction("__fixdfdi", l, d, 0);
+ // unsigned long __fixunssfdi(float)
+ __fixunssfdiFn = M.getOrInsertFunction("__fixunssfdi", ul, f, 0);
+ // unsigned long __fixunsdfdi(double)
+ __fixunsdfdiFn = M.getOrInsertFunction("__fixunsdfdi", ul, d, 0);
+ // float __floatdisf(long)
+ __floatdisfFn = M.getOrInsertFunction("__floatdisf", f, l, 0);
+ // double __floatdidf(long)
+ __floatdidfFn = M.getOrInsertFunction("__floatdidf", d, l, 0);
+ // void* malloc(size_t)
+ mallocFn = M.getOrInsertFunction("malloc", voidPtr, Type::UIntTy, 0);
+ // void free(void*)
+ freeFn = M.getOrInsertFunction("free", Type::VoidTy, voidPtr, 0);
+ return false;
+ }
+
+ /// runOnFunction - Top level implementation of instruction selection for
+ /// the entire function.
+ ///
+ bool runOnFunction(Function &Fn) {
+ // First pass over the function, lower any unknown intrinsic functions
+ // with the IntrinsicLowering class.
+ LowerUnknownIntrinsicFunctionCalls(Fn);
+
+ F = &MachineFunction::construct(&Fn, TM);
+
+ // Create all of the machine basic blocks for the function...
+ for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
+ F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
+
+ BB = &F->front();
+
+ // Make sure we re-emit a set of the global base reg if necessary
+ GlobalBaseInitialized = false;
+
+ // Copy incoming arguments off of the stack...
+ LoadArgumentsToVirtualRegs(Fn);
+
+ // Instruction select everything except PHI nodes
+ visit(Fn);
+
+ // Select the PHI nodes
+ SelectPHINodes();
+
+ RegMap.clear();
+ MBBMap.clear();
+ AllocaMap.clear();
+ F = 0;
+ // We always build a machine code representation for the function
+ return true;
+ }
+
+ virtual const char *getPassName() const {
+ return "PowerPC Simple Instruction Selection";
+ }
+
+ /// visitBasicBlock - This method is called when we are visiting a new basic
+ /// block. This simply creates a new MachineBasicBlock to emit code into
+ /// and adds it to the current MachineFunction. Subsequent visit* for
+ /// instructions will be invoked for all instructions in the basic block.
+ ///
+ void visitBasicBlock(BasicBlock &LLVM_BB) {
+ BB = MBBMap[&LLVM_BB];
+ }
+
+ /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+ /// function, lowering any calls to unknown intrinsic functions into the
+ /// equivalent LLVM code.
+ ///
+ void LowerUnknownIntrinsicFunctionCalls(Function &F);
+
+ /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
+ /// from the stack into virtual registers.
+ ///
+ void LoadArgumentsToVirtualRegs(Function &F);
+
+ /// SelectPHINodes - Insert machine code to generate phis. This is tricky
+ /// because we have to generate our sources into the source basic blocks,
+ /// not the current one.
+ ///
+ void SelectPHINodes();
+
+ // Visitation methods for various instructions. These methods simply emit
+ // fixed PowerPC code for each instruction.
+
+ // Control flow operators
+ void visitReturnInst(ReturnInst &RI);
+ void visitBranchInst(BranchInst &BI);
+
+ struct ValueRecord {
+ Value *Val;
+ unsigned Reg;
+ const Type *Ty;
+ ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
+ ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
+ };
+
+ // This struct is for recording the necessary operations to emit the GEP
+ struct CollapsedGepOp {
+ bool isMul;
+ Value *index;
+ ConstantSInt *size;
+ CollapsedGepOp(bool mul, Value *i, ConstantSInt *s) :
+ isMul(mul), index(i), size(s) {}
+ };
+
+ void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+ const std::vector<ValueRecord> &Args, bool isVarArg);
+ void visitCallInst(CallInst &I);
+ void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
+
+ // Arithmetic operators
+ void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
+ void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
+ void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
+ void visitMul(BinaryOperator &B);
+
+ void visitDiv(BinaryOperator &B) { visitDivRem(B); }
+ void visitRem(BinaryOperator &B) { visitDivRem(B); }
+ void visitDivRem(BinaryOperator &B);
+
+ // Bitwise operators
+ void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
+ void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
+ void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
+
+ // Comparison operators...
+ void visitSetCondInst(SetCondInst &I);
+ unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MBBI);
+ void visitSelectInst(SelectInst &SI);
+
+
+ // Memory Instructions
+ void visitLoadInst(LoadInst &I);
+ void visitStoreInst(StoreInst &I);
+ void visitGetElementPtrInst(GetElementPtrInst &I);
+ void visitAllocaInst(AllocaInst &I);
+ void visitMallocInst(MallocInst &I);
+ void visitFreeInst(FreeInst &I);
+
+ // Other operators
+ void visitShiftInst(ShiftInst &I);
+ void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
+ void visitCastInst(CastInst &I);
+ void visitVANextInst(VANextInst &I);
+ void visitVAArgInst(VAArgInst &I);
+
+ void visitInstruction(Instruction &I) {
+ std::cerr << "Cannot instruction select: " << I;
+ abort();
+ }
+
+ /// promote32 - Make a value 32-bits wide, and put it somewhere.
+ ///
+ void promote32(unsigned targetReg, const ValueRecord &VR);
+
+ /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+ /// constant expression GEP support.
+ ///
+ void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+ Value *Src, User::op_iterator IdxBegin,
+ User::op_iterator IdxEnd, unsigned TargetReg,
+ bool CollapseRemainder, ConstantSInt **Remainder,
+ unsigned *PendingAddReg);
+
+ /// emitCastOperation - Common code shared between visitCastInst and
+ /// constant expression cast support.
+ ///
+ void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
+ Value *Src, const Type *DestTy, unsigned TargetReg);
+
+ /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+ /// and constant expression support.
+ ///
+ void emitSimpleBinaryOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1,
+ unsigned OperatorClass, unsigned TargetReg);
+
+ /// emitBinaryFPOperation - This method handles emission of floating point
+ /// Add (0), Sub (1), Mul (2), and Div (3) operations.
+ void emitBinaryFPOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1,
+ unsigned OperatorClass, unsigned TargetReg);
+
+ void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1, unsigned TargetReg);
+
+ void doMultiply(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, Value *Op1);
+
+ /// doMultiplyConst - This method will multiply the value in Op0Reg by the
+ /// value of the ContantInt *CI
+ void doMultiplyConst(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, ConstantInt *CI);
+
+ void emitDivRemOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1, bool isDiv,
+ unsigned TargetReg);
+
+ /// emitSetCCOperation - Common code shared between visitSetCondInst and
+ /// constant expression support.
+ ///
+ void emitSetCCOperation(MachineBasicBlock *BB,
+ MachineBasicBlock::iterator IP,
+ Value *Op0, Value *Op1, unsigned Opcode,
+ unsigned TargetReg);
+
+ /// emitShiftOperation - Common code shared between visitShiftInst and
+ /// constant expression support.
+ ///
+ void emitShiftOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Op, Value *ShiftAmount, bool isLeftShift,
+ const Type *ResultTy, unsigned DestReg);
+
+ /// emitSelectOperation - Common code shared between visitSelectInst and the
+ /// constant expression support.
+ ///
+ void emitSelectOperation(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Cond, Value *TrueVal, Value *FalseVal,
+ unsigned DestReg);
+
+ /// copyGlobalBaseToRegister - Output the instructions required to put the
+ /// base address to use for accessing globals into a register.
+ ///
+ void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned R);
+
+ /// copyConstantToRegister - Output the instructions required to put the
+ /// specified constant into the specified register.
+ ///
+ void copyConstantToRegister(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MBBI,
+ Constant *C, unsigned Reg);
+
+ void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+ unsigned LHS, unsigned RHS);
+
+ /// makeAnotherReg - This method returns the next register number we haven't
+ /// yet used.
+ ///
+ unsigned makeAnotherReg(const Type *Ty) {
+ assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
+ "Current target doesn't have PPC reg info??");
+ const PowerPCRegisterInfo *PPCRI =
+ static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
+ // Add the mapping of regnumber => reg class to MachineFunction
+ const TargetRegisterClass *RC = PPCRI->getRegClassForType(Ty);
+ return F->getSSARegMap()->createVirtualRegister(RC);
+ }
+
+ /// getReg - This method turns an LLVM value into a register number.
+ ///
+ unsigned getReg(Value &V) { return getReg(&V); } // Allow references
+ unsigned getReg(Value *V) {
+ // Just append to the end of the current bb.
+ MachineBasicBlock::iterator It = BB->end();
+ return getReg(V, BB, It);
+ }
+ unsigned getReg(Value *V, MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IPt);
+
+ /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+ /// is okay to use as an immediate argument to a certain binary operation
+ bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
+
+ /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+ /// that is to be statically allocated with the initial stack frame
+ /// adjustment.
+ unsigned getFixedSizedAllocaFI(AllocaInst *AI);
+ };
+}
+
+/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
+/// instruction in the entry block, return it. Otherwise, return a null
+/// pointer.
+static AllocaInst *dyn_castFixedAlloca(Value *V) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ BasicBlock *BB = AI->getParent();
+ if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
+ return AI;
+ }
+ return 0;
+}
+
+/// getReg - This method turns an LLVM value into a register number.
+///
+unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IPt) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ unsigned Reg = makeAnotherReg(V->getType());
+ copyConstantToRegister(MBB, IPt, C, Reg);
+ return Reg;
+ } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
+ unsigned Reg = makeAnotherReg(V->getType());
+ unsigned FI = getFixedSizedAllocaFI(AI);
+ addFrameReference(BuildMI(*MBB, IPt, PPC::ADDI, 2, Reg), FI, 0, false);
+ return Reg;
+ }
+
+ unsigned &Reg = RegMap[V];
+ if (Reg == 0) {
+ Reg = makeAnotherReg(V->getType());
+ RegMap[V] = Reg;
+ }
+
+ return Reg;
+}
+
+/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+/// is okay to use as an immediate argument to a certain binary operator.
+///
+/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
+bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator) {
+ ConstantSInt *Op1Cs;
+ ConstantUInt *Op1Cu;
+
+ // ADDI, Compare, and non-indexed Load take SIMM
+ bool cond1 = (Operator == 0)
+ && (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32767)
+ && (Op1Cs->getValue() >= -32768);
+
+ // SUBI takes -SIMM since it is a mnemonic for ADDI
+ bool cond2 = (Operator == 1)
+ && (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32768)
+ && (Op1Cs->getValue() >= -32767);
+
+ // ANDIo, ORI, and XORI take unsigned values
+ bool cond3 = (Operator >= 2)
+ && (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() >= 0)
+ && (Op1Cs->getValue() <= 32767);
+
+ // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
+ bool cond4 = (Operator < 2)
+ && (Op1Cu = dyn_cast<ConstantUInt>(CI))
+ && (Op1Cu->getValue() <= 32767);
+
+ // ANDIo, ORI, and XORI take UIMMs, so they can be larger
+ bool cond5 = (Operator >= 2)
+ && (Op1Cu = dyn_cast<ConstantUInt>(CI))
+ && (Op1Cu->getValue() <= 65535);
+
+ if (cond1 || cond2 || cond3 || cond4 || cond5)
+ return true;
+
+ return false;
+}
+
+/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+/// that is to be statically allocated with the initial stack frame
+/// adjustment.
+unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
+ // Already computed this?
+ std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
+ if (I != AllocaMap.end() && I->first == AI) return I->second;
+
+ const Type *Ty = AI->getAllocatedType();
+ ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
+ unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+ TySize *= CUI->getValue(); // Get total allocated size...
+ unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
+
+ // Create a new stack object using the frame manager...
+ int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
+ AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
+ return FrameIdx;
+}
+
+
+/// copyGlobalBaseToRegister - Output the instructions required to put the
+/// base address to use for accessing globals into a register.
+///
+void ISel::copyGlobalBaseToRegister(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned R) {
+ if (!GlobalBaseInitialized) {
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = F->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ GlobalBaseReg = makeAnotherReg(Type::IntTy);
+ BuildMI(FirstMBB, MBBI, PPC::IMPLICIT_DEF, 0, PPC::LR);
+ BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, GlobalBaseReg);
+ GlobalBaseInitialized = true;
+ }
+ // Emit our copy of GlobalBaseReg to the destination register in the
+ // current MBB
+ BuildMI(*MBB, IP, PPC::OR, 2, R).addReg(GlobalBaseReg)
+ .addReg(GlobalBaseReg);
+}
+
+/// copyConstantToRegister - Output the instructions required to put the
+/// specified constant into the specified register.
+///
+void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Constant *C, unsigned R) {
+ if (C->getType()->isIntegral()) {
+ unsigned Class = getClassB(C->getType());
+
+ if (Class == cLong) {
+ if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
+ uint64_t uval = CUI->getValue();
+ if (uval < (1LL << 32)) {
+ ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, uval);
+ copyConstantToRegister(MBB, IP, CU, R);
+ return;
+ }
+ } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
+ int64_t val = CUI->getValue();
+ if (val < (1LL << 31)) {
+ ConstantUInt *CU = ConstantUInt::get(Type::UIntTy, val);
+ copyConstantToRegister(MBB, IP, CU, R);
+ return;
+ }
+ } else {
+ std::cerr << "Unhandled long constant type!\n";
+ abort();
+ }
+ // Spill long to the constant pool and load it
+ MachineConstantPool *CP = F->getConstantPool();
+ unsigned CPI = CP->getConstantPoolIndex(C);
+ BuildMI(*MBB, IP, PPC::LD, 1, R)
+ .addReg(PPC::R2).addConstantPoolIndex(CPI);
+ }
+
+ assert(Class <= cInt && "Type not handled yet!");
+
+ // Handle bool
+ if (C->getType() == Type::BoolTy) {
+ BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(C == ConstantBool::True);
+ return;
+ }
+
+ // Handle int
+ if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(C)) {
+ unsigned uval = CUI->getValue();
+ if (uval < 32768) {
+ BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(uval);
+ } else {
+ unsigned Temp = makeAnotherReg(Type::IntTy);
+ BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(uval >> 16);
+ BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(uval);
+ }
+ return;
+ } else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(C)) {
+ int sval = CSI->getValue();
+ if (sval < 32768 && sval >= -32768) {
+ BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(sval);
+ } else {
+ unsigned Temp = makeAnotherReg(Type::IntTy);
+ BuildMI(*MBB, IP, PPC::LIS, 1, Temp).addSImm(sval >> 16);
+ BuildMI(*MBB, IP, PPC::ORI, 2, R).addReg(Temp).addImm(sval);
+ }
+ return;
+ }
+ std::cerr << "Unhandled integer constant!\n";
+ abort();
+ } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ // We need to spill the constant to memory...
+ MachineConstantPool *CP = F->getConstantPool();
+ unsigned CPI = CP->getConstantPoolIndex(CFP);
+ const Type *Ty = CFP->getType();
+ unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC::LFS : PPC::LFD;
+ BuildMI(*MBB,IP,LoadOpcode,2,R).addConstantPoolIndex(CPI).addReg(PPC::R2);
+ } else if (isa<ConstantPointerNull>(C)) {
+ // Copy zero (null pointer) to the register.
+ BuildMI(*MBB, IP, PPC::LI, 1, R).addSImm(0);
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
+ unsigned TmpReg = makeAnotherReg(GV->getType());
+ BuildMI(*MBB, IP, PPC::LD, 2, TmpReg).addGlobalAddress(GV).addReg(PPC::R2);
+ BuildMI(*MBB, IP, PPC::LWA, 2, R).addSImm(0).addReg(TmpReg);
+ } else {
+ std::cerr << "Offending constant: " << *C << "\n";
+ assert(0 && "Type not handled yet!");
+ }
+}
+
+/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
+/// the stack into virtual registers.
+void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
+ unsigned ArgOffset = 24;
+ unsigned GPR_remaining = 8;
+ unsigned FPR_remaining = 13;
+ unsigned GPR_idx = 0, FPR_idx = 0;
+ static const unsigned GPR[] = {
+ PPC::R3, PPC::R4, PPC::R5, PPC::R6,
+ PPC::R7, PPC::R8, PPC::R9, PPC::R10,
+ };
+ static const unsigned FPR[] = {
+ PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
+ PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
+ };
+
+ MachineFrameInfo *MFI = F->getFrameInfo();
+
+ for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
+ bool ArgLive = !I->use_empty();
+ unsigned Reg = ArgLive ? getReg(*I) : 0;
+ int FI; // Frame object index
+
+ switch (getClassB(I->getType())) {
+ case cByte:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(4, ArgOffset);
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+ .addReg(GPR[GPR_idx]);
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LBZ, 2, Reg), FI);
+ }
+ }
+ break;
+ case cShort:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(4, ArgOffset);
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+ .addReg(GPR[GPR_idx]);
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LHZ, 2, Reg), FI);
+ }
+ }
+ break;
+ case cInt:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(4, ArgOffset);
+ if (GPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+ .addReg(GPR[GPR_idx]);
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LWZ, 2, Reg), FI);
+ }
+ }
+ break;
+ case cLong:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(8, ArgOffset);
+ if (GPR_remaining > 1) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, GPR[GPR_idx]);
+ BuildMI(BB, PPC::OR, 2, Reg).addReg(GPR[GPR_idx])
+ .addReg(GPR[GPR_idx]);
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LD, 2, Reg), FI);
+ }
+ }
+ // longs require 4 additional bytes
+ ArgOffset += 4;
+ break;
+ case cFP32:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(4, ArgOffset);
+
+ if (FPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
+ BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
+ FPR_remaining--;
+ FPR_idx++;
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LFS, 2, Reg), FI);
+ }
+ }
+ break;
+ case cFP64:
+ if (ArgLive) {
+ FI = MFI->CreateFixedObject(8, ArgOffset);
+
+ if (FPR_remaining > 0) {
+ BuildMI(BB, PPC::IMPLICIT_DEF, 0, FPR[FPR_idx]);
+ BuildMI(BB, PPC::FMR, 1, Reg).addReg(FPR[FPR_idx]);
+ FPR_remaining--;
+ FPR_idx++;
+ } else {
+ addFrameReference(BuildMI(BB, PPC::LFD, 2, Reg), FI);
+ }
+ }
+
+ // doubles require 4 additional bytes and use 2 GPRs of param space
+ ArgOffset += 4;
+ if (GPR_remaining > 0) {
+ GPR_remaining--;
+ GPR_idx++;
+ }
+ break;
+ default:
+ assert(0 && "Unhandled argument type!");
+ }
+ ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
+ if (GPR_remaining > 0) {
+ GPR_remaining--; // uses up 2 GPRs
+ GPR_idx++;
+ }
+ }
+
+ // If the function takes variable number of arguments, add a frame offset for
+ // the start of the first vararg value... this is used to expand
+ // llvm.va_start.
+ if (Fn.getFunctionType()->isVarArg())
+ VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
+}
+
+
+/// SelectPHINodes - Insert machine code to generate phis. This is tricky
+/// because we have to generate our sources into the source basic blocks, not
+/// the current one.
+///
+void ISel::SelectPHINodes() {
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const Function &LF = *F->getFunction(); // The LLVM function...
+ for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
+ const BasicBlock *BB = I;
+ MachineBasicBlock &MBB = *MBBMap[I];
+
+ // Loop over all of the PHI nodes in the LLVM basic block...
+ MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
+ for (BasicBlock::const_iterator I = BB->begin();
+ PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
+
+ // Create a new machine instr PHI node, and insert it.
+ unsigned PHIReg = getReg(*PN);
+ MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
+ PPC::PHI, PN->getNumOperands(), PHIReg);
+
+ // PHIValues - Map of blocks to incoming virtual registers. We use this
+ // so that we only initialize one incoming value for a particular block,
+ // even if the block has multiple entries in the PHI node.
+ //
+ std::map<MachineBasicBlock*, unsigned> PHIValues;
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ MachineBasicBlock *PredMBB = 0;
+ for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
+ PE = MBB.pred_end (); PI != PE; ++PI)
+ if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
+ PredMBB = *PI;
+ break;
+ }
+ assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
+
+ unsigned ValReg;
+ std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
+ PHIValues.lower_bound(PredMBB);
+
+ if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
+ // We already inserted an initialization of the register for this
+ // predecessor. Recycle it.
+ ValReg = EntryIt->second;
+ } else {
+ // Get the incoming value into a virtual register.
+ //
+ Value *Val = PN->getIncomingValue(i);
+
+ // If this is a constant or GlobalValue, we may have to insert code
+ // into the basic block to compute it into a virtual register.
+ if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
+ isa<GlobalValue>(Val)) {
+ // Simple constants get emitted at the end of the basic block,
+ // before any terminator instructions. We "know" that the code to
+ // move a constant into a register will never clobber any flags.
+ ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
+ } else {
+ // Because we don't want to clobber any values which might be in
+ // physical registers with the computation of this constant (which
+ // might be arbitrarily complex if it is a constant expression),
+ // just insert the computation at the top of the basic block.
+ MachineBasicBlock::iterator PI = PredMBB->begin();
+
+ // Skip over any PHI nodes though!
+ while (PI != PredMBB->end() && PI->getOpcode() == PPC::PHI)
+ ++PI;
+
+ ValReg = getReg(Val, PredMBB, PI);
+ }
+
+ // Remember that we inserted a value for this PHI for this predecessor
+ PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
+ }
+
+ PhiMI->addRegOperand(ValReg);
+ PhiMI->addMachineBasicBlockOperand(PredMBB);
+ }
+
+ // Now that we emitted all of the incoming values for the PHI node, make
+ // sure to reposition the InsertPoint after the PHI that we just added.
+ // This is needed because we might have inserted a constant into this
+ // block, right after the PHI's which is before the old insert point!
+ PHIInsertPoint = PhiMI;
+ ++PHIInsertPoint;
+ }
+ }
+}
+
+
+// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
+// it into the conditional branch or select instruction which is the only user
+// of the cc instruction. This is the case if the conditional branch is the
+// only user of the setcc, and if the setcc is in the same basic block as the
+// conditional branch.
+//
+static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
+ if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
+ if (SCI->hasOneUse()) {
+ Instruction *User = cast<Instruction>(SCI->use_back());
+ if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
+ SCI->getParent() == User->getParent())
+ return SCI;
+ }
+ return 0;
+}
+
+
+// canFoldGEPIntoLoadOrStore - Return the GEP instruction if we can fold it into
+// the load or store instruction that is the only user of the GEP.
+//
+static GetElementPtrInst *canFoldGEPIntoLoadOrStore(Value *V) {
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V))
+ if (GEPI->hasOneUse()) {
+ Instruction *User = cast<Instruction>(GEPI->use_back());
+ if (isa<StoreInst>(User) &&
+ GEPI->getParent() == User->getParent() &&
+ User->getOperand(0) != GEPI &&
+ User->getOperand(1) == GEPI) {
+ ++GEPFolds;
+ return GEPI;
+ }
+ if (isa<LoadInst>(User) &&
+ GEPI->getParent() == User->getParent() &&
+ User->getOperand(0) == GEPI) {
+ ++GEPFolds;
+ return GEPI;
+ }
+ }
+ return 0;
+}
+
+
+// Return a fixed numbering for setcc instructions which does not depend on the
+// order of the opcodes.
+//
+static unsigned getSetCCNumber(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown setcc instruction!");
+ case Instruction::SetEQ: return 0;
+ case Instruction::SetNE: return 1;
+ case Instruction::SetLT: return 2;
+ case Instruction::SetGE: return 3;
+ case Instruction::SetGT: return 4;
+ case Instruction::SetLE: return 5;
+ }
+}
+
+static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
+ switch (Opcode) {
+ default: assert(0 && "Unknown setcc instruction!");
+ case Instruction::SetEQ: return PPC::BEQ;
+ case Instruction::SetNE: return PPC::BNE;
+ case Instruction::SetLT: return PPC::BLT;
+ case Instruction::SetGE: return PPC::BGE;
+ case Instruction::SetGT: return PPC::BGT;
+ case Instruction::SetLE: return PPC::BLE;
+ }
+}