diff options
author | Alexander Kornienko <alexfh@google.com> | 2013-03-14 10:51:38 +0000 |
---|---|---|
committer | Alexander Kornienko <alexfh@google.com> | 2013-03-14 10:51:38 +0000 |
commit | 647735c781c5b37061ee03d6e9e6c7dda92218e2 (patch) | |
tree | 5a5e56606d41060263048b5a5586b3d2380898ba /lib/CodeGen/TargetLoweringBase.cpp | |
parent | 6aed25d93d1cfcde5809a73ffa7dc1b0d6396f66 (diff) | |
parent | f635ef401786c84df32090251a8cf45981ecca33 (diff) |
Updating branches/google/stable to r176857
git-svn-id: https://llvm.org/svn/llvm-project/llvm/branches/google/stable@177040 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/TargetLoweringBase.cpp')
-rw-r--r-- | lib/CodeGen/TargetLoweringBase.cpp | 1306 |
1 files changed, 1306 insertions, 0 deletions
diff --git a/lib/CodeGen/TargetLoweringBase.cpp b/lib/CodeGen/TargetLoweringBase.cpp new file mode 100644 index 0000000000..3c346766ad --- /dev/null +++ b/lib/CodeGen/TargetLoweringBase.cpp @@ -0,0 +1,1306 @@ +//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the TargetLoweringBase class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Target/TargetLowering.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Triple.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include <cctype> +using namespace llvm; + +/// InitLibcallNames - Set default libcall names. +/// +static void InitLibcallNames(const char **Names, const TargetMachine &TM) { + Names[RTLIB::SHL_I16] = "__ashlhi3"; + Names[RTLIB::SHL_I32] = "__ashlsi3"; + Names[RTLIB::SHL_I64] = "__ashldi3"; + Names[RTLIB::SHL_I128] = "__ashlti3"; + Names[RTLIB::SRL_I16] = "__lshrhi3"; + Names[RTLIB::SRL_I32] = "__lshrsi3"; + Names[RTLIB::SRL_I64] = "__lshrdi3"; + Names[RTLIB::SRL_I128] = "__lshrti3"; + Names[RTLIB::SRA_I16] = "__ashrhi3"; + Names[RTLIB::SRA_I32] = "__ashrsi3"; + Names[RTLIB::SRA_I64] = "__ashrdi3"; + Names[RTLIB::SRA_I128] = "__ashrti3"; + Names[RTLIB::MUL_I8] = "__mulqi3"; + Names[RTLIB::MUL_I16] = "__mulhi3"; + Names[RTLIB::MUL_I32] = "__mulsi3"; + Names[RTLIB::MUL_I64] = "__muldi3"; + Names[RTLIB::MUL_I128] = "__multi3"; + Names[RTLIB::MULO_I32] = "__mulosi4"; + Names[RTLIB::MULO_I64] = "__mulodi4"; + Names[RTLIB::MULO_I128] = "__muloti4"; + Names[RTLIB::SDIV_I8] = "__divqi3"; + Names[RTLIB::SDIV_I16] = "__divhi3"; + Names[RTLIB::SDIV_I32] = "__divsi3"; + Names[RTLIB::SDIV_I64] = "__divdi3"; + Names[RTLIB::SDIV_I128] = "__divti3"; + Names[RTLIB::UDIV_I8] = "__udivqi3"; + Names[RTLIB::UDIV_I16] = "__udivhi3"; + Names[RTLIB::UDIV_I32] = "__udivsi3"; + Names[RTLIB::UDIV_I64] = "__udivdi3"; + Names[RTLIB::UDIV_I128] = "__udivti3"; + Names[RTLIB::SREM_I8] = "__modqi3"; + Names[RTLIB::SREM_I16] = "__modhi3"; + Names[RTLIB::SREM_I32] = "__modsi3"; + Names[RTLIB::SREM_I64] = "__moddi3"; + Names[RTLIB::SREM_I128] = "__modti3"; + Names[RTLIB::UREM_I8] = "__umodqi3"; + Names[RTLIB::UREM_I16] = "__umodhi3"; + Names[RTLIB::UREM_I32] = "__umodsi3"; + Names[RTLIB::UREM_I64] = "__umoddi3"; + Names[RTLIB::UREM_I128] = "__umodti3"; + + // These are generally not available. + Names[RTLIB::SDIVREM_I8] = 0; + Names[RTLIB::SDIVREM_I16] = 0; + Names[RTLIB::SDIVREM_I32] = 0; + Names[RTLIB::SDIVREM_I64] = 0; + Names[RTLIB::SDIVREM_I128] = 0; + Names[RTLIB::UDIVREM_I8] = 0; + Names[RTLIB::UDIVREM_I16] = 0; + Names[RTLIB::UDIVREM_I32] = 0; + Names[RTLIB::UDIVREM_I64] = 0; + Names[RTLIB::UDIVREM_I128] = 0; + + Names[RTLIB::NEG_I32] = "__negsi2"; + Names[RTLIB::NEG_I64] = "__negdi2"; + Names[RTLIB::ADD_F32] = "__addsf3"; + Names[RTLIB::ADD_F64] = "__adddf3"; + Names[RTLIB::ADD_F80] = "__addxf3"; + Names[RTLIB::ADD_F128] = "__addtf3"; + Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; + Names[RTLIB::SUB_F32] = "__subsf3"; + Names[RTLIB::SUB_F64] = "__subdf3"; + Names[RTLIB::SUB_F80] = "__subxf3"; + Names[RTLIB::SUB_F128] = "__subtf3"; + Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; + Names[RTLIB::MUL_F32] = "__mulsf3"; + Names[RTLIB::MUL_F64] = "__muldf3"; + Names[RTLIB::MUL_F80] = "__mulxf3"; + Names[RTLIB::MUL_F128] = "__multf3"; + Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; + Names[RTLIB::DIV_F32] = "__divsf3"; + Names[RTLIB::DIV_F64] = "__divdf3"; + Names[RTLIB::DIV_F80] = "__divxf3"; + Names[RTLIB::DIV_F128] = "__divtf3"; + Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; + Names[RTLIB::REM_F32] = "fmodf"; + Names[RTLIB::REM_F64] = "fmod"; + Names[RTLIB::REM_F80] = "fmodl"; + Names[RTLIB::REM_F128] = "fmodl"; + Names[RTLIB::REM_PPCF128] = "fmodl"; + Names[RTLIB::FMA_F32] = "fmaf"; + Names[RTLIB::FMA_F64] = "fma"; + Names[RTLIB::FMA_F80] = "fmal"; + Names[RTLIB::FMA_F128] = "fmal"; + Names[RTLIB::FMA_PPCF128] = "fmal"; + Names[RTLIB::POWI_F32] = "__powisf2"; + Names[RTLIB::POWI_F64] = "__powidf2"; + Names[RTLIB::POWI_F80] = "__powixf2"; + Names[RTLIB::POWI_F128] = "__powitf2"; + Names[RTLIB::POWI_PPCF128] = "__powitf2"; + Names[RTLIB::SQRT_F32] = "sqrtf"; + Names[RTLIB::SQRT_F64] = "sqrt"; + Names[RTLIB::SQRT_F80] = "sqrtl"; + Names[RTLIB::SQRT_F128] = "sqrtl"; + Names[RTLIB::SQRT_PPCF128] = "sqrtl"; + Names[RTLIB::LOG_F32] = "logf"; + Names[RTLIB::LOG_F64] = "log"; + Names[RTLIB::LOG_F80] = "logl"; + Names[RTLIB::LOG_F128] = "logl"; + Names[RTLIB::LOG_PPCF128] = "logl"; + Names[RTLIB::LOG2_F32] = "log2f"; + Names[RTLIB::LOG2_F64] = "log2"; + Names[RTLIB::LOG2_F80] = "log2l"; + Names[RTLIB::LOG2_F128] = "log2l"; + Names[RTLIB::LOG2_PPCF128] = "log2l"; + Names[RTLIB::LOG10_F32] = "log10f"; + Names[RTLIB::LOG10_F64] = "log10"; + Names[RTLIB::LOG10_F80] = "log10l"; + Names[RTLIB::LOG10_F128] = "log10l"; + Names[RTLIB::LOG10_PPCF128] = "log10l"; + Names[RTLIB::EXP_F32] = "expf"; + Names[RTLIB::EXP_F64] = "exp"; + Names[RTLIB::EXP_F80] = "expl"; + Names[RTLIB::EXP_F128] = "expl"; + Names[RTLIB::EXP_PPCF128] = "expl"; + Names[RTLIB::EXP2_F32] = "exp2f"; + Names[RTLIB::EXP2_F64] = "exp2"; + Names[RTLIB::EXP2_F80] = "exp2l"; + Names[RTLIB::EXP2_F128] = "exp2l"; + Names[RTLIB::EXP2_PPCF128] = "exp2l"; + Names[RTLIB::SIN_F32] = "sinf"; + Names[RTLIB::SIN_F64] = "sin"; + Names[RTLIB::SIN_F80] = "sinl"; + Names[RTLIB::SIN_F128] = "sinl"; + Names[RTLIB::SIN_PPCF128] = "sinl"; + Names[RTLIB::COS_F32] = "cosf"; + Names[RTLIB::COS_F64] = "cos"; + Names[RTLIB::COS_F80] = "cosl"; + Names[RTLIB::COS_F128] = "cosl"; + Names[RTLIB::COS_PPCF128] = "cosl"; + Names[RTLIB::POW_F32] = "powf"; + Names[RTLIB::POW_F64] = "pow"; + Names[RTLIB::POW_F80] = "powl"; + Names[RTLIB::POW_F128] = "powl"; + Names[RTLIB::POW_PPCF128] = "powl"; + Names[RTLIB::CEIL_F32] = "ceilf"; + Names[RTLIB::CEIL_F64] = "ceil"; + Names[RTLIB::CEIL_F80] = "ceill"; + Names[RTLIB::CEIL_F128] = "ceill"; + Names[RTLIB::CEIL_PPCF128] = "ceill"; + Names[RTLIB::TRUNC_F32] = "truncf"; + Names[RTLIB::TRUNC_F64] = "trunc"; + Names[RTLIB::TRUNC_F80] = "truncl"; + Names[RTLIB::TRUNC_F128] = "truncl"; + Names[RTLIB::TRUNC_PPCF128] = "truncl"; + Names[RTLIB::RINT_F32] = "rintf"; + Names[RTLIB::RINT_F64] = "rint"; + Names[RTLIB::RINT_F80] = "rintl"; + Names[RTLIB::RINT_F128] = "rintl"; + Names[RTLIB::RINT_PPCF128] = "rintl"; + Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; + Names[RTLIB::NEARBYINT_F64] = "nearbyint"; + Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; + Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; + Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; + Names[RTLIB::FLOOR_F32] = "floorf"; + Names[RTLIB::FLOOR_F64] = "floor"; + Names[RTLIB::FLOOR_F80] = "floorl"; + Names[RTLIB::FLOOR_F128] = "floorl"; + Names[RTLIB::FLOOR_PPCF128] = "floorl"; + Names[RTLIB::COPYSIGN_F32] = "copysignf"; + Names[RTLIB::COPYSIGN_F64] = "copysign"; + Names[RTLIB::COPYSIGN_F80] = "copysignl"; + Names[RTLIB::COPYSIGN_F128] = "copysignl"; + Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; + Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; + Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; + Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; + Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; + Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; + Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; + Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; + Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; + Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; + Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; + Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; + Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; + Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; + Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; + Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; + Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; + Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; + Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; + Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; + Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; + Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; + Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; + Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; + Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; + Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; + Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; + Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; + Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; + Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; + Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; + Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; + Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; + Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; + Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; + Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; + Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; + Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; + Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; + Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; + Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; + Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; + Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; + Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; + Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; + Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; + Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; + Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; + Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; + Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; + Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; + Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; + Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; + Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; + Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; + Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; + Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; + Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; + Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; + Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; + Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; + Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; + Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; + Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; + Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; + Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; + Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; + Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; + Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; + Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; + Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; + Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; + Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; + Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; + Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; + Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; + Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; + Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; + Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; + Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; + Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; + Names[RTLIB::OEQ_F32] = "__eqsf2"; + Names[RTLIB::OEQ_F64] = "__eqdf2"; + Names[RTLIB::OEQ_F128] = "__eqtf2"; + Names[RTLIB::UNE_F32] = "__nesf2"; + Names[RTLIB::UNE_F64] = "__nedf2"; + Names[RTLIB::UNE_F128] = "__netf2"; + Names[RTLIB::OGE_F32] = "__gesf2"; + Names[RTLIB::OGE_F64] = "__gedf2"; + Names[RTLIB::OGE_F128] = "__getf2"; + Names[RTLIB::OLT_F32] = "__ltsf2"; + Names[RTLIB::OLT_F64] = "__ltdf2"; + Names[RTLIB::OLT_F128] = "__lttf2"; + Names[RTLIB::OLE_F32] = "__lesf2"; + Names[RTLIB::OLE_F64] = "__ledf2"; + Names[RTLIB::OLE_F128] = "__letf2"; + Names[RTLIB::OGT_F32] = "__gtsf2"; + Names[RTLIB::OGT_F64] = "__gtdf2"; + Names[RTLIB::OGT_F128] = "__gttf2"; + Names[RTLIB::UO_F32] = "__unordsf2"; + Names[RTLIB::UO_F64] = "__unorddf2"; + Names[RTLIB::UO_F128] = "__unordtf2"; + Names[RTLIB::O_F32] = "__unordsf2"; + Names[RTLIB::O_F64] = "__unorddf2"; + Names[RTLIB::O_F128] = "__unordtf2"; + Names[RTLIB::MEMCPY] = "memcpy"; + Names[RTLIB::MEMMOVE] = "memmove"; + Names[RTLIB::MEMSET] = "memset"; + Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; + Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; + Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; + Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; + Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; + Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; + Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; + Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; + Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; + Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; + Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; + Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; + Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; + Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; + Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; + Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; + Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; + Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; + Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; + Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; + Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; + Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; + Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; + Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; + Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; + Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; + Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; + + if (Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU) { + Names[RTLIB::SINCOS_F32] = "sincosf"; + Names[RTLIB::SINCOS_F64] = "sincos"; + Names[RTLIB::SINCOS_F80] = "sincosl"; + Names[RTLIB::SINCOS_F128] = "sincosl"; + Names[RTLIB::SINCOS_PPCF128] = "sincosl"; + } else { + // These are generally not available. + Names[RTLIB::SINCOS_F32] = 0; + Names[RTLIB::SINCOS_F64] = 0; + Names[RTLIB::SINCOS_F80] = 0; + Names[RTLIB::SINCOS_F128] = 0; + Names[RTLIB::SINCOS_PPCF128] = 0; + } +} + +/// InitLibcallCallingConvs - Set default libcall CallingConvs. +/// +static void InitLibcallCallingConvs(CallingConv::ID *CCs) { + for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { + CCs[i] = CallingConv::C; + } +} + +/// getFPEXT - Return the FPEXT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f32) { + if (RetVT == MVT::f64) + return FPEXT_F32_F64; + if (RetVT == MVT::f128) + return FPEXT_F32_F128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::f128) + return FPEXT_F64_F128; + } + + return UNKNOWN_LIBCALL; +} + +/// getFPROUND - Return the FPROUND_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { + if (RetVT == MVT::f32) { + if (OpVT == MVT::f64) + return FPROUND_F64_F32; + if (OpVT == MVT::f80) + return FPROUND_F80_F32; + if (OpVT == MVT::f128) + return FPROUND_F128_F32; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F32; + } else if (RetVT == MVT::f64) { + if (OpVT == MVT::f80) + return FPROUND_F80_F64; + if (OpVT == MVT::f128) + return FPROUND_F128_F64; + if (OpVT == MVT::ppcf128) + return FPROUND_PPCF128_F64; + } + + return UNKNOWN_LIBCALL; +} + +/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f32) { + if (RetVT == MVT::i8) + return FPTOSINT_F32_I8; + if (RetVT == MVT::i16) + return FPTOSINT_F32_I16; + if (RetVT == MVT::i32) + return FPTOSINT_F32_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F32_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F32_I128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::i8) + return FPTOSINT_F64_I8; + if (RetVT == MVT::i16) + return FPTOSINT_F64_I16; + if (RetVT == MVT::i32) + return FPTOSINT_F64_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F64_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F64_I128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::i32) + return FPTOSINT_F80_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F80_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F80_I128; + } else if (OpVT == MVT::f128) { + if (RetVT == MVT::i32) + return FPTOSINT_F128_I32; + if (RetVT == MVT::i64) + return FPTOSINT_F128_I64; + if (RetVT == MVT::i128) + return FPTOSINT_F128_I128; + } else if (OpVT == MVT::ppcf128) { + if (RetVT == MVT::i32) + return FPTOSINT_PPCF128_I32; + if (RetVT == MVT::i64) + return FPTOSINT_PPCF128_I64; + if (RetVT == MVT::i128) + return FPTOSINT_PPCF128_I128; + } + return UNKNOWN_LIBCALL; +} + +/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::f32) { + if (RetVT == MVT::i8) + return FPTOUINT_F32_I8; + if (RetVT == MVT::i16) + return FPTOUINT_F32_I16; + if (RetVT == MVT::i32) + return FPTOUINT_F32_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F32_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F32_I128; + } else if (OpVT == MVT::f64) { + if (RetVT == MVT::i8) + return FPTOUINT_F64_I8; + if (RetVT == MVT::i16) + return FPTOUINT_F64_I16; + if (RetVT == MVT::i32) + return FPTOUINT_F64_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F64_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F64_I128; + } else if (OpVT == MVT::f80) { + if (RetVT == MVT::i32) + return FPTOUINT_F80_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F80_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F80_I128; + } else if (OpVT == MVT::f128) { + if (RetVT == MVT::i32) + return FPTOUINT_F128_I32; + if (RetVT == MVT::i64) + return FPTOUINT_F128_I64; + if (RetVT == MVT::i128) + return FPTOUINT_F128_I128; + } else if (OpVT == MVT::ppcf128) { + if (RetVT == MVT::i32) + return FPTOUINT_PPCF128_I32; + if (RetVT == MVT::i64) + return FPTOUINT_PPCF128_I64; + if (RetVT == MVT::i128) + return FPTOUINT_PPCF128_I128; + } + return UNKNOWN_LIBCALL; +} + +/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::i32) { + if (RetVT == MVT::f32) + return SINTTOFP_I32_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I32_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I32_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I32_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I32_PPCF128; + } else if (OpVT == MVT::i64) { + if (RetVT == MVT::f32) + return SINTTOFP_I64_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I64_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I64_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I64_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I64_PPCF128; + } else if (OpVT == MVT::i128) { + if (RetVT == MVT::f32) + return SINTTOFP_I128_F32; + if (RetVT == MVT::f64) + return SINTTOFP_I128_F64; + if (RetVT == MVT::f80) + return SINTTOFP_I128_F80; + if (RetVT == MVT::f128) + return SINTTOFP_I128_F128; + if (RetVT == MVT::ppcf128) + return SINTTOFP_I128_PPCF128; + } + return UNKNOWN_LIBCALL; +} + +/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { + if (OpVT == MVT::i32) { + if (RetVT == MVT::f32) + return UINTTOFP_I32_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I32_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I32_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I32_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I32_PPCF128; + } else if (OpVT == MVT::i64) { + if (RetVT == MVT::f32) + return UINTTOFP_I64_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I64_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I64_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I64_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I64_PPCF128; + } else if (OpVT == MVT::i128) { + if (RetVT == MVT::f32) + return UINTTOFP_I128_F32; + if (RetVT == MVT::f64) + return UINTTOFP_I128_F64; + if (RetVT == MVT::f80) + return UINTTOFP_I128_F80; + if (RetVT == MVT::f128) + return UINTTOFP_I128_F128; + if (RetVT == MVT::ppcf128) + return UINTTOFP_I128_PPCF128; + } + return UNKNOWN_LIBCALL; +} + +/// InitCmpLibcallCCs - Set default comparison libcall CC. +/// +static void InitCmpLibcallCCs(ISD::CondCode *CCs) { + memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); + CCs[RTLIB::OEQ_F32] = ISD::SETEQ; + CCs[RTLIB::OEQ_F64] = ISD::SETEQ; + CCs[RTLIB::OEQ_F128] = ISD::SETEQ; + CCs[RTLIB::UNE_F32] = ISD::SETNE; + CCs[RTLIB::UNE_F64] = ISD::SETNE; + CCs[RTLIB::UNE_F128] = ISD::SETNE; + CCs[RTLIB::OGE_F32] = ISD::SETGE; + CCs[RTLIB::OGE_F64] = ISD::SETGE; + CCs[RTLIB::OGE_F128] = ISD::SETGE; + CCs[RTLIB::OLT_F32] = ISD::SETLT; + CCs[RTLIB::OLT_F64] = ISD::SETLT; + CCs[RTLIB::OLT_F128] = ISD::SETLT; + CCs[RTLIB::OLE_F32] = ISD::SETLE; + CCs[RTLIB::OLE_F64] = ISD::SETLE; + CCs[RTLIB::OLE_F128] = ISD::SETLE; + CCs[RTLIB::OGT_F32] = ISD::SETGT; + CCs[RTLIB::OGT_F64] = ISD::SETGT; + CCs[RTLIB::OGT_F128] = ISD::SETGT; + CCs[RTLIB::UO_F32] = ISD::SETNE; + CCs[RTLIB::UO_F64] = ISD::SETNE; + CCs[RTLIB::UO_F128] = ISD::SETNE; + CCs[RTLIB::O_F32] = ISD::SETEQ; + CCs[RTLIB::O_F64] = ISD::SETEQ; + CCs[RTLIB::O_F128] = ISD::SETEQ; +} + +/// NOTE: The constructor takes ownership of TLOF. +TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm, + const TargetLoweringObjectFile *tlof) + : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) { + // All operations default to being supported. + memset(OpActions, 0, sizeof(OpActions)); + memset(LoadExtActions, 0, sizeof(LoadExtActions)); + memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); + memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); + memset(CondCodeActions, 0, sizeof(CondCodeActions)); + + // Set default actions for various operations. + for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { + // Default all indexed load / store to expand. + for (unsigned IM = (unsigned)ISD::PRE_INC; + IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { + setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); + setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); + } + + // These operations default to expand. + setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); + } + + // Most targets ignore the @llvm.prefetch intrinsic. + setOperationAction(ISD::PREFETCH, MVT::Other, Expand); + + // ConstantFP nodes default to expand. Targets can either change this to + // Legal, in which case all fp constants are legal, or use isFPImmLegal() + // to optimize expansions for certain constants. + setOperationAction(ISD::ConstantFP, MVT::f16, Expand); + setOperationAction(ISD::ConstantFP, MVT::f32, Expand); + setOperationAction(ISD::ConstantFP, MVT::f64, Expand); + setOperationAction(ISD::ConstantFP, MVT::f80, Expand); + setOperationAction(ISD::ConstantFP, MVT::f128, Expand); + + // These library functions default to expand. + setOperationAction(ISD::FLOG , MVT::f16, Expand); + setOperationAction(ISD::FLOG2, MVT::f16, Expand); + setOperationAction(ISD::FLOG10, MVT::f16, Expand); + setOperationAction(ISD::FEXP , MVT::f16, Expand); + setOperationAction(ISD::FEXP2, MVT::f16, Expand); + setOperationAction(ISD::FFLOOR, MVT::f16, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); + setOperationAction(ISD::FCEIL, MVT::f16, Expand); + setOperationAction(ISD::FRINT, MVT::f16, Expand); + setOperationAction(ISD::FTRUNC, MVT::f16, Expand); + setOperationAction(ISD::FLOG , MVT::f32, Expand); + setOperationAction(ISD::FLOG2, MVT::f32, Expand); + setOperationAction(ISD::FLOG10, MVT::f32, Expand); + setOperationAction(ISD::FEXP , MVT::f32, Expand); + setOperationAction(ISD::FEXP2, MVT::f32, Expand); + setOperationAction(ISD::FFLOOR, MVT::f32, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); + setOperationAction(ISD::FCEIL, MVT::f32, Expand); + setOperationAction(ISD::FRINT, MVT::f32, Expand); + setOperationAction(ISD::FTRUNC, MVT::f32, Expand); + setOperationAction(ISD::FLOG , MVT::f64, Expand); + setOperationAction(ISD::FLOG2, MVT::f64, Expand); + setOperationAction(ISD::FLOG10, MVT::f64, Expand); + setOperationAction(ISD::FEXP , MVT::f64, Expand); + setOperationAction(ISD::FEXP2, MVT::f64, Expand); + setOperationAction(ISD::FFLOOR, MVT::f64, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); + setOperationAction(ISD::FCEIL, MVT::f64, Expand); + setOperationAction(ISD::FRINT, MVT::f64, Expand); + setOperationAction(ISD::FTRUNC, MVT::f64, Expand); + setOperationAction(ISD::FLOG , MVT::f128, Expand); + setOperationAction(ISD::FLOG2, MVT::f128, Expand); + setOperationAction(ISD::FLOG10, MVT::f128, Expand); + setOperationAction(ISD::FEXP , MVT::f128, Expand); + setOperationAction(ISD::FEXP2, MVT::f128, Expand); + setOperationAction(ISD::FFLOOR, MVT::f128, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand); + setOperationAction(ISD::FCEIL, MVT::f128, Expand); + setOperationAction(ISD::FRINT, MVT::f128, Expand); + setOperationAction(ISD::FTRUNC, MVT::f128, Expand); + + // Default ISD::TRAP to expand (which turns it into abort). + setOperationAction(ISD::TRAP, MVT::Other, Expand); + + // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" + // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. + // + setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); + + IsLittleEndian = TD->isLittleEndian(); + PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0)); + memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); + memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); + MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; + MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize + = MaxStoresPerMemmoveOptSize = 4; + BenefitFromCodePlacementOpt = false; + UseUnderscoreSetJmp = false; + UseUnderscoreLongJmp = false; + SelectIsExpensive = false; + IntDivIsCheap = false; + Pow2DivIsCheap = false; + JumpIsExpensive = false; + PredictableSelectIsExpensive = false; + StackPointerRegisterToSaveRestore = 0; + ExceptionPointerRegister = 0; + ExceptionSelectorRegister = 0; + BooleanContents = UndefinedBooleanContent; + BooleanVectorContents = UndefinedBooleanContent; + SchedPreferenceInfo = Sched::ILP; + JumpBufSize = 0; + JumpBufAlignment = 0; + MinFunctionAlignment = 0; + PrefFunctionAlignment = 0; + PrefLoopAlignment = 0; + MinStackArgumentAlignment = 1; + ShouldFoldAtomicFences = false; + InsertFencesForAtomic = false; + SupportJumpTables = true; + MinimumJumpTableEntries = 4; + + InitLibcallNames(LibcallRoutineNames, TM); + InitCmpLibcallCCs(CmpLibcallCCs); + InitLibcallCallingConvs(LibcallCallingConvs); +} + +TargetLoweringBase::~TargetLoweringBase() { + delete &TLOF; +} + +MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const { + return MVT::getIntegerVT(8*TD->getPointerSize(0)); +} + +EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const { + assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); + if (LHSTy.isVector()) + return LHSTy; + return getScalarShiftAmountTy(LHSTy); +} + +/// canOpTrap - Returns true if the operation can trap for the value type. +/// VT must be a legal type. +bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { + assert(isTypeLegal(VT)); + switch (Op) { + default: + return false; + case ISD::FDIV: + case ISD::FREM: + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: + return true; + } +} + + +static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, + unsigned &NumIntermediates, + MVT &RegisterVT, + TargetLoweringBase *TLI) { + // Figure out the right, legal destination reg to copy into. + unsigned NumElts = VT.getVectorNumElements(); + MVT EltTy = VT.getVectorElementType(); + + unsigned NumVectorRegs = 1; + + // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we + // could break down into LHS/RHS like LegalizeDAG does. + if (!isPowerOf2_32(NumElts)) { + NumVectorRegs = NumElts; + NumElts = 1; + } + + // Divide the input until we get to a supported size. This will always + // end with a scalar if the target doesn't support vectors. + while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { + NumElts >>= 1; + NumVectorRegs <<= 1; + } + + NumIntermediates = NumVectorRegs; + + MVT NewVT = MVT::getVectorVT(EltTy, NumElts); + if (!TLI->isTypeLegal(NewVT)) + NewVT = EltTy; + IntermediateVT = NewVT; + + unsigned NewVTSize = NewVT.getSizeInBits(); + + // Convert sizes such as i33 to i64. + if (!isPowerOf2_32(NewVTSize)) + NewVTSize = NextPowerOf2(NewVTSize); + + MVT DestVT = TLI->getRegisterType(NewVT); + RegisterVT = DestVT; + if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. + return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); + + // Otherwise, promotion or legal types use the same number of registers as + // the vector decimated to the appropriate level. + return NumVectorRegs; +} + +/// isLegalRC - Return true if the value types that can be represented by the +/// specified register class are all legal. +bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { + for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); + I != E; ++I) { + if (isTypeLegal(*I)) + return true; + } + return false; +} + +/// findRepresentativeClass - Return the largest legal super-reg register class +/// of the register class for the specified type and its associated "cost". +std::pair<const TargetRegisterClass*, uint8_t> +TargetLoweringBase::findRepresentativeClass(MVT VT) const { + const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); + const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; + if (!RC) + return std::make_pair(RC, 0); + + // Compute the set of all super-register classes. + BitVector SuperRegRC(TRI->getNumRegClasses()); + for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) + SuperRegRC.setBitsInMask(RCI.getMask()); + + // Find the first legal register class with the largest spill size. + const TargetRegisterClass *BestRC = RC; + for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { + const TargetRegisterClass *SuperRC = TRI->getRegClass(i); + // We want the largest possible spill size. + if (SuperRC->getSize() <= BestRC->getSize()) + continue; + if (!isLegalRC(SuperRC)) + continue; + BestRC = SuperRC; + } + return std::make_pair(BestRC, 1); +} + +/// computeRegisterProperties - Once all of the register classes are added, +/// this allows us to compute derived properties we expose. +void TargetLoweringBase::computeRegisterProperties() { + assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && + "Too many value types for ValueTypeActions to hold!"); + + // Everything defaults to needing one register. + for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { + NumRegistersForVT[i] = 1; + RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; + } + // ...except isVoid, which doesn't need any registers. + NumRegistersForVT[MVT::isVoid] = 0; + + // Find the largest integer register class. + unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; + for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) + assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); + + // Every integer value type larger than this largest register takes twice as + // many registers to represent as the previous ValueType. + for (unsigned ExpandedReg = LargestIntReg + 1; + ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { + NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; + RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; + TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); + ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, + TypeExpandInteger); + } + + // Inspect all of the ValueType's smaller than the largest integer + // register to see which ones need promotion. + unsigned LegalIntReg = LargestIntReg; + for (unsigned IntReg = LargestIntReg - 1; + IntReg >= (unsigned)MVT::i1; --IntReg) { + MVT IVT = (MVT::SimpleValueType)IntReg; + if (isTypeLegal(IVT)) { + LegalIntReg = IntReg; + } else { + RegisterTypeForVT[IntReg] = TransformToType[IntReg] = + (const MVT::SimpleValueType)LegalIntReg; + ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); + } + } + + // ppcf128 type is really two f64's. + if (!isTypeLegal(MVT::ppcf128)) { + NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; + RegisterTypeForVT[MVT::ppcf128] = MVT::f64; + TransformToType[MVT::ppcf128] = MVT::f64; + ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); + } + + // Decide how to handle f128. If the target does not have native f128 support, + // expand it to i128 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f128)) { + NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; + RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; + TransformToType[MVT::f128] = MVT::i128; + ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); + } + + // Decide how to handle f64. If the target does not have native f64 support, + // expand it to i64 and we will be generating soft float library calls. + if (!isTypeLegal(MVT::f64)) { + NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; + RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; + TransformToType[MVT::f64] = MVT::i64; + ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); + } + + // Decide how to handle f32. If the target does not have native support for + // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. + if (!isTypeLegal(MVT::f32)) { + if (isTypeLegal(MVT::f64)) { + NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; + RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; + TransformToType[MVT::f32] = MVT::f64; + ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); + } else { + NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; + RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; + TransformToType[MVT::f32] = MVT::i32; + ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); + } + } + + // Loop over all of the vector value types to see which need transformations. + for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; + i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { + MVT VT = (MVT::SimpleValueType)i; + if (isTypeLegal(VT)) continue; + + // Determine if there is a legal wider type. If so, we should promote to + // that wider vector type. + MVT EltVT = VT.getVectorElementType(); + unsigned NElts = VT.getVectorNumElements(); + if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) { + bool IsLegalWiderType = false; + // First try to promote the elements of integer vectors. If no legal + // promotion was found, fallback to the widen-vector method. + for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { + MVT SVT = (MVT::SimpleValueType)nVT; + // Promote vectors of integers to vectors with the same number + // of elements, with a wider element type. + if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() + && SVT.getVectorNumElements() == NElts && + isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { + TransformToType[i] = SVT; + RegisterTypeForVT[i] = SVT; + NumRegistersForVT[i] = 1; + ValueTypeActions.setTypeAction(VT, TypePromoteInteger); + IsLegalWiderType = true; + break; + } + } + + if (IsLegalWiderType) continue; + + // Try to widen the vector. + for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { + MVT SVT = (MVT::SimpleValueType)nVT; + if (SVT.getVectorElementType() == EltVT && + SVT.getVectorNumElements() > NElts && + isTypeLegal(SVT)) { + TransformToType[i] = SVT; + RegisterTypeForVT[i] = SVT; + NumRegistersForVT[i] = 1; + ValueTypeActions.setTypeAction(VT, TypeWidenVector); + IsLegalWiderType = true; + break; + } + } + if (IsLegalWiderType) continue; + } + + MVT IntermediateVT; + MVT RegisterVT; + unsigned NumIntermediates; + NumRegistersForVT[i] = + getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, + RegisterVT, this); + RegisterTypeForVT[i] = RegisterVT; + + MVT NVT = VT.getPow2VectorType(); + if (NVT == VT) { + // Type is already a power of 2. The default action is to split. + TransformToType[i] = MVT::Other; + unsigned NumElts = VT.getVectorNumElements(); + ValueTypeActions.setTypeAction(VT, + NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); + } else { + TransformToType[i] = NVT; + ValueTypeActions.setTypeAction(VT, TypeWidenVector); + } + } + + // Determine the 'representative' register class for each value type. + // An representative register class is the largest (meaning one which is + // not a sub-register class / subreg register class) legal register class for + // a group of value types. For example, on i386, i8, i16, and i32 + // representative would be GR32; while on x86_64 it's GR64. + for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { + const TargetRegisterClass* RRC; + uint8_t Cost; + tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); + RepRegClassForVT[i] = RRC; + RepRegClassCostForVT[i] = Cost; + } +} + +EVT TargetLoweringBase::getSetCCResultType(EVT VT) const { + assert(!VT.isVector() && "No default SetCC type for vectors!"); + return getPointerTy(0).SimpleTy; +} + +MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { + return MVT::i32; // return the default value +} + +/// getVectorTypeBreakdown - Vector types are broken down into some number of +/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 +/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. +/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. +/// +/// This method returns the number of registers needed, and the VT for each +/// register. It also returns the VT and quantity of the intermediate values +/// before they are promoted/expanded. +/// +unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, + EVT &IntermediateVT, + unsigned &NumIntermediates, + MVT &RegisterVT) const { + unsigned NumElts = VT.getVectorNumElements(); + + // If there is a wider vector type with the same element type as this one, + // or a promoted vector type that has the same number of elements which + // are wider, then we should convert to that legal vector type. + // This handles things like <2 x float> -> <4 x float> and + // <4 x i1> -> <4 x i32>. + LegalizeTypeAction TA = getTypeAction(Context, VT); + if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { + EVT RegisterEVT = getTypeToTransformTo(Context, VT); + if (isTypeLegal(RegisterEVT)) { + IntermediateVT = RegisterEVT; + RegisterVT = RegisterEVT.getSimpleVT(); + NumIntermediates = 1; + return 1; + } + } + + // Figure out the right, legal destination reg to copy into. + EVT EltTy = VT.getVectorElementType(); + + unsigned NumVectorRegs = 1; + + // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we + // could break down into LHS/RHS like LegalizeDAG does. + if (!isPowerOf2_32(NumElts)) { + NumVectorRegs = NumElts; + NumElts = 1; + } + + // Divide the input until we get to a supported size. This will always + // end with a scalar if the target doesn't support vectors. + while (NumElts > 1 && !isTypeLegal( + EVT::getVectorVT(Context, EltTy, NumElts))) { + NumElts >>= 1; + NumVectorRegs <<= 1; + } + + NumIntermediates = NumVectorRegs; + + EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); + if (!isTypeLegal(NewVT)) + NewVT = EltTy; + IntermediateVT = NewVT; + + MVT DestVT = getRegisterType(Context, NewVT); + RegisterVT = DestVT; + unsigned NewVTSize = NewVT.getSizeInBits(); + + // Convert sizes such as i33 to i64. + if (!isPowerOf2_32(NewVTSize)) + NewVTSize = NextPowerOf2(NewVTSize); + + if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. + return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); + + // Otherwise, promotion or legal types use the same number of registers as + // the vector decimated to the appropriate level. + return NumVectorRegs; +} + +/// Get the EVTs and ArgFlags collections that represent the legalized return +/// type of the given function. This does not require a DAG or a return value, +/// and is suitable for use before any DAGs for the function are constructed. +/// TODO: Move this out of TargetLowering.cpp. +void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr, + SmallVectorImpl<ISD::OutputArg> &Outs, + const TargetLowering &TLI) { + SmallVector<EVT, 4> ValueVTs; + ComputeValueVTs(TLI, ReturnType, ValueVTs); + unsigned NumValues = ValueVTs.size(); + if (NumValues == 0) return; + + for (unsigned j = 0, f = NumValues; j != f; ++j) { + EVT VT = ValueVTs[j]; + ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + + if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) + ExtendKind = ISD::SIGN_EXTEND; + else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) + ExtendKind = ISD::ZERO_EXTEND; + + // FIXME: C calling convention requires the return type to be promoted to + // at least 32-bit. But this is not necessary for non-C calling + // conventions. The frontend should mark functions whose return values + // require promoting with signext or zeroext attributes. + if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { + MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); + if (VT.bitsLT(MinVT)) + VT = MinVT; + } + + unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); + MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); + + // 'inreg' on function refers to return value + ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); + if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) + Flags.setInReg(); + + // Propagate extension type if any + if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) + Flags.setSExt(); + else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) + Flags.setZExt(); + + for (unsigned i = 0; i < NumParts; ++i) + Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0)); + } +} + +/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area. This is the actual +/// alignment, not its logarithm. +unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const { + return TD->getCallFrameTypeAlignment(Ty); +} + +//===----------------------------------------------------------------------===// +// TargetTransformInfo Helpers +//===----------------------------------------------------------------------===// + +int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { + enum InstructionOpcodes { +#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, +#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM +#include "llvm/IR/Instruction.def" + }; + switch (static_cast<InstructionOpcodes>(Opcode)) { + case Ret: return 0; + case Br: return 0; + case Switch: return 0; + case IndirectBr: return 0; + case Invoke: return 0; + case Resume: return 0; + case Unreachable: return 0; + case Add: return ISD::ADD; + case FAdd: return ISD::FADD; + case Sub: return ISD::SUB; + case FSub: return ISD::FSUB; + case Mul: return ISD::MUL; + case FMul: return ISD::FMUL; + case UDiv: return ISD::UDIV; + case SDiv: return ISD::UDIV; + case FDiv: return ISD::FDIV; + case URem: return ISD::UREM; + case SRem: return ISD::SREM; + case FRem: return ISD::FREM; + case Shl: return ISD::SHL; + case LShr: return ISD::SRL; + case AShr: return ISD::SRA; + case And: return ISD::AND; + case Or: return ISD::OR; + case Xor: return ISD::XOR; + case Alloca: return 0; + case Load: return ISD::LOAD; + case Store: return ISD::STORE; + case GetElementPtr: return 0; + case Fence: return 0; + case AtomicCmpXchg: return 0; + case AtomicRMW: return 0; + case Trunc: return ISD::TRUNCATE; + case ZExt: return ISD::ZERO_EXTEND; + case SExt: return ISD::SIGN_EXTEND; + case FPToUI: return ISD::FP_TO_UINT; + case FPToSI: return ISD::FP_TO_SINT; + case UIToFP: return ISD::UINT_TO_FP; + case SIToFP: return ISD::SINT_TO_FP; + case FPTrunc: return ISD::FP_ROUND; + case FPExt: return ISD::FP_EXTEND; + case PtrToInt: return ISD::BITCAST; + case IntToPtr: return ISD::BITCAST; + case BitCast: return ISD::BITCAST; + case ICmp: return ISD::SETCC; + case FCmp: return ISD::SETCC; + case PHI: return 0; + case Call: return 0; + case Select: return ISD::SELECT; + case UserOp1: return 0; + case UserOp2: return 0; + case VAArg: return 0; + case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; + case InsertElement: return ISD::INSERT_VECTOR_ELT; + case ShuffleVector: return ISD::VECTOR_SHUFFLE; + case ExtractValue: return ISD::MERGE_VALUES; + case InsertValue: return ISD::MERGE_VALUES; + case LandingPad: return 0; + } + + llvm_unreachable("Unknown instruction type encountered!"); +} + +std::pair<unsigned, MVT> +TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const { + LLVMContext &C = Ty->getContext(); + EVT MTy = getValueType(Ty); + + unsigned Cost = 1; + // We keep legalizing the type until we find a legal kind. We assume that + // the only operation that costs anything is the split. After splitting + // we need to handle two types. + while (true) { + LegalizeKind LK = getTypeConversion(C, MTy); + + if (LK.first == TypeLegal) + return std::make_pair(Cost, MTy.getSimpleVT()); + + if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) + Cost *= 2; + + // Keep legalizing the type. + MTy = LK.second; + } +} + +//===----------------------------------------------------------------------===// +// Loop Strength Reduction hooks +//===----------------------------------------------------------------------===// + +/// isLegalAddressingMode - Return true if the addressing mode represented +/// by AM is legal for this target, for a load/store of the specified type. +bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM, + Type *Ty) const { + // The default implementation of this implements a conservative RISCy, r+r and + // r+i addr mode. + + // Allows a sign-extended 16-bit immediate field. + if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) + return false; + + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + // Only support r+r, + switch (AM.Scale) { + case 0: // "r+i" or just "i", depending on HasBaseReg. + break; + case 1: + if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. + return false; + // Otherwise we have r+r or r+i. + break; + case 2: + if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. + return false; + // Allow 2*r as r+r. + break; + } + + return true; +} |