diff options
author | Reid Spencer <rspencer@reidspencer.com> | 2007-01-10 04:16:17 +0000 |
---|---|---|
committer | Reid Spencer <rspencer@reidspencer.com> | 2007-01-10 04:16:17 +0000 |
commit | 93a0962e088dc184d6174c4b4b85d5c38e938317 (patch) | |
tree | 203c22243c57d23202fb6bf1ee469f86a3511387 /lib/Target/CBackend/Writer.cpp | |
parent | 39ff1e2afc07acf4c29af48853b09e15c41875d2 (diff) |
Rename Writer.cpp as CBackend.cpp so it doesn't conflict with Writer.cpp
in the bytecode writer library. This helps with debugging.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33050 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Target/CBackend/Writer.cpp')
-rw-r--r-- | lib/Target/CBackend/Writer.cpp | 2791 |
1 files changed, 0 insertions, 2791 deletions
diff --git a/lib/Target/CBackend/Writer.cpp b/lib/Target/CBackend/Writer.cpp deleted file mode 100644 index e738c99a9b..0000000000 --- a/lib/Target/CBackend/Writer.cpp +++ /dev/null @@ -1,2791 +0,0 @@ -//===-- Writer.cpp - Library for converting LLVM code to C ----------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This library converts LLVM code to C code, compilable by GCC and other C -// compilers. -// -//===----------------------------------------------------------------------===// - -#include "CTargetMachine.h" -#include "llvm/CallingConv.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Module.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/PassManager.h" -#include "llvm/SymbolTable.h" -#include "llvm/TypeSymbolTable.h" -#include "llvm/Intrinsics.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/InlineAsm.h" -#include "llvm/Analysis/ConstantsScanner.h" -#include "llvm/Analysis/FindUsedTypes.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/CodeGen/IntrinsicLowering.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Target/TargetMachineRegistry.h" -#include "llvm/Target/TargetAsmInfo.h" -#include "llvm/Support/CallSite.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/Mangler.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Config/config.h" -#include <algorithm> -#include <sstream> -using namespace llvm; - -namespace { - // Register the target. - RegisterTarget<CTargetMachine> X("c", " C backend"); - - /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for - /// any unnamed structure types that are used by the program, and merges - /// external functions with the same name. - /// - class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass { - void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<FindUsedTypes>(); - } - - virtual const char *getPassName() const { - return "C backend type canonicalizer"; - } - - virtual bool runOnModule(Module &M); - }; - - /// CWriter - This class is the main chunk of code that converts an LLVM - /// module to a C translation unit. - class CWriter : public FunctionPass, public InstVisitor<CWriter> { - std::ostream &Out; - IntrinsicLowering IL; - Mangler *Mang; - LoopInfo *LI; - const Module *TheModule; - const TargetAsmInfo* TAsm; - std::map<const Type *, std::string> TypeNames; - - std::map<const ConstantFP *, unsigned> FPConstantMap; - public: - CWriter(std::ostream &o) : Out(o), TAsm(0) {} - - virtual const char *getPassName() const { return "C backend"; } - - void getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<LoopInfo>(); - AU.setPreservesAll(); - } - - virtual bool doInitialization(Module &M); - - bool runOnFunction(Function &F) { - LI = &getAnalysis<LoopInfo>(); - - // Get rid of intrinsics we can't handle. - lowerIntrinsics(F); - - // Output all floating point constants that cannot be printed accurately. - printFloatingPointConstants(F); - - // Ensure that no local symbols conflict with global symbols. - F.renameLocalSymbols(); - - printFunction(F); - FPConstantMap.clear(); - return false; - } - - virtual bool doFinalization(Module &M) { - // Free memory... - delete Mang; - TypeNames.clear(); - return false; - } - - std::ostream &printType(std::ostream &Out, const Type *Ty, - bool isSigned = false, - const std::string &VariableName = "", - bool IgnoreName = false); - std::ostream &printPrimitiveType(std::ostream &Out, const Type *Ty, - bool isSigned, - const std::string &NameSoFar = ""); - - void printStructReturnPointerFunctionType(std::ostream &Out, - const PointerType *Ty); - - void writeOperand(Value *Operand); - void writeOperandRaw(Value *Operand); - void writeOperandInternal(Value *Operand); - void writeOperandWithCast(Value* Operand, unsigned Opcode); - void writeOperandWithCast(Value* Operand, ICmpInst::Predicate predicate); - bool writeInstructionCast(const Instruction &I); - - private : - std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c); - - void lowerIntrinsics(Function &F); - - void printModule(Module *M); - void printModuleTypes(const TypeSymbolTable &ST); - void printContainedStructs(const Type *Ty, std::set<const StructType *> &); - void printFloatingPointConstants(Function &F); - void printFunctionSignature(const Function *F, bool Prototype); - - void printFunction(Function &); - void printBasicBlock(BasicBlock *BB); - void printLoop(Loop *L); - - void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy); - void printConstant(Constant *CPV); - void printConstantWithCast(Constant *CPV, unsigned Opcode); - bool printConstExprCast(const ConstantExpr *CE); - void printConstantArray(ConstantArray *CPA); - void printConstantPacked(ConstantPacked *CP); - - // isInlinableInst - Attempt to inline instructions into their uses to build - // trees as much as possible. To do this, we have to consistently decide - // what is acceptable to inline, so that variable declarations don't get - // printed and an extra copy of the expr is not emitted. - // - static bool isInlinableInst(const Instruction &I) { - // Always inline cmp instructions, even if they are shared by multiple - // expressions. GCC generates horrible code if we don't. - if (isa<CmpInst>(I)) - return true; - - // Must be an expression, must be used exactly once. If it is dead, we - // emit it inline where it would go. - if (I.getType() == Type::VoidTy || !I.hasOneUse() || - isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || - isa<LoadInst>(I) || isa<VAArgInst>(I)) - // Don't inline a load across a store or other bad things! - return false; - - // Must not be used in inline asm - if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false; - - // Only inline instruction it if it's use is in the same BB as the inst. - return I.getParent() == cast<Instruction>(I.use_back())->getParent(); - } - - // isDirectAlloca - Define fixed sized allocas in the entry block as direct - // variables which are accessed with the & operator. This causes GCC to - // generate significantly better code than to emit alloca calls directly. - // - static const AllocaInst *isDirectAlloca(const Value *V) { - const AllocaInst *AI = dyn_cast<AllocaInst>(V); - if (!AI) return false; - if (AI->isArrayAllocation()) - return 0; // FIXME: we can also inline fixed size array allocas! - if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) - return 0; - return AI; - } - - // isInlineAsm - Check if the instruction is a call to an inline asm chunk - static bool isInlineAsm(const Instruction& I) { - if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0))) - return true; - return false; - } - - // Instruction visitation functions - friend class InstVisitor<CWriter>; - - void visitReturnInst(ReturnInst &I); - void visitBranchInst(BranchInst &I); - void visitSwitchInst(SwitchInst &I); - void visitInvokeInst(InvokeInst &I) { - assert(0 && "Lowerinvoke pass didn't work!"); - } - - void visitUnwindInst(UnwindInst &I) { - assert(0 && "Lowerinvoke pass didn't work!"); - } - void visitUnreachableInst(UnreachableInst &I); - - void visitPHINode(PHINode &I); - void visitBinaryOperator(Instruction &I); - void visitICmpInst(ICmpInst &I); - void visitFCmpInst(FCmpInst &I); - - void visitCastInst (CastInst &I); - void visitSelectInst(SelectInst &I); - void visitCallInst (CallInst &I); - void visitInlineAsm(CallInst &I); - void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } - - void visitMallocInst(MallocInst &I); - void visitAllocaInst(AllocaInst &I); - void visitFreeInst (FreeInst &I); - void visitLoadInst (LoadInst &I); - void visitStoreInst (StoreInst &I); - void visitGetElementPtrInst(GetElementPtrInst &I); - void visitVAArgInst (VAArgInst &I); - - void visitInstruction(Instruction &I) { - cerr << "C Writer does not know about " << I; - abort(); - } - - void outputLValue(Instruction *I) { - Out << " " << Mang->getValueName(I) << " = "; - } - - bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); - void printPHICopiesForSuccessor(BasicBlock *CurBlock, - BasicBlock *Successor, unsigned Indent); - void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, - unsigned Indent); - void printIndexingExpression(Value *Ptr, gep_type_iterator I, - gep_type_iterator E); - }; -} - -/// This method inserts names for any unnamed structure types that are used by -/// the program, and removes names from structure types that are not used by the -/// program. -/// -bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) { - // Get a set of types that are used by the program... - std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes(); - - // Loop over the module symbol table, removing types from UT that are - // already named, and removing names for types that are not used. - // - TypeSymbolTable &TST = M.getTypeSymbolTable(); - for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end(); - TI != TE; ) { - TypeSymbolTable::iterator I = TI++; - - // If this is not used, remove it from the symbol table. - std::set<const Type *>::iterator UTI = UT.find(I->second); - if (UTI == UT.end()) - TST.remove(I); - else - UT.erase(UTI); // Only keep one name for this type. - } - - // UT now contains types that are not named. Loop over it, naming - // structure types. - // - bool Changed = false; - unsigned RenameCounter = 0; - for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end(); - I != E; ++I) - if (const StructType *ST = dyn_cast<StructType>(*I)) { - while (M.addTypeName("unnamed"+utostr(RenameCounter), ST)) - ++RenameCounter; - Changed = true; - } - - - // Loop over all external functions and globals. If we have two with - // identical names, merge them. - // FIXME: This code should disappear when we don't allow values with the same - // names when they have different types! - std::map<std::string, GlobalValue*> ExtSymbols; - for (Module::iterator I = M.begin(), E = M.end(); I != E;) { - Function *GV = I++; - if (GV->isExternal() && GV->hasName()) { - std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X - = ExtSymbols.insert(std::make_pair(GV->getName(), GV)); - if (!X.second) { - // Found a conflict, replace this global with the previous one. - GlobalValue *OldGV = X.first->second; - GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType())); - GV->eraseFromParent(); - Changed = true; - } - } - } - // Do the same for globals. - for (Module::global_iterator I = M.global_begin(), E = M.global_end(); - I != E;) { - GlobalVariable *GV = I++; - if (GV->isExternal() && GV->hasName()) { - std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X - = ExtSymbols.insert(std::make_pair(GV->getName(), GV)); - if (!X.second) { - // Found a conflict, replace this global with the previous one. - GlobalValue *OldGV = X.first->second; - GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType())); - GV->eraseFromParent(); - Changed = true; - } - } - } - - return Changed; -} - -/// printStructReturnPointerFunctionType - This is like printType for a struct -/// return type, except, instead of printing the type as void (*)(Struct*, ...) -/// print it as "Struct (*)(...)", for struct return functions. -void CWriter::printStructReturnPointerFunctionType(std::ostream &Out, - const PointerType *TheTy) { - const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType()); - std::stringstream FunctionInnards; - FunctionInnards << " (*) ("; - bool PrintedType = false; - - FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); - const Type *RetTy = cast<PointerType>(I->get())->getElementType(); - unsigned Idx = 1; - for (++I; I != E; ++I) { - if (PrintedType) - FunctionInnards << ", "; - printType(FunctionInnards, *I, - /*isSigned=*/FTy->paramHasAttr(Idx, FunctionType::SExtAttribute), ""); - PrintedType = true; - } - if (FTy->isVarArg()) { - if (PrintedType) - FunctionInnards << ", ..."; - } else if (!PrintedType) { - FunctionInnards << "void"; - } - FunctionInnards << ')'; - std::string tstr = FunctionInnards.str(); - printType(Out, RetTy, - /*isSigned=*/FTy->paramHasAttr(0, FunctionType::SExtAttribute), tstr); -} - -std::ostream & -CWriter::printPrimitiveType(std::ostream &Out, const Type *Ty, bool isSigned, - const std::string &NameSoFar) { - assert(Ty->isPrimitiveType() && "Invalid type for printPrimitiveType"); - switch (Ty->getTypeID()) { - case Type::VoidTyID: return Out << "void " << NameSoFar; - case Type::BoolTyID: return Out << "bool " << NameSoFar; - case Type::Int8TyID: - return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar; - case Type::Int16TyID: - return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar; - case Type::Int32TyID: - return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar; - case Type::Int64TyID: - return Out << (isSigned?"signed":"unsigned") << " long long " << NameSoFar; - case Type::FloatTyID: return Out << "float " << NameSoFar; - case Type::DoubleTyID: return Out << "double " << NameSoFar; - default : - cerr << "Unknown primitive type: " << *Ty << "\n"; - abort(); - } -} - -// Pass the Type* and the variable name and this prints out the variable -// declaration. -// -std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, - bool isSigned, const std::string &NameSoFar, - bool IgnoreName) { - if (Ty->isPrimitiveType()) { - // FIXME:Signedness. When integer types are signless, this should just - // always pass "false" for the sign of the primitive type. The instructions - // will figure out how the value is to be interpreted. - printPrimitiveType(Out, Ty, isSigned, NameSoFar); - return Out; - } - - // Check to see if the type is named. - if (!IgnoreName || isa<OpaqueType>(Ty)) { - std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar; - } - - switch (Ty->getTypeID()) { - case Type::FunctionTyID: { - const FunctionType *FTy = cast<FunctionType>(Ty); - std::stringstream FunctionInnards; - FunctionInnards << " (" << NameSoFar << ") ("; - unsigned Idx = 1; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - FunctionInnards << ", "; - printType(FunctionInnards, *I, - /*isSigned=*/FTy->paramHasAttr(Idx, FunctionType::SExtAttribute), ""); - ++Idx; - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) - FunctionInnards << ", ..."; - } else if (!FTy->getNumParams()) { - FunctionInnards << "void"; - } - FunctionInnards << ')'; - std::string tstr = FunctionInnards.str(); - printType(Out, FTy->getReturnType(), - /*isSigned=*/FTy->paramHasAttr(0, FunctionType::SExtAttribute), tstr); - return Out; - } - case Type::StructTyID: { - const StructType *STy = cast<StructType>(Ty); - Out << NameSoFar + " {\n"; - unsigned Idx = 0; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - Out << " "; - printType(Out, *I, false, "field" + utostr(Idx++)); - Out << ";\n"; - } - return Out << '}'; - } - - case Type::PointerTyID: { - const PointerType *PTy = cast<PointerType>(Ty); - std::string ptrName = "*" + NameSoFar; - - if (isa<ArrayType>(PTy->getElementType()) || - isa<PackedType>(PTy->getElementType())) - ptrName = "(" + ptrName + ")"; - - return printType(Out, PTy->getElementType(), false, ptrName); - } - - case Type::ArrayTyID: { - const ArrayType *ATy = cast<ArrayType>(Ty); - unsigned NumElements = ATy->getNumElements(); - if (NumElements == 0) NumElements = 1; - return printType(Out, ATy->getElementType(), false, - NameSoFar + "[" + utostr(NumElements) + "]"); - } - - case Type::PackedTyID: { - const PackedType *PTy = cast<PackedType>(Ty); - unsigned NumElements = PTy->getNumElements(); - if (NumElements == 0) NumElements = 1; - return printType(Out, PTy->getElementType(), false, - NameSoFar + "[" + utostr(NumElements) + "]"); - } - - case Type::OpaqueTyID: { - static int Count = 0; - std::string TyName = "struct opaque_" + itostr(Count++); - assert(TypeNames.find(Ty) == TypeNames.end()); - TypeNames[Ty] = TyName; - return Out << TyName << ' ' << NameSoFar; - } - default: - assert(0 && "Unhandled case in getTypeProps!"); - abort(); - } - - return Out; -} - -void CWriter::printConstantArray(ConstantArray *CPA) { - - // As a special case, print the array as a string if it is an array of - // ubytes or an array of sbytes with positive values. - // - const Type *ETy = CPA->getType()->getElementType(); - bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty); - - // Make sure the last character is a null char, as automatically added by C - if (isString && (CPA->getNumOperands() == 0 || - !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) - isString = false; - - if (isString) { - Out << '\"'; - // Keep track of whether the last number was a hexadecimal escape - bool LastWasHex = false; - - // Do not include the last character, which we know is null - for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { - unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue(); - - // Print it out literally if it is a printable character. The only thing - // to be careful about is when the last letter output was a hex escape - // code, in which case we have to be careful not to print out hex digits - // explicitly (the C compiler thinks it is a continuation of the previous - // character, sheesh...) - // - if (isprint(C) && (!LastWasHex || !isxdigit(C))) { - LastWasHex = false; - if (C == '"' || C == '\\') - Out << "\\" << C; - else - Out << C; - } else { - LastWasHex = false; - switch (C) { - case '\n': Out << "\\n"; break; - case '\t': Out << "\\t"; break; - case '\r': Out << "\\r"; break; - case '\v': Out << "\\v"; break; - case '\a': Out << "\\a"; break; - case '\"': Out << "\\\""; break; - case '\'': Out << "\\\'"; break; - default: - Out << "\\x"; - Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); - Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); - LastWasHex = true; - break; - } - } - } - Out << '\"'; - } else { - Out << '{'; - if (CPA->getNumOperands()) { - Out << ' '; - printConstant(cast<Constant>(CPA->getOperand(0))); - for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { - Out << ", "; - printConstant(cast<Constant>(CPA->getOperand(i))); - } - } - Out << " }"; - } -} - -void CWriter::printConstantPacked(ConstantPacked *CP) { - Out << '{'; - if (CP->getNumOperands()) { - Out << ' '; - printConstant(cast<Constant>(CP->getOperand(0))); - for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { - Out << ", "; - printConstant(cast<Constant>(CP->getOperand(i))); - } - } - Out << " }"; -} - -// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out -// textually as a double (rather than as a reference to a stack-allocated -// variable). We decide this by converting CFP to a string and back into a -// double, and then checking whether the conversion results in a bit-equal -// double to the original value of CFP. This depends on us and the target C -// compiler agreeing on the conversion process (which is pretty likely since we -// only deal in IEEE FP). -// -static bool isFPCSafeToPrint(const ConstantFP *CFP) { -#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A - char Buffer[100]; - sprintf(Buffer, "%a", CFP->getValue()); - - if (!strncmp(Buffer, "0x", 2) || - !strncmp(Buffer, "-0x", 3) || - !strncmp(Buffer, "+0x", 3)) - return atof(Buffer) == CFP->getValue(); - return false; -#else - std::string StrVal = ftostr(CFP->getValue()); - - while (StrVal[0] == ' ') - StrVal.erase(StrVal.begin()); - - // Check to make sure that the stringized number is not some string like "Inf" - // or NaN. Check that the string matches the "[-+]?[0-9]" regex. - if ((StrVal[0] >= '0' && StrVal[0] <= '9') || - ((StrVal[0] == '-' || StrVal[0] == '+') && - (StrVal[1] >= '0' && StrVal[1] <= '9'))) - // Reparse stringized version! - return atof(StrVal.c_str()) == CFP->getValue(); - return false; -#endif -} - -/// Print out the casting for a cast operation. This does the double casting -/// necessary for conversion to the destination type, if necessary. -/// @brief Print a cast -void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) { - // Print the destination type cast - switch (opc) { - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::IntToPtr: - case Instruction::Trunc: - case Instruction::BitCast: - case Instruction::FPExt: - case Instruction::FPTrunc: // For these the DstTy sign doesn't matter - Out << '('; - printType(Out, DstTy); - Out << ')'; - break; - case Instruction::ZExt: - case Instruction::PtrToInt: - case Instruction::FPToUI: // For these, make sure we get an unsigned dest - Out << '('; - printPrimitiveType(Out, DstTy, false); - Out << ')'; - break; - case Instruction::SExt: - case Instruction::FPToSI: // For these, make sure we get a signed dest - Out << '('; - printPrimitiveType(Out, DstTy, true); - Out << ')'; - break; - default: - assert(0 && "Invalid cast opcode"); - } - - // Print the source type cast - switch (opc) { - case Instruction::UIToFP: - case Instruction::ZExt: - Out << '('; - printPrimitiveType(Out, SrcTy, false); - Out << ')'; - break; - case Instruction::SIToFP: - case Instruction::SExt: - Out << '('; - printPrimitiveType(Out, SrcTy, true); - Out << ')'; - break; - case Instruction::IntToPtr: - case Instruction::PtrToInt: - // Avoid "cast to pointer from integer of different size" warnings - Out << "(unsigned long)"; - break; - case Instruction::Trunc: - case Instruction::BitCast: - case Instruction::FPExt: - case Instruction::FPTrunc: - case Instruction::FPToSI: - case Instruction::FPToUI: - break; // These don't need a source cast. - default: - assert(0 && "Invalid cast opcode"); - break; - } -} - -// printConstant - The LLVM Constant to C Constant converter. -void CWriter::printConstant(Constant *CPV) { - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { - switch (CE->getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - Out << "("; - printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType()); - if (CE->getOpcode() == Instruction::SExt && - CE->getOperand(0)->getType() == Type::BoolTy) { - // Make sure we really sext from bool here by subtracting from 0 - Out << "0-"; - } - printConstant(CE->getOperand(0)); - if (CE->getType() == Type::BoolTy && - (CE->getOpcode() == Instruction::Trunc || - CE->getOpcode() == Instruction::FPToUI || - CE->getOpcode() == Instruction::FPToSI || - CE->getOpcode() == Instruction::PtrToInt)) { - // Make sure we really truncate to bool here by anding with 1 - Out << "&1u"; - } - Out << ')'; - return; - - case Instruction::GetElementPtr: - Out << "(&("; - printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV), - gep_type_end(CPV)); - Out << "))"; - return; - case Instruction::Select: - Out << '('; - printConstant(CE->getOperand(0)); - Out << '?'; - printConstant(CE->getOperand(1)); - Out << ':'; - printConstant(CE->getOperand(2)); - Out << ')'; - return; - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - case Instruction::SDiv: - case Instruction::UDiv: - case Instruction::FDiv: - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: - case Instruction::ICmp: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - { - Out << '('; - bool NeedsClosingParens = printConstExprCast(CE); - printConstantWithCast(CE->getOperand(0), CE->getOpcode()); - switch (CE->getOpcode()) { - case Instruction::Add: Out << " + "; break; - case Instruction::Sub: Out << " - "; break; - case Instruction::Mul: Out << " * "; break; - case Instruction::URem: - case Instruction::SRem: - case Instruction::FRem: Out << " % "; break; - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::FDiv: Out << " / "; break; - case Instruction::And: Out << " & "; break; - case Instruction::Or: Out << " | "; break; - case Instruction::Xor: Out << " ^ "; break; - case Instruction::Shl: Out << " << "; break; - case Instruction::LShr: - case Instruction::AShr: Out << " >> "; break; - case Instruction::ICmp: - switch (CE->getPredicate()) { - case ICmpInst::ICMP_EQ: Out << " == "; break; - case ICmpInst::ICMP_NE: Out << " != "; break; - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_ULT: Out << " < "; break; - case ICmpInst::ICMP_SLE: - case ICmpInst::ICMP_ULE: Out << " <= "; break; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_UGT: Out << " > "; break; - case ICmpInst::ICMP_SGE: - case ICmpInst::ICMP_UGE: Out << " >= "; break; - default: assert(0 && "Illegal ICmp predicate"); - } - break; - default: assert(0 && "Illegal opcode here!"); - } - printConstantWithCast(CE->getOperand(1), CE->getOpcode()); - if (NeedsClosingParens) - Out << "))"; - Out << ')'; - return; - } - case Instruction::FCmp: { - Out << '('; - bool NeedsClosingParens = printConstExprCast(CE); - if (CE->getPredicate() == FCmpInst::FCMP_FALSE) - Out << "0"; - else if (CE->getPredicate() == FCmpInst::FCMP_TRUE) - Out << "1"; - else { - const char* op = 0; - switch (CE->getPredicate()) { - default: assert(0 && "Illegal FCmp predicate"); - case FCmpInst::FCMP_ORD: op = "ord"; break; - case FCmpInst::FCMP_UNO: op = "uno"; break; - case FCmpInst::FCMP_UEQ: op = "ueq"; break; - case FCmpInst::FCMP_UNE: op = "une"; break; - case FCmpInst::FCMP_ULT: op = "ult"; break; - case FCmpInst::FCMP_ULE: op = "ule"; break; - case FCmpInst::FCMP_UGT: op = "ugt"; break; - case FCmpInst::FCMP_UGE: op = "uge"; break; - case FCmpInst::FCMP_OEQ: op = "oeq"; break; - case FCmpInst::FCMP_ONE: op = "one"; break; - case FCmpInst::FCMP_OLT: op = "olt"; break; - case FCmpInst::FCMP_OLE: op = "ole"; break; - case FCmpInst::FCMP_OGT: op = "ogt"; break; - case FCmpInst::FCMP_OGE: op = "oge"; break; - } - Out << "llvm_fcmp_" << op << "("; - printConstantWithCast(CE->getOperand(0), CE->getOpcode()); - Out << ", "; - printConstantWithCast(CE->getOperand(1), CE->getOpcode()); - Out << ")"; - } - if (NeedsClosingParens) - Out << "))"; - Out << ')'; - } - default: - cerr << "CWriter Error: Unhandled constant expression: " - << *CE << "\n"; - abort(); - } - } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) { - Out << "(("; - printType(Out, CPV->getType()); // sign doesn't matter - Out << ")/*UNDEF*/0)"; - return; - } - - if (ConstantBool *CB = dyn_cast<ConstantBool>(CPV)) { - Out << (CB->getValue() ? '1' : '0') ; - return; - } - - if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) { - const Type* Ty = CI->getType(); - Out << "(("; - printPrimitiveType(Out, Ty, false) << ')'; - if (CI->isMinValue(true)) - Out << CI->getZExtValue() << 'u'; - else - Out << CI->getSExtValue(); - if (Ty->getPrimitiveSizeInBits() > 32) - Out << "ll"; - Out << ')'; - return; - } - - switch (CPV->getType()->getTypeID()) { - case Type::FloatTyID: - case Type::DoubleTyID: { - ConstantFP *FPC = cast<ConstantFP>(CPV); - std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); - if (I != FPConstantMap.end()) { - // Because of FP precision problems we must load from a stack allocated - // value that holds the value in hex. - Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") - << "*)&FPConstant" << I->second << ')'; - } else { - if (IsNAN(FPC->getValue())) { - // The value is NaN - - // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, - // it's 0x7ff4. - const unsigned long QuietNaN = 0x7ff8UL; - //const unsigned long SignalNaN = 0x7ff4UL; - - // We need to grab the first part of the FP # - char Buffer[100]; - - uint64_t ll = DoubleToBits(FPC->getValue()); - sprintf(Buffer, "0x%llx", static_cast<long long>(ll)); - - std::string Num(&Buffer[0], &Buffer[6]); - unsigned long Val = strtoul(Num.c_str(), 0, 16); - - if (FPC->getType() == Type::FloatTy) - Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" - << Buffer << "\") /*nan*/ "; - else - Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" - << Buffer << "\") /*nan*/ "; - } else if (IsInf(FPC->getValue())) { - // The value is Inf - if (FPC->getValue() < 0) Out << '-'; - Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "") - << " /*inf*/ "; - } else { - std::string Num; -#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A - // Print out the constant as a floating point number. - char Buffer[100]; - sprintf(Buffer, "%a", FPC->getValue()); - Num = Buffer; -#else - Num = ftostr(FPC->getValue()); -#endif - Out << Num; - } - } - break; - } - - case Type::ArrayTyID: - if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { - const ArrayType *AT = cast<ArrayType>(CPV->getType()); - Out << '{'; - if (AT->getNumElements()) { - Out << ' '; - Constant *CZ = Constant::getNullValue(AT->getElementType()); - printConstant(CZ); - for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(CZ); - } - } - Out << " }"; - } else { - printConstantArray(cast<ConstantArray>(CPV)); - } - break; - - case Type::PackedTyID: - if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { - const PackedType *AT = cast<PackedType>(CPV->getType()); - Out << '{'; - if (AT->getNumElements()) { - Out << ' '; - Constant *CZ = Constant::getNullValue(AT->getElementType()); - printConstant(CZ); - for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { - Out << ", "; - printConstant(CZ); |