diff options
author | Chris Lattner <sabre@nondot.org> | 2001-09-14 03:46:34 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2001-09-14 03:46:34 +0000 |
commit | 1fddfd18abde2578a487bb247110acfd2226d62b (patch) | |
tree | 9668aa59d922c3fee93be2d55dbeebddef759be0 /lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp | |
parent | 0e6530ee1b2641060736e161425e759c051a3544 (diff) |
Move the contents of the CodeGen/TargetMachine/Sparc directory to Target/Sparc
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@560 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp')
-rw-r--r-- | lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp | 2016 |
1 files changed, 0 insertions, 2016 deletions
diff --git a/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp b/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp deleted file mode 100644 index c73264c221..0000000000 --- a/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp +++ /dev/null @@ -1,2016 +0,0 @@ -//*************************************************************************** -// File: -// SparcInstrSelection.cpp -// -// Purpose: -// -// History: -// 7/02/01 - Vikram Adve - Created -//**************************************************************************/ - -#include "SparcInternals.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/InstrForest.h" -#include "llvm/CodeGen/InstrSelection.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/DerivedTypes.h" -#include "llvm/iTerminators.h" -#include "llvm/iMemory.h" -#include "llvm/iOther.h" -#include "llvm/BasicBlock.h" -#include "llvm/Method.h" -#include "llvm/ConstPoolVals.h" - - -//******************** Internal Data Declarations ************************/ - -// to be used later -struct BranchPattern { - bool flipCondition; // should the sense of the test be reversed - BasicBlock* targetBB; // which basic block to branch to - MachineInstr* extraBranch; // if neither branch is fall-through, then this - // BA must be inserted after the cond'l one -}; - -//************************* Forward Declarations ***************************/ - - -static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode, - bool& isFPBranch); - -static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode, - const BinaryOperator* setCCInst); - -static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode, - const BinaryOperator* setCCInst); - -static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*); - -static MachineOpCode ChooseMovpccAfterSub (const InstructionNode* instrNode, - bool& mustClearReg, - int& valueToMove); - -static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*, - const Type* opType); - -static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode, - const Type* opType); - -static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode, - bool checkCasts); - -static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode); - -static MachineOpCode ChooseLoadInstruction (const Type* resultType); - -static MachineOpCode ChooseStoreInstruction (const Type* valueType); - -static void SetOperandsForMemInstr(MachineInstr* minstr, - const InstructionNode* vmInstrNode, - const TargetMachine& target); - -static void SetMemOperands_Internal (MachineInstr* minstr, - const InstructionNode* vmInstrNode, - Value* ptrVal, - Value* arrayOffsetVal, - const vector<ConstPoolVal*>& idxVec, - const TargetMachine& target); - -static unsigned FixConstantOperands(const InstructionNode* vmInstrNode, - MachineInstr** mvec, - unsigned numInstr, - TargetMachine& target); - -static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr, - Value* val, - TmpInstruction*& tmpReg, - MachineInstr*& getMinstr2); - -static void ForwardOperand (InstructionNode* treeNode, - InstructionNode* parent, - int operandNum); - - -//************************ Internal Functions ******************************/ - -// Convenience function to get the value of an integer constant, for an -// appropriate integer or non-integer type that can be held in an integer. -// The type of the argument must be the following: -// GetConstantValueAsSignedInt: any of the above, but the value -// must fit into a int64_t. -// -// isValidConstant is set to true if a valid constant was found. -// - -static int64_t GetConstantValueAsSignedInt(const Value *V, - bool &isValidConstant) { - if (!V->isConstant()) { isValidConstant = false; return 0; } - isValidConstant = true; - - if (V->getType() == Type::BoolTy) - return ((ConstPoolBool*)V)->getValue(); - if (V->getType()->isIntegral()) { - if (V->getType()->isSigned()) - return ((ConstPoolSInt*)V)->getValue(); - - assert(V->getType()->isUnsigned()); - uint64_t Val = ((ConstPoolUInt*)V)->getValue(); - - if (Val < INT64_MAX) // then safe to cast to signed - return (int64_t)Val; - } - - isValidConstant = false; - return 0; -} - - - -//------------------------------------------------------------------------ -// External Function: ThisIsAChainRule -// -// Purpose: -// Check if a given BURG rule is a chain rule. -//------------------------------------------------------------------------ - -extern bool -ThisIsAChainRule(int eruleno) -{ - switch(eruleno) - { - case 111: // stmt: reg - case 112: // stmt: boolconst - case 113: // stmt: bool - case 121: - case 122: - case 123: - case 124: - case 125: - case 126: - case 127: - case 128: - case 129: - case 130: - case 131: - case 132: - case 153: - case 155: return true; break; - - default: return false; break; - } -} - - -static inline MachineOpCode -ChooseBprInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode; - - Instruction* setCCInstr = - ((InstructionNode*) instrNode->leftChild())->getInstruction(); - - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = BRZ; break; - case Instruction::SetNE: opCode = BRNZ; break; - case Instruction::SetLE: opCode = BRLEZ; break; - case Instruction::SetGE: opCode = BRGEZ; break; - case Instruction::SetLT: opCode = BRLZ; break; - case Instruction::SetGT: opCode = BRGZ; break; - default: - assert(0 && "Unrecognized VM instruction!"); - opCode = INVALID_OPCODE; - break; - } - - return opCode; -} - - -static inline MachineOpCode -ChooseBccInstruction(const InstructionNode* instrNode, - bool& isFPBranch) -{ - InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); - BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); - const Type* setCCType = setCCInstr->getOperand(0)->getType(); - - isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); - - if (isFPBranch) - return ChooseBFpccInstruction(instrNode, setCCInstr); - else - return ChooseBpccInstruction(instrNode, setCCInstr); -} - - -static inline MachineOpCode -ChooseBpccInstruction(const InstructionNode* instrNode, - const BinaryOperator* setCCInstr) -{ - MachineOpCode opCode = INVALID_OPCODE; - - bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); - - if (isSigned) - { - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = BE; break; - case Instruction::SetNE: opCode = BNE; break; - case Instruction::SetLE: opCode = BLE; break; - case Instruction::SetGE: opCode = BGE; break; - case Instruction::SetLT: opCode = BL; break; - case Instruction::SetGT: opCode = BG; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - } - else - { - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = BE; break; - case Instruction::SetNE: opCode = BNE; break; - case Instruction::SetLE: opCode = BLEU; break; - case Instruction::SetGE: opCode = BCC; break; - case Instruction::SetLT: opCode = BCS; break; - case Instruction::SetGT: opCode = BGU; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - } - - return opCode; -} - -static inline MachineOpCode -ChooseBFpccInstruction(const InstructionNode* instrNode, - const BinaryOperator* setCCInstr) -{ - MachineOpCode opCode = INVALID_OPCODE; - - switch(setCCInstr->getOpcode()) - { - case Instruction::SetEQ: opCode = FBE; break; - case Instruction::SetNE: opCode = FBNE; break; - case Instruction::SetLE: opCode = FBLE; break; - case Instruction::SetGE: opCode = FBGE; break; - case Instruction::SetLT: opCode = FBL; break; - case Instruction::SetGT: opCode = FBG; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - - return opCode; -} - - -static inline MachineOpCode -ChooseMovFpccInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode = INVALID_OPCODE; - - switch(instrNode->getInstruction()->getOpcode()) - { - case Instruction::SetEQ: opCode = MOVFE; break; - case Instruction::SetNE: opCode = MOVFNE; break; - case Instruction::SetLE: opCode = MOVFLE; break; - case Instruction::SetGE: opCode = MOVFGE; break; - case Instruction::SetLT: opCode = MOVFL; break; - case Instruction::SetGT: opCode = MOVFG; break; - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - - return opCode; -} - - -// Assumes that SUBcc v1, v2 -> v3 has been executed. -// In most cases, we want to clear v3 and then follow it by instruction -// MOVcc 1 -> v3. -// Set mustClearReg=false if v3 need not be cleared before conditional move. -// Set valueToMove=0 if we want to conditionally move 0 instead of 1 -// (i.e., we want to test inverse of a condition) -// -// -static MachineOpCode -ChooseMovpccAfterSub(const InstructionNode* instrNode, - bool& mustClearReg, - int& valueToMove) -{ - MachineOpCode opCode = INVALID_OPCODE; - mustClearReg = true; - valueToMove = 1; - - switch(instrNode->getInstruction()->getOpcode()) - { - case Instruction::SetEQ: opCode = MOVNE; mustClearReg = false; - valueToMove = 0; break; - case Instruction::SetLE: opCode = MOVLE; break; - case Instruction::SetGE: opCode = MOVGE; break; - case Instruction::SetLT: opCode = MOVL; break; - case Instruction::SetGT: opCode = MOVG; break; - - case Instruction::SetNE: assert(0 && "No move required!"); - - default: - assert(0 && "Unrecognized VM instruction!"); - break; - } - - return opCode; -} - - -static inline MachineOpCode -ChooseConvertToFloatInstr(const InstructionNode* instrNode, - const Type* opType) -{ - MachineOpCode opCode = INVALID_OPCODE; - - switch(instrNode->getOpLabel()) - { - case ToFloatTy: - if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) - opCode = FITOS; - else if (opType == Type::LongTy) - opCode = FXTOS; - else if (opType == Type::DoubleTy) - opCode = FDTOS; - else if (opType == Type::FloatTy) - ; - else - assert(0 && "Cannot convert this type to FLOAT on SPARC"); - break; - - case ToDoubleTy: - if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) - opCode = FITOD; - else if (opType == Type::LongTy) - opCode = FXTOD; - else if (opType == Type::FloatTy) - opCode = FSTOD; - else if (opType == Type::DoubleTy) - ; - else - assert(0 && "Cannot convert this type to DOUBLE on SPARC"); - break; - - default: - break; - } - - return opCode; -} - -static inline MachineOpCode -ChooseConvertToIntInstr(const InstructionNode* instrNode, - const Type* opType) -{ - MachineOpCode opCode = INVALID_OPCODE;; - - int instrType = (int) instrNode->getOpLabel(); - - if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy) - { - switch (opType->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FSTOI; break; - case Type::DoubleTyID: opCode = FDTOI; break; - default: - assert(0 && "Non-numeric non-bool type cannot be converted to Int"); - break; - } - } - else if (instrType == ToLongTy) - { - switch (opType->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FSTOX; break; - case Type::DoubleTyID: opCode = FDTOX; break; - default: - assert(0 && "Non-numeric non-bool type cannot be converted to Long"); - break; - } - } - else - assert(0 && "Should not get here, Mo!"); - - return opCode; -} - - -static inline MachineOpCode -ChooseAddInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode = INVALID_OPCODE; - - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType->isIntegral() || - resultType->isPointerType() || - resultType->isMethodType() || - resultType->isLabelType()) - { - opCode = ADD; - } - else - { - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FADDS; break; - case Type::DoubleTyID: opCode = FADDD; break; - default: assert(0 && "Invalid type for ADD instruction"); break; - } - } - - return opCode; -} - - -static inline MachineInstr* -CreateMovFloatInstruction(const InstructionNode* instrNode, - const Type* resultType) -{ - MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy) - ? FMOVS : FMOVD); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - instrNode->getValue()); - return minstr; -} - -static inline MachineInstr* -CreateAddConstInstruction(const InstructionNode* instrNode) -{ - MachineInstr* minstr = NULL; - - Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); - assert(constOp->isConstant()); - - // Cases worth optimizing are: - // (1) Add with 0 for float or double: use an FMOV of appropriate type, - // instead of an FADD (1 vs 3 cycles). There is no integer MOV. - // - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType == Type::FloatTy || resultType == Type::DoubleTy) { - double dval = ((ConstPoolFP*) constOp)->getValue(); - if (dval == 0.0) - minstr = CreateMovFloatInstruction(instrNode, resultType); - } - - return minstr; -} - - -static inline MachineOpCode -ChooseSubInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode = INVALID_OPCODE; - - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType->isIntegral() || - resultType->isPointerType()) - { - opCode = SUB; - } - else - { - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FSUBS; break; - case Type::DoubleTyID: opCode = FSUBD; break; - default: assert(0 && "Invalid type for SUB instruction"); break; - } - } - - return opCode; -} - - -static inline MachineInstr* -CreateSubConstInstruction(const InstructionNode* instrNode) -{ - MachineInstr* minstr = NULL; - - Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); - assert(constOp->isConstant()); - - // Cases worth optimizing are: - // (1) Sub with 0 for float or double: use an FMOV of appropriate type, - // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. - // - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType == Type::FloatTy || - resultType == Type::DoubleTy) - { - double dval = ((ConstPoolFP*) constOp)->getValue(); - if (dval == 0.0) - minstr = CreateMovFloatInstruction(instrNode, resultType); - } - - return minstr; -} - - -static inline MachineOpCode -ChooseFcmpInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode = INVALID_OPCODE; - - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) { - case Type::FloatTyID: opCode = FCMPS; break; - case Type::DoubleTyID: opCode = FCMPD; break; - default: assert(0 && "Invalid type for FCMP instruction"); break; - } - - return opCode; -} - - -// Assumes that leftArg and rightArg are both cast instructions. -// -static inline bool -BothFloatToDouble(const InstructionNode* instrNode) -{ - InstrTreeNode* leftArg = instrNode->leftChild(); - InstrTreeNode* rightArg = instrNode->rightChild(); - InstrTreeNode* leftArgArg = leftArg->leftChild(); - InstrTreeNode* rightArgArg = rightArg->leftChild(); - assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); - - // Check if both arguments are floats cast to double - return (leftArg->getValue()->getType() == Type::DoubleTy && - leftArgArg->getValue()->getType() == Type::FloatTy && - rightArgArg->getValue()->getType() == Type::FloatTy); -} - - -static inline MachineOpCode -ChooseMulInstruction(const InstructionNode* instrNode, - bool checkCasts) -{ - MachineOpCode opCode = INVALID_OPCODE; - - if (checkCasts && BothFloatToDouble(instrNode)) - { - return opCode = FSMULD; - } - // else fall through and use the regular multiply instructions - - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType->isIntegral()) - { - opCode = MULX; - } - else - { - switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FMULS; break; - case Type::DoubleTyID: opCode = FMULD; break; - default: assert(0 && "Invalid type for MUL instruction"); break; - } - } - - return opCode; -} - - -static inline MachineInstr* -CreateIntNegInstruction(Value* vreg) -{ - MachineInstr* minstr = new MachineInstr(SUB); - minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0); - minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg); - minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg); - return minstr; -} - - -static inline MachineInstr* -CreateMulConstInstruction(const InstructionNode* instrNode, - MachineInstr*& getMinstr2) -{ - MachineInstr* minstr = NULL; - getMinstr2 = NULL; - bool needNeg = false; - - Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); - assert(constOp->isConstant()); - - // Cases worth optimizing are: - // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) - // (2) Multiply by 2^x for integer types: replace with Shift - // - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType->isIntegral()) - { - unsigned pow; - bool isValidConst; - int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); - if (isValidConst) - { - bool needNeg = false; - if (C < 0) - { - needNeg = true; - C = -C; - } - - if (C == 0 || C == 1) - { - minstr = new MachineInstr(ADD); - - if (C == 0) - minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0); - else - minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - } - else if (IsPowerOf2(C, pow)) - { - minstr = new MachineInstr((resultType == Type::LongTy) - ? SLLX : SLL); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, - pow); - } - - if (minstr && needNeg) - { // insert <reg = SUB 0, reg> after the instr to flip the sign - getMinstr2 = CreateIntNegInstruction(instrNode->getValue()); - } - } - } - else - { - if (resultType == Type::FloatTy || - resultType == Type::DoubleTy) - { - bool isValidConst; - double dval = ((ConstPoolFP*) constOp)->getValue(); - - if (isValidConst) - { - if (dval == 0) - { - minstr = new MachineInstr((resultType == Type::FloatTy) - ? FITOS : FITOD); - minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0); - } - else if (fabs(dval) == 1) - { - bool needNeg = (dval < 0); - - MachineOpCode opCode = needNeg - ? (resultType == Type::FloatTy? FNEGS : FNEGD) - : (resultType == Type::FloatTy? FMOVS : FMOVD); - - minstr = new MachineInstr(opCode); - minstr->SetMachineOperand(0, - MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - } - } - } - } - - if (minstr != NULL) - minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - instrNode->getValue()); - - return minstr; -} - - -static inline MachineOpCode -ChooseDivInstruction(const InstructionNode* instrNode) -{ - MachineOpCode opCode = INVALID_OPCODE; - - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType->isIntegral()) - { - opCode = resultType->isSigned()? SDIVX : UDIVX; - } - else - { - Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); - switch(operand->getType()->getPrimitiveID()) - { - case Type::FloatTyID: opCode = FDIVS; break; - case Type::DoubleTyID: opCode = FDIVD; break; - default: assert(0 && "Invalid type for DIV instruction"); break; - } - } - - return opCode; -} - - -static inline MachineInstr* -CreateDivConstInstruction(const InstructionNode* instrNode, - MachineInstr*& getMinstr2) -{ - MachineInstr* minstr = NULL; - getMinstr2 = NULL; - - Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); - assert(constOp->isConstant()); - - // Cases worth optimizing are: - // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) - // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} - // - const Type* resultType = instrNode->getInstruction()->getType(); - - if (resultType->isIntegral()) - { - unsigned pow; - bool isValidConst; - int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); - if (isValidConst) - { - bool needNeg = false; - if (C < 0) - { - needNeg = true; - C = -C; - } - - if (C == 1) - { - minstr = new MachineInstr(ADD); - minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - } - else if (IsPowerOf2(C, pow)) - { - MachineOpCode opCode= ((resultType->isSigned()) - ? (resultType==Type::LongTy)? SRAX : SRA - : (resultType==Type::LongTy)? SRLX : SRL); - minstr = new MachineInstr(opCode); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, - pow); - } - - if (minstr && needNeg) - { // insert <reg = SUB 0, reg> after the instr to flip the sign - getMinstr2 = CreateIntNegInstruction(instrNode->getValue()); - } - } - } - else - { - if (resultType == Type::FloatTy || - resultType == Type::DoubleTy) - { - bool isValidConst; - double dval = ((ConstPoolFP*) constOp)->getValue(); - - if (isValidConst && fabs(dval) == 1) - { - bool needNeg = (dval < 0); - - MachineOpCode opCode = needNeg - ? (resultType == Type::FloatTy? FNEGS : FNEGD) - : (resultType == Type::FloatTy? FMOVS : FMOVD); - - minstr = new MachineInstr(opCode); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - instrNode->leftChild()->getValue()); - } - } - } - - if (minstr != NULL) - minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - instrNode->getValue()); - - return minstr; -} - - -static inline MachineOpCode -ChooseLoadInstruction(const Type* resultType) -{ - MachineOpCode opCode = INVALID_OPCODE; - - switch (resultType->getPrimitiveID()) - { - case Type::BoolTyID: opCode = LDUB; break; - case Type::UByteTyID: opCode = LDUB; break; - case Type::SByteTyID: opCode = LDSB; break; - case Type::UShortTyID: opCode = LDUH; break; - case Type::ShortTyID: opCode = LDSH; break; - case Type::UIntTyID: opCode = LDUW; break; - case Type::IntTyID: opCode = LDSW; break; - case Type::ULongTyID: - case Type::LongTyID: opCode = LDX; break; - case Type::FloatTyID: opCode = LD; break; - case Type::DoubleTyID: opCode = LDD; break; - default: assert(0 && "Invalid type for Load instruction"); break; - } - - return opCode; -} - - -static inline MachineOpCode -ChooseStoreInstruction(const Type* valueType) -{ - MachineOpCode opCode = INVALID_OPCODE; - - switch (valueType->getPrimitiveID()) - { - case Type::BoolTyID: - case Type::UByteTyID: - case Type::SByteTyID: opCode = STB; break; - case Type::UShortTyID: - case Type::ShortTyID: opCode = STH; break; - case Type::UIntTyID: - case Type::IntTyID: opCode = STW; break; - case Type::ULongTyID: - case Type::LongTyID: opCode = STX; break; - case Type::FloatTyID: opCode = ST; break; - case Type::DoubleTyID: opCode = STD; break; - default: assert(0 && "Invalid type for Store instruction"); break; - } - - return opCode; -} - - -//------------------------------------------------------------------------ -// Function SetOperandsForMemInstr -// -// Choose addressing mode for the given load or store instruction. -// Use [reg+reg] if it is an indexed reference, and the index offset is -// not a constant or if it cannot fit in the offset field. -// Use [reg+offset] in all other cases. -// -// This assumes that all array refs are "lowered" to one of these forms: -// %x = load (subarray*) ptr, constant ; single constant offset -// %x = load (subarray*) ptr, offsetVal ; single non-constant offset -// Generally, this should happen via strength reduction + LICM. -// Also, strength reduction should take care of using the same register for -// the loop index variable and an array index, when that is profitable. -//------------------------------------------------------------------------ - -static void -SetOperandsForMemInstr(MachineInstr* minstr, - const InstructionNode* vmInstrNode, - const TargetMachine& target) -{ - MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); - - // Variables to hold the index vector, ptr value, and offset value. - // The major work here is to extract these for all 3 instruction types - // and then call the common function SetMemOperands_Internal(). - // - const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec(); - vector<ConstPoolVal*>* newIdxVec = NULL; - Value* ptrVal; - Value* arrayOffsetVal = NULL; - - // Test if a GetElemPtr instruction is being folded into this mem instrn. - // If so, it will be in the left child for Load and GetElemPtr, - // and in the right child for Store instructions. - // - InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store - ? vmInstrNode->rightChild() - : vmInstrNode->leftChild()); - - if (ptrChild->getOpLabel() == Instruction::GetElementPtr || - ptrChild->getOpLabel() == GetElemPtrIdx) - { - // There is a GetElemPtr instruction and there may be a chain of - // more than one. Use the pointer value of the last one in the chain. - // Fold the index vectors from the entire chain and from the mem - // instruction into one single index vector. - // Finally, we never fold for an array instruction so make that NULL. - - newIdxVec = new vector<ConstPoolVal*>; - ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec); - - newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end()); - idxVec = newIdxVec; - - assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType() - && "GetElemPtr cannot be folded into array refs in selection"); - } - else - { - // There is no GetElemPtr instruction. - // Use the pointer value and the index vector from the Mem instruction. - // If it is an array reference, get the array offset value. - // - ptrVal = memInst->getPtrOperand(); - - const Type* opType = - ((const PointerType*) ptrVal->getType())->getValueType(); - if (opType->isArrayType()) - { - assert((memInst->getNumOperands() - == (unsigned) 1 + memInst->getFirstOffsetIdx()) - && "Array refs must be lowered before Instruction Selection"); - - arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx()); - } - } - - SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal, - *idxVec, target); - - if (newIdxVec != NULL) - delete newIdxVec; -} - - -static void -SetMemOperands_Internal(MachineInstr* minstr, - const InstructionNode* vmInstrNode, - Value* ptrVal, - Value* arrayOffsetVal, - const vector<ConstPoolVal*>& idxVec, - const TargetMachine& target) -{ - MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); - - // Initialize so we default to storing the offset in a register. - int64_t smallConstOffset; - Value* valueForRegOffset = NULL; - MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister; - - // Check if there is an index vector and if so, if it translates to - // a small enough constant to fit in the immediate-offset field. - // - if (idxVec.size() > 0) - { - bool isConstantOffset = false; - unsigned offset; - - const PointerType* ptrType = (PointerType*) ptrVal->getType(); - - if (ptrType->getValueType()->isStructType()) - { - // the offset is always constant for structs - isConstantOffset = true; - - // Compute the offset value using the index vector - offset = target.DataLayout.getIndexedOffset(ptrType, idxVec); - } - else - { - // It must be an array ref. Check if the offset is a constant, - // and that the indexing has been lowered to a single offset. - // - assert(ptrType->getValueType()->isArrayType()); - assert(arrayOffsetVal != NULL - && "Expect to be given Value* for array offsets"); - - if (ConstPoolVal *CPV = arrayOffsetVal->castConstant()) - { - isConstantOffset = true; // always constant for structs - assert(arrayOffsetVal->getType()->isIntegral()); - offset = (CPV->getType()->isSigned() - ? ((ConstPoolSInt*)CPV)->getValue() - : (int64_t) ((ConstPoolUInt*)CPV)->getValue()); - } - else - { - valueForRegOffset = arrayOffsetVal; - } - } - - if (isConstantOffset) - { - // create a virtual register for the constant - valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset); - } - } - else - { - offsetOpType = MachineOperand::MO_SignExtendedImmed; - smallConstOffset = 0; - } - - // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR - // It is the left child in the instruction tree in all cases. - Value* leftVal = vmInstrNode->leftChild()->getValue(); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal); - - // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR - // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR - // - unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1; - if (offsetOpType == MachineOperand::MO_VirtualRegister) - { - assert(valueForRegOffset != NULL); - minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); - } - else - minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset); - - if (memInst->getOpcode() == Instruction::Store) - minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal); - else - minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - vmInstrNode->getValue()); -} - - -// Special handling for constant operands: -// -- if the constant is 0, use the hardwired 0 register, if any; -// -- if the constant is of float or double type but has an integer value, -// use int-to-float conversion instruction instead of generating a load; -// -- if the constant fits in the IMMEDIATE field, use that field; -// -- else insert instructions to put the constant into a register, either -// directly or by loading explicitly from the constant pool. -// -static unsigned -FixConstantOperands(const InstructionNode* vmInstrNode, - MachineInstr** mvec, - unsigned numInstr, - TargetMachine& target) -{ - static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR]; - - unsigned numNew = 0; - Instruction* vmInstr = vmInstrNode->getInstruction(); - - for (unsigned i=0; i < numInstr; i++) - { - MachineInstr* minstr = mvec[i]; - const MachineInstrDescriptor& instrDesc = - target.getInstrInfo().getDescriptor(minstr->getOpCode()); - - for (unsigned op=0; op < minstr->getNumOperands(); op++) - { - const MachineOperand& mop = minstr->getOperand(op); - - // skip the result position (for efficiency below) and any other - // positions already marked as not a virtual register - if (instrDesc.resultPos == (int) op || - mop.getOperandType() != MachineOperand::MO_VirtualRegister || - mop.getVRegValue() == NULL) - { - break; - } - - Value* opValue = mop.getVRegValue(); - - if (opValue->isConstant()) - { - unsigned int machineRegNum; - int64_t immedValue; - MachineOperand::MachineOperandType opType = - ChooseRegOrImmed(opValue, minstr->getOpCode(), target, - /*canUseImmed*/ (op == 1), - machineRegNum, immedValue); - - if (opType == MachineOperand::MO_MachineRegister) - minstr->SetMachineOperand(op, machineRegNum); - else if (opType == MachineOperand::MO_VirtualRegister) - { - // value is constant and must be loaded into a register - TmpInstruction* tmpReg; - MachineInstr* minstr2; - loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue, - tmpReg, minstr2); - minstr->SetMachineOperand(op, opType, tmpReg); - if (minstr2 != NULL) - loadConstVec[numNew++] = minstr2; - } - else - minstr->SetMachineOperand(op, opType, immedValue); - } - } - } - - if (numNew > 0) - { - // Insert the new instructions *before* the old ones by moving - // the old ones over `numNew' positions (last-to-first, of course!). - // We do check *after* returning that we did not exceed the vector mvec. - for (int i=numInstr-1; i >= 0; i--) - mvec[i+numNew] = mvec[i]; - - for (unsigned i=0; i < numNew; i++) - mvec[i] = loadConstVec[i]; - } - - return (numInstr + numNew); -} - - -static inline MachineInstr* -MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest) -{ - MachineInstr* minstr; - if (isSigned) - { - minstr = new MachineInstr(SETSW); - minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C); - } - else - { - minstr = new MachineInstr(SETUW); - minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C); - } - - minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest); - - return minstr; -} - - -static MachineInstr* -MakeLoadConstInstr(Instruction* vmInstr, - Value* val, - TmpInstruction*& tmpReg, - MachineInstr*& getMinstr2) -{ - assert(val->isConstant()); - - MachineInstr* minstr; - - getMinstr2 = NULL; - - // Create a TmpInstruction to mark the hidden register used for the constant - tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL); - vmInstr->getMachineInstrVec().addTempValue(tmpReg); - - // Use a "set" instruction for known constants that can go in an integer reg. - // Use a "set" instruction followed by a int-to-float conversion for known - // constants that must go in a floating point reg but have an integer value. - // Use a "load" instruction for all other constants, in particular, - // floating point constants. - // - const Type* valType = val->getType(); - - if (valType->isIntegral() || - valType->isPointerType() || - valType == Type::BoolTy) - { - bool isValidConstant; - int64_t C = GetConstantValueAsSignedInt(val, isValidConstant); - assert(isValidConstant && "Unrecognized constant"); - - minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg); - } - else - { - assert(valType == Type::FloatTy || valType == Type::DoubleTy); - double dval = ((ConstPoolFP*) val)->getValue(); - if (dval == (int64_t) dval) - { - // The constant actually has an integer value, so use a - // [set; int-to-float] sequence instead of a load instruction. - // - TmpInstruction* tmpReg2 = NULL; - if (dval != 0.0) - { // First, create an integer constant of the same value as dval - ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy, - (int64_t) dval); - // Create another TmpInstruction for the hidden integer register - TmpInstruction* tmpReg2 = - new TmpInstruction(Instruction::UserOp1, ival, NULL); - vmInstr->getMachineInstrVec().addTempValue(tmpReg2); - - // Create the `SET' instruction - minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2); - } - - // In which variable do we put the second instruction? - MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr; - - // Create the int-to-float instruction - instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD); - - if (dval == 0.0) - instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0); - else - instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, - tmpReg2); - - instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - tmpReg); - } - else - { - // Make a Load instruction, and make `val' both the ptr value *and* - // the result value, and set the offset field to 0. Final code - // generation will have to generate the base+offset for the constant. - // - int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0 - minstr = new MachineInstr(ChooseLoadInstruction(val->getType())); - minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val); - minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, - zeroOffset); - minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - tmpReg); - } - } - - tmpReg->addMachineInstruction(minstr); - - assert(minstr); - return minstr; -} - -// -// Substitute operand `operandNum' of the instruction in node `treeNode' -// in place the use(s) of that instruction in node `parent'. -// -static void -ForwardOperand(InstructionNode* treeNode, - InstructionNode* parent, - int operandNum) -{ - Instruction* unusedOp = treeNode->getInstruction(); - Value* fwdOp = unusedOp->getOperand(operandNum); - Instruction* userInstr = parent->getInstruction(); - MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec(); - for (unsigned i=0, N=mvec.size(); i < N; i++) - { - MachineInstr* minstr = mvec[i]; - for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++) - { - const MachineOperand& mop = minstr->getOperand(i); - if (mop.getOperandType() == MachineOperand::MO_VirtualRegister && - mop.getVRegValue() == unusedOp) - { - minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister, - fwdOp); - } - } - } -} - - -// This function is currently unused and incomplete but will be -// used if we have a linear layout of basic blocks in LLVM code. -// It decides which branch should fall-through, and whether an -// extra unconditional branch is needed (when neither falls through). -// -void -ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern) -{ - BranchInst* brInstr = (BranchInst*) vmInstr; - - brPattern.flipCondition = false; - brPattern.targetBB = brInstr->getSuccessor(0); - brPattern.extraBranch = NULL; - - assert(brInstr->getNumSuccessors() > 1 && - "Unnecessary analysis for unconditional branch"); - - assert(0 && "Fold branches in peephole optimization"); -} - - -//******************* Externally Visible Functions *************************/ - - -//------------------------------------------------------------------------ -// External Function: GetInstructionsByRule -// -// Purpose: -// Choose machine instructions for the SPARC according to the -// patterns chosen by the BURG-generated parser. -//------------------------------------------------------------------------ - -unsigned -GetInstructionsByRule(InstructionNode* subtreeRoot, - int ruleForNode, - short* nts, - TargetMachine &target, - MachineInstr** mvec) -{ - int numInstr = 1; // initialize for common case - bool checkCast = false; // initialize here to use fall-through - Value *leftVal, *rightVal; - const Type* opType; - int nextRule; - int forwardOperandNum = -1; - BranchPattern brPattern; - int64_t s0 = 0; // variables holding zero to avoid - uint64_t u0 = 0; // overloading ambiguities below - - mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety - - switch(ruleForNode) { - case 1: // stmt: Ret - case 2: // stmt: RetValue(reg) - // NOTE: Prepass of register allocation is responsible - // for moving return value to appropriate register. - // Mark the return-address register as a hidden virtual reg. - { - Instruction* returnReg = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->getInstruction(), NULL); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg); - - mvec[0] = new MachineInstr(RETURN); - mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0); - - returnReg->addMachineInstruction(mvec[0]); - - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - break; - } - - case 3: // stmt: Store(reg,reg) - case 4: // stmt: Store(reg,ptrreg) - mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType())); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 5: // stmt: BrUncond - mvec[0] = new MachineInstr(BA); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - break; - - case 6: // stmt: BrCond(boolconst) - // boolconst => boolean was computed with `%b = setCC type reg1 constant' - // If the constant is ZERO, we can use the branch-on-integer-register - // instructions and avoid the SUBcc instruction entirely. - // Otherwise this is just the same as case 5, so just fall through. - { - InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); - assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); - ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue(); - bool isValidConst; - - if (constVal->getType()->isIntegral() - && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 - && isValidConst) - { - // That constant ia a zero after all... - // Use the left child of the setCC instruction as the first argument! - mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - - // false branch - mvec[numInstr++] = new MachineInstr(BA); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - (Value*) NULL); - mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - - break; - } - // ELSE FALL THROUGH - } - - case 7: // stmt: BrCond(bool) - // bool => boolean was computed with `%b = setcc type reg1 reg2' - // Need to check whether the type was a FP, signed int or unsigned int, - // and check the branching condition in order to choose the branch to use. - // - { - bool isFPBranch; - mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - - // false branch - mvec[numInstr++] = new MachineInstr(BA); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - (Value*) NULL); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - break; - } - - case 8: // stmt: BrCond(boolreg) - // bool => boolean is stored in an existing register. - // Just use the branch-on-integer-register instruction! - // - mvec[0] = new MachineInstr(BRNZ); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - - // false branch - mvec[numInstr++] = new MachineInstr(BA); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - (Value*) NULL); - mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, - ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); - - // delay slot - mvec[numInstr++] = new MachineInstr(NOP); - break; - - case 9: // stmt: Switch(reg) - assert(0 && "*** SWITCH instruction is not implemented yet."); - numInstr = 0; - break; - - case 10: // reg: VRegList(reg, reg) - assert(0 && "VRegList should never be the topmost non-chain rule"); - break; - - case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0 - mvec[0] = new MachineInstr(XNOR); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - break; - - case 22: // reg: ToBoolTy(reg): - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || opType == Type::BoolTy); - numInstr = 0; - forwardOperandNum = 0; - break; - - case 23: // reg: ToUByteTy(reg) - case 25: // reg: ToUShortTy(reg) - case 27: // reg: ToUIntTy(reg) - case 29: // reg: ToULongTy(reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || - opType->isPointerType() || - opType == Type::BoolTy && "Ignoring cast: illegal for other types"); - numInstr = 0; - forwardOperandNum = 0; - break; - - case 24: // reg: ToSByteTy(reg) - case 26: // reg: ToShortTy(reg) - case 28: // reg: ToIntTy(reg) - case 30: // reg: ToLongTy(reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - if (opType->isIntegral() || opType == Type::BoolTy) - { - numInstr = 0; - forwardOperandNum = 0; - } - else - { - mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType)); - Set2OperandsFromInstr(mvec[0], subtreeRoot, target); - } - break; - - case 31: // reg: ToFloatTy(reg): - case 32: // reg: ToDoubleTy(reg): - - // If this instruction has a parent (a user) in the tree - // and the user is translated as an FsMULd instruction, - // then the cast is unnecessary. So check that first. - // In the future, we'll want to do the same for the FdMULq instruction, - // so do the check here instead of only for ToFloatTy(reg). - // - if (subtreeRoot->parent() != NULL && - ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) - { - numInstr = 0; - forwardOperandNum = 0; - } - else - { - opType = subtreeRoot->leftChild()->getValue()->getType(); - MachineOpCode opCode = ChooseConvertToFloatInstr(subtreeRoot, opType); - if (opCode == INVALID_OPCODE) // no conversion needed - { - numInstr = 0; - forwardOperandNum = 0; - } - else - { - mvec[0] = new MachineInstr(opCode); - Set2OperandsFromInstr(mvec[0], subtreeRoot, target); - } - } - break; - - case 19: // reg: ToArrayTy(reg): - case 20: // reg: ToPointerTy(reg): - numInstr = 0; - forwardOperandNum = 0; - break; - - case 233: // reg: Add(reg, Constant) - mvec[0] = CreateAddConstInstruction(subtreeRoot); - if (mvec[0] != NULL) - break; - // ELSE FALL THROUGH - - case 33: // reg: Add(reg, reg) - mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 234: // reg: Sub(reg, Constant) - mvec[0] = CreateSubConstInstruction(subtreeRoot); - if (mvec[0] != NULL) - break; - // ELSE FALL THROUGH - - case 34: // reg: Sub(reg, reg) - mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 135: // reg: Mul(todouble, todouble) - checkCast = true; - // FALL THROUGH - - case 35: // reg: Mul(reg, reg) - mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 335: // reg: Mul(todouble, todoubleConst) - checkCast = true; - // FALL THROUGH - - case 235: // reg: Mul(reg, Constant) - mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]); - if (mvec[0] == NULL) - { - mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - } - else - if (mvec[1] != NULL) - ++numInstr; - break; - - case 236: // reg: Div(reg, Constant) - mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]); - if (mvec[0] != NULL) - { - if (mvec[1] != NULL) - ++numInstr; - } - else - // ELSE FALL THROUGH - - case 36: // reg: Div(reg, reg) - mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot)); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 37: // reg: Rem(reg, reg) - case 237: // reg: Rem(reg, Constant) - assert(0 && "REM instruction unimplemented for the SPARC."); - break; - - case 38: // reg: And(reg, reg) - case 238: // reg: And(reg, Constant) - mvec[0] = new MachineInstr(AND); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 138: // reg: And(reg, not) - mvec[0] = new MachineInstr(ANDN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 39: // reg: Or(reg, reg) - case 239: // reg: Or(reg, Constant) - mvec[0] = new MachineInstr(ORN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 139: // reg: Or(reg, not) - mvec[0] = new MachineInstr(ORN); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 40: // reg: Xor(reg, reg) - case 240: // reg: Xor(reg, Constant) - mvec[0] = new MachineInstr(XOR); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 140: // reg: Xor(reg, not) - mvec[0] = new MachineInstr(XNOR); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 41: // boolconst: SetCC(reg, Constant) - // Check if this is an integer comparison, and - // there is a parent, and the parent decided to use - // a branch-on-integer-register instead of branch-on-condition-code. - // If so, the SUBcc instruction is not required. - // (However, we must still check for constants to be loaded from - // the constant pool so that such a load can be associated with - // this instruction.) - // - // Otherwise this is just the same as case 42, so just fall through. - // - if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() && - subtreeRoot->parent() != NULL) - { - InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); - assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode); - const vector<MachineInstr*>& - minstrVec = parentNode->getInstruction()->getMachineInstrVec(); - MachineOpCode parentOpCode; - if (parentNode->getInstruction()->getOpcode() == Instruction::Br && - (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && - parentOpCode <= BRGEZ) - { - numInstr = 0; // don't forward the operand! - break; - } - } - // ELSE FALL THROUGH - - case 42: // bool: SetCC(reg, reg): - { - // If result of the SetCC is only used for a branch, we can - // discard the result. otherwise, it must go into an integer register. - // Note that the user may or may not be in the same tree, so we have - // to follow SSA def-use edges here, not BURG tree edges. - // - Instruction* result = subtreeRoot->getInstruction(); - Value* firstUse = (Value*) * result->use_begin(); - bool discardResult = - (result->use_size() == 1 - && firstUse->isInstruction() - && ((Instruction*) firstUse)->getOpcode() == Instruction::Br); - - bool mustClearReg; - int valueToMove; - MachineOpCode movOpCode; - - if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() || - subtreeRoot->leftChild()->getValue()->getType()->isPointerType()) - { - // integer condition: destination should be %g0 or integer register - // if result must be saved but condition is not SetEQ then we need - // a separate instruction to compute the bool result, so discard - // result of SUBcc instruction anyway. - // - mvec[0] = new MachineInstr(SUBcc); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult); - - // mark the 4th operand as being a CC register, and a "result" - mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister, - subtreeRoot->getValue(), /*def*/ true); - - if (!discardResult) - { // recompute bool if needed, using the integer condition codes - if (result->getOpcode() == Instruction::SetNE) - discardResult = true; - else - movOpCode = - ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove); - } - } - else - { - // FP condition: dest of FCMP should be some FCCn register - mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->rightChild()->getValue()); - - if (!discardResult) - {// recompute bool using the FP condition codes - mustClearReg = true; - valueToMove = 1; - movOpCode = ChooseMovFpccInstruction(subtreeRoot); - } - } - - if (!discardResult) - { - if (mustClearReg) - {// Unconditionally set register to 0 - int n = numInstr++; - mvec[n] = new MachineInstr(SETHI); - mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0); - mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - } - - // Now conditionally move `valueToMove' (0 or 1) into the register - int n = numInstr++; - mvec[n] = new MachineInstr(movOpCode); - mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, - subtreeRoot->getValue()); - mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, - valueToMove); - mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - } - break; - } - - case 43: // boolreg: VReg - case 44: // boolreg: Constant - numInstr = 0; - break; - - case 51: // reg: Load(reg) - case 52: // reg: Load(ptrreg) - case 53: // reg: LoadIdx(reg,reg) - case 54: // reg: LoadIdx(ptrreg,reg) - mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType())); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 55: // reg: GetElemPtr(reg) - case 56: // reg: GetElemPtrIdx(reg,reg) - if (subtreeRoot->parent() != NULL) - { - // Check if the parent was an array access. - // If so, we still need to generate this instruction. - MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction(); - const PointerType* ptrType = - (const PointerType*) memInst->getPtrOperand()->getType(); - if (! ptrType->getValueType()->isArrayType()) - {// we don't need a separate instr - numInstr = 0; // don't forward operand! - break; - } - } - // else in all other cases we need to a separate ADD instruction - mvec[0] = new MachineInstr(ADD); - SetOperandsForMemInstr(mvec[0], subtreeRoot, target); - break; - - case 57: // reg: Alloca: Implement as 2 instructions: - // sub %sp, tmp -> %sp - { // add %sp, 0 -> result - Instruction* instr = subtreeRoot->getInstruction(); - const PointerType* instrType = (const PointerType*) instr->getType(); - assert(instrType->isPointerType()); - int tsize = (int) target.findOptimalStorageSize(instrType->getValueType()); - assert(tsize != 0 && "Just to check when this can happen"); - // if (tsize == 0) - // { - // numInstr = 0; - // break; - // } - //else go on to create the instructions needed... - - // Create a temporary Value to hold the constant type-size - ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); - - // Instruction 1: sub %sp, tsize -> %sp - // tsize is always constant, but it may have to be put into a - // register if it doesn't fit in the immediate field. - // - mvec[0] = new MachineInstr(SUB); - mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); - mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - - // Instruction 2: add %sp, 0 -> result - numInstr++; - mvec[1] = new MachineInstr(ADD); - mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); - break; - } - - case 58: // reg: Alloca(reg): Implement as 3 instructions: - // mul num, typeSz -> tmp - // sub %sp, tmp -> %sp - { // add %sp, 0 -> result - Instruction* instr = subtreeRoot->getInstruction(); - const PointerType* instrType = (const PointerType*) instr->getType(); - assert(instrType->isPointerType() && - instrType->getValueType()->isArrayType()); - const Type* eltType = - ((ArrayType*) instrType->getValueType())->getElementType(); - int tsize = (int) target.findOptimalStorageSize(eltType); - - assert(tsize != 0 && "Just to check when this can happen"); - // if (tsize == 0) - // { - // numInstr = 0; - // break; - // } - //else go on to create the instructions needed... - - // Create a temporary Value to hold the constant type-size - ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize); - - // Create a temporary value to hold `tmp' - Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->leftChild()->getValue(), - NULL /*could insert tsize here*/); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); - - // Instruction 1: mul numElements, typeSize -> tmp - mvec[0] = new MachineInstr(MULX); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->leftChild()->getValue()); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr); - - tmpInstr->addMachineInstruction(mvec[0]); - - // Instruction 2: sub %sp, tmp -> %sp - numInstr++; - mvec[1] = new MachineInstr(SUB); - mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr); - mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - - // Instruction 3: add %sp, 0 -> result - numInstr++; - mvec[2] = new MachineInstr(ADD); - mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14); - mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); - break; - } - - case 61: // reg: Call - // Generate a call-indirect (i.e., JMPL) for now to expose - // the potential need for registers. If an absolute address - // is available, replace this with a CALL instruction. - // Mark both the indirection register and the return-address - { // register as hidden virtual registers. - - Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1, - ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL); - Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1, - subtreeRoot->getValue(), NULL); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg); - subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg); - - mvec[0] = new MachineInstr(JMPL); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg); - mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, - (int64_t) 0); - mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg); - - // NOTE: jmpAddrReg will be loaded by a different instruction generated - // by the final code generator, so we just mark the CALL instruction - // as computing that value. - // The retAddrReg is actually computed by the CALL instruction. - // - jmpAddrReg->addMachineInstruction(mvec[0]); - retAddrReg->addMachineInstruction(mvec[0]); - - mvec[numInstr++] = new MachineInstr(NOP); // delay slot - break; - } - - case 62: // reg: Shl(reg, reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || opType == Type::BoolTy); - mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 63: // reg: Shr(reg, reg) - opType = subtreeRoot->leftChild()->getValue()->getType(); - assert(opType->isIntegral() || opType == Type::BoolTy); - mvec[0] = new MachineInstr((opType->isSigned() - ? ((opType == Type::LongTy)? SRAX : SRA) - : ((opType == Type::LongTy)? SRLX : SRL))); - Set3OperandsFromInstr(mvec[0], subtreeRoot, target); - break; - - case 64: // reg: Phi(reg,reg) - { // This instruction has variable #operands, so resultPos is 0. - Instruction* phi = subtreeRoot->getInstruction(); - mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands()); - mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->getValue()); - for (unsigned i=0, N=phi->getNumOperands(); i < N; i++) - mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister, - phi->getOperand(i)); - break; - } - case 71: // reg: VReg - case 72: // reg: Constant - numInstr = 0; // don't forward the value - break; - - case 111: // stmt: reg - case 112: // stmt: boolconst - case 113: // stmt: bool - case 121: - case 122: - case 123: - case 124: - case 125: - case 126: - case 127: - case 128: - case 129: - case 130: - case 131: - case 132: - case 153: - case 155: - // - // These are all chain rules, which have a single nonterminal on the RHS. - // Get the rule that matches the RHS non-terminal and use that instead. - // - assert(ThisIsAChainRule(ruleForNode)); - assert(nts[0] && ! nts[1] - && "A chain rule should have only one RHS non-terminal!"); - nextRule = burm_rule(subtreeRoot->state, nts[0]); - nts = burm_nts[nextRule]; - numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec); - break; - - default: - assert(0 && "Unrecognized BURG rule"); - numInstr = 0; - break; - } - - if (forwardOperandNum >= 0) - { // We did not generate a machine instruction but need to use operand. - // If user is in the same tree, replace Value in its machine operand. - // If not, insert a copy instruction which should get coalesced away - // by register allocation. - if (subtreeRoot->parent() != NULL) - ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(), - forwardOperandNum); - else - { - int n = numInstr++; - mvec[n] = new MachineInstr(ADD); - mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, - subtreeRoot->getInstruction()->getOperand(forwardOperandNum)); - mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0); - mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, - subtreeRoot->getInstruction()); - } - } - - if (! ThisIsAChainRule(ruleForNode)) - numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target); - - return numInstr; -} - - |