diff options
author | Chris Lattner <sabre@nondot.org> | 2007-05-06 19:33:40 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2007-05-06 19:33:40 +0000 |
commit | b11f1a9ee167d278923e741cd11ccd0bfe58f816 (patch) | |
tree | ecabffc72b7ac17c1eb731d6ad1b37b464f54b17 /lib/Bytecode | |
parent | 5f32c01dead5623d874f442b34762f9d111be4cf (diff) |
remove the old bc writer
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36881 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Bytecode')
-rw-r--r-- | lib/Bytecode/Writer/Makefile | 13 | ||||
-rw-r--r-- | lib/Bytecode/Writer/SlotCalculator.cpp | 390 | ||||
-rw-r--r-- | lib/Bytecode/Writer/SlotCalculator.h | 138 | ||||
-rw-r--r-- | lib/Bytecode/Writer/Writer.cpp | 1266 | ||||
-rw-r--r-- | lib/Bytecode/Writer/WriterInternals.h | 138 |
5 files changed, 0 insertions, 1945 deletions
diff --git a/lib/Bytecode/Writer/Makefile b/lib/Bytecode/Writer/Makefile deleted file mode 100644 index e731bb14a9..0000000000 --- a/lib/Bytecode/Writer/Makefile +++ /dev/null @@ -1,13 +0,0 @@ -##===- lib/Bytecode/Writer/Makefile ------------------------*- Makefile -*-===## -# -# The LLVM Compiler Infrastructure -# -# This file was developed by the LLVM research group and is distributed under -# the University of Illinois Open Source License. See LICENSE.TXT for details. -# -##===----------------------------------------------------------------------===## -LEVEL = ../../.. -LIBRARYNAME = LLVMBCWriter -BUILD_ARCHIVE = 1 - -include $(LEVEL)/Makefile.common diff --git a/lib/Bytecode/Writer/SlotCalculator.cpp b/lib/Bytecode/Writer/SlotCalculator.cpp deleted file mode 100644 index 3a038cd449..0000000000 --- a/lib/Bytecode/Writer/SlotCalculator.cpp +++ /dev/null @@ -1,390 +0,0 @@ -//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements a useful analysis step to figure out what numbered slots -// values in a program will land in (keeping track of per plane information). -// -// This is used when writing a file to disk, either in bytecode or assembly. -// -//===----------------------------------------------------------------------===// - -#include "SlotCalculator.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/InlineAsm.h" -#include "llvm/Instructions.h" -#include "llvm/Module.h" -#include "llvm/TypeSymbolTable.h" -#include "llvm/Type.h" -#include "llvm/ValueSymbolTable.h" -#include "llvm/ADT/STLExtras.h" -#include <algorithm> -#include <functional> -using namespace llvm; - -#ifndef NDEBUG -#include "llvm/Support/Streams.h" -#include "llvm/Support/CommandLine.h" -static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false), - cl::desc("Enable SlotCalculator debug output"), cl::Hidden); -#define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X -#else -#define SC_DEBUG(X) -#endif - -void SlotCalculator::insertPrimitives() { - // Preload the table with the built-in types. These built-in types are - // inserted first to ensure that they have low integer indices which helps to - // keep bytecode sizes small. Note that the first group of indices must match - // the Type::TypeIDs for the primitive types. After that the integer types are - // added, but the order and value is not critical. What is critical is that - // the indices of these "well known" slot numbers be properly maintained in - // Reader.h which uses them directly to extract values of these types. - SC_DEBUG("Inserting primitive types:\n"); - // See WellKnownTypeSlots in Reader.h - getOrCreateTypeSlot(Type::VoidTy ); // 0: VoidTySlot - getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot - getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot - getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot - assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert"); - // Above here *must* correspond 1:1 with the primitive types. - getOrCreateTypeSlot(Type::Int1Ty ); // 4: Int1TySlot - getOrCreateTypeSlot(Type::Int8Ty ); // 5: Int8TySlot - getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot - getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot - getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot -} - -SlotCalculator::SlotCalculator(const Module *M) { - assert(M); - TheModule = M; - - insertPrimitives(); - processModule(); -} - -// processModule - Process all of the module level function declarations and -// types that are available. -// -void SlotCalculator::processModule() { - SC_DEBUG("begin processModule!\n"); - - // Add all of the global variables to the value table... - // - for (Module::const_global_iterator I = TheModule->global_begin(), - E = TheModule->global_end(); I != E; ++I) - CreateSlotIfNeeded(I); - - // Scavenge the types out of the functions, then add the functions themselves - // to the value table... - // - for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); - I != E; ++I) - CreateSlotIfNeeded(I); - - // Add all of the global aliases to the value table... - // - for (Module::const_alias_iterator I = TheModule->alias_begin(), - E = TheModule->alias_end(); I != E; ++I) - CreateSlotIfNeeded(I); - - // Add all of the module level constants used as initializers - // - for (Module::const_global_iterator I = TheModule->global_begin(), - E = TheModule->global_end(); I != E; ++I) - if (I->hasInitializer()) - CreateSlotIfNeeded(I->getInitializer()); - - // Add all of the module level constants used as aliasees - // - for (Module::const_alias_iterator I = TheModule->alias_begin(), - E = TheModule->alias_end(); I != E; ++I) - if (I->getAliasee()) - CreateSlotIfNeeded(I->getAliasee()); - - // Now that all global constants have been added, rearrange constant planes - // that contain constant strings so that the strings occur at the start of the - // plane, not somewhere in the middle. - // - for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) { - if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane])) - if (AT->getElementType() == Type::Int8Ty) { - TypePlane &Plane = Table[plane]; - unsigned FirstNonStringID = 0; - for (unsigned i = 0, e = Plane.size(); i != e; ++i) - if (isa<ConstantAggregateZero>(Plane[i]) || - (isa<ConstantArray>(Plane[i]) && - cast<ConstantArray>(Plane[i])->isString())) { - // Check to see if we have to shuffle this string around. If not, - // don't do anything. - if (i != FirstNonStringID) { - // Swap the plane entries.... - std::swap(Plane[i], Plane[FirstNonStringID]); - - // Keep the NodeMap up to date. - NodeMap[Plane[i]] = i; - NodeMap[Plane[FirstNonStringID]] = FirstNonStringID; - } - ++FirstNonStringID; - } - } - } - - // Scan all of the functions for their constants, which allows us to emit - // more compact modules. - SC_DEBUG("Inserting function constants:\n"); - for (Module::const_iterator F = TheModule->begin(), E = TheModule->end(); - F != E; ++F) { - for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ - for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); - OI != E; ++OI) { - if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || - isa<InlineAsm>(*OI)) - CreateSlotIfNeeded(*OI); - } - getOrCreateTypeSlot(I->getType()); - } - } - - // Insert constants that are named at module level into the slot pool so that - // the module symbol table can refer to them... - SC_DEBUG("Inserting SymbolTable values:\n"); - processTypeSymbolTable(&TheModule->getTypeSymbolTable()); - processValueSymbolTable(&TheModule->getValueSymbolTable()); - - // Now that we have collected together all of the information relevant to the - // module, compactify the type table if it is particularly big and outputting - // a bytecode file. The basic problem we run into is that some programs have - // a large number of types, which causes the type field to overflow its size, - // which causes instructions to explode in size (particularly call - // instructions). To avoid this behavior, we "sort" the type table so that - // all non-value types are pushed to the end of the type table, giving nice - // low numbers to the types that can be used by instructions, thus reducing - // the amount of explodage we suffer. - if (Types.size() >= 64) { - unsigned FirstNonValueTypeID = 0; - for (unsigned i = 0, e = Types.size(); i != e; ++i) - if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) { - // Check to see if we have to shuffle this type around. If not, don't - // do anything. - if (i != FirstNonValueTypeID) { - // Swap the type ID's. - std::swap(Types[i], Types[FirstNonValueTypeID]); - - // Keep the TypeMap up to date. - TypeMap[Types[i]] = i; - TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID; - - // When we move a type, make sure to move its value plane as needed. - if (Table.size() > FirstNonValueTypeID) { - if (Table.size() <= i) Table.resize(i+1); - std::swap(Table[i], Table[FirstNonValueTypeID]); - } - } - ++FirstNonValueTypeID; - } - } - - NumModuleTypes = getNumPlanes(); - - SC_DEBUG("end processModule!\n"); -} - -// processTypeSymbolTable - Insert all of the type sin the specified symbol -// table. -void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) { - for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end(); - TI != TE; ++TI ) - getOrCreateTypeSlot(TI->second); -} - -// processSymbolTable - Insert all of the values in the specified symbol table -// into the values table... -// -void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) { - for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end(); - VI != VE; ++VI) - CreateSlotIfNeeded(VI->getValue()); -} - -void SlotCalculator::CreateSlotIfNeeded(const Value *V) { - // Check to see if it's already in! - if (NodeMap.count(V)) return; - - const Type *Ty = V->getType(); - assert(Ty != Type::VoidTy && "Can't insert void values!"); - - if (const Constant *C = dyn_cast<Constant>(V)) { - if (isa<GlobalValue>(C)) { - // Initializers for globals are handled explicitly elsewhere. - } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { - // Do not index the characters that make up constant strings. We emit - // constant strings as special entities that don't require their - // individual characters to be emitted. - if (!C->isNullValue()) - ConstantStrings.push_back(cast<ConstantArray>(C)); - } else { - // This makes sure that if a constant has uses (for example an array of - // const ints), that they are inserted also. - for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); - I != E; ++I) - CreateSlotIfNeeded(*I); - } - } - - unsigned TyPlane = getOrCreateTypeSlot(Ty); - if (Table.size() <= TyPlane) // Make sure we have the type plane allocated. - Table.resize(TyPlane+1, TypePlane()); - - // If this is the first value to get inserted into the type plane, make sure - // to insert the implicit null value. - if (Table[TyPlane].empty()) { - // Label's and opaque types can't have a null value. - if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) { - Value *ZeroInitializer = Constant::getNullValue(Ty); - - // If we are pushing zeroinit, it will be handled below. - if (V != ZeroInitializer) { - Table[TyPlane].push_back(ZeroInitializer); - NodeMap[ZeroInitializer] = 0; - } - } - } - - // Insert node into table and NodeMap... - NodeMap[V] = Table[TyPlane].size(); - Table[TyPlane].push_back(V); - - SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" << - NodeMap[V] << "\n"); -} - - -unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) { - TypeMapType::iterator TyIt = TypeMap.find(Ty); - if (TyIt != TypeMap.end()) return TyIt->second; - - // Insert into TypeMap. - unsigned ResultSlot = TypeMap[Ty] = Types.size(); - Types.push_back(Ty); - SC_DEBUG(" Inserting type [" << ResultSlot << "] = " << *Ty << "\n" ); - - // Loop over any contained types in the definition, ensuring they are also - // inserted. - for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); - I != E; ++I) - getOrCreateTypeSlot(*I); - - return ResultSlot; -} - - - -void SlotCalculator::incorporateFunction(const Function *F) { - SC_DEBUG("begin processFunction!\n"); - - // Iterate over function arguments, adding them to the value table... - for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); - I != E; ++I) - CreateFunctionValueSlot(I); - - SC_DEBUG("Inserting Instructions:\n"); - - // Add all of the instructions to the type planes... - for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { - CreateFunctionValueSlot(BB); - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { - if (I->getType() != Type::VoidTy) - CreateFunctionValueSlot(I); - } - } - - SC_DEBUG("end processFunction!\n"); -} - -void SlotCalculator::purgeFunction() { - SC_DEBUG("begin purgeFunction!\n"); - - // Next, remove values from existing type planes - for (DenseMap<unsigned,unsigned, - ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(), - E = ModuleLevel.end(); I != E; ++I) { - unsigned PlaneNo = I->first; - unsigned ModuleLev = I->second; - - // Pop all function-local values in this type-plane off of Table. - TypePlane &Plane = getPlane(PlaneNo); - assert(ModuleLev < Plane.size() && "module levels higher than elements?"); - for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) { - NodeMap.erase(Plane.back()); // Erase from nodemap - Plane.pop_back(); // Shrink plane - } - } - - ModuleLevel.clear(); - - // Finally, remove any type planes defined by the function... - while (Table.size() > NumModuleTypes) { - TypePlane &Plane = Table.back(); - SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " - << Plane.size() << "\n"); - for (unsigned i = 0, e = Plane.size(); i != e; ++i) - NodeMap.erase(Plane[i]); // Erase from nodemap - - Table.pop_back(); // Nuke the plane, we don't like it. - } - - SC_DEBUG("end purgeFunction!\n"); -} - -inline static bool hasImplicitNull(const Type* Ty) { - return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty); -} - -void SlotCalculator::CreateFunctionValueSlot(const Value *V) { - assert(!NodeMap.count(V) && "Function-local value can't be inserted!"); - - const Type *Ty = V->getType(); - assert(Ty != Type::VoidTy && "Can't insert void values!"); - assert(!isa<Constant>(V) && "Not a function-local value!"); - - unsigned TyPlane = getOrCreateTypeSlot(Ty); - if (Table.size() <= TyPlane) // Make sure we have the type plane allocated. - Table.resize(TyPlane+1, TypePlane()); - - // If this is the first value noticed of this type within this function, - // remember the module level for this type plane in ModuleLevel. This reminds - // us to remove the values in purgeFunction and tells us how many to remove. - if (TyPlane < NumModuleTypes) - ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size())); - - // If this is the first value to get inserted into the type plane, make sure - // to insert the implicit null value. - if (Table[TyPlane].empty()) { - // Label's and opaque types can't have a null value. - if (hasImplicitNull(Ty)) { - Value *ZeroInitializer = Constant::getNullValue(Ty); - - // If we are pushing zeroinit, it will be handled below. - if (V != ZeroInitializer) { - Table[TyPlane].push_back(ZeroInitializer); - NodeMap[ZeroInitializer] = 0; - } - } - } - - // Insert node into table and NodeMap... - NodeMap[V] = Table[TyPlane].size(); - Table[TyPlane].push_back(V); - - SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" << - NodeMap[V] << "\n"); -} diff --git a/lib/Bytecode/Writer/SlotCalculator.h b/lib/Bytecode/Writer/SlotCalculator.h deleted file mode 100644 index 343800cf6c..0000000000 --- a/lib/Bytecode/Writer/SlotCalculator.h +++ /dev/null @@ -1,138 +0,0 @@ -//===-- Analysis/SlotCalculator.h - Calculate value slots -------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This class calculates the slots that values will land in. This is useful for -// when writing bytecode or assembly out, because you have to know these things. -// -// Specifically, this class calculates the "type plane numbering" that you see -// for a function if you strip out all of the symbols in it. For assembly -// writing, this is used when a symbol does not have a name. For bytecode -// writing, this is always used, and the symbol table is added on later. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_ANALYSIS_SLOTCALCULATOR_H -#define LLVM_ANALYSIS_SLOTCALCULATOR_H - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SmallVector.h" -#include <vector> - -namespace llvm { - -class Value; -class Type; -class Module; -class Function; -class SymbolTable; -class TypeSymbolTable; -class ValueSymbolTable; -class ConstantArray; - -struct ModuleLevelDenseMapKeyInfo { - static inline unsigned getEmptyKey() { return ~0U; } - static inline unsigned getTombstoneKey() { return ~1U; } - static unsigned getHashValue(unsigned Val) { return Val ^ Val >> 4; } - static bool isPod() { return true; } -}; - - -class SlotCalculator { - const Module *TheModule; -public: - typedef std::vector<const Type*> TypeList; - typedef SmallVector<const Value*, 16> TypePlane; -private: - std::vector<TypePlane> Table; - TypeList Types; - typedef DenseMap<const Value*, unsigned> NodeMapType; - NodeMapType NodeMap; - - typedef DenseMap<const Type*, unsigned> TypeMapType; - TypeMapType TypeMap; - - /// ConstantStrings - If we are indexing for a bytecode file, this keeps track - /// of all of the constants strings that need to be emitted. - std::vector<const ConstantArray*> ConstantStrings; - - /// ModuleLevel - Used to keep track of which values belong to the module, - /// and which values belong to the currently incorporated function. - /// - DenseMap<unsigned,unsigned,ModuleLevelDenseMapKeyInfo> ModuleLevel; - unsigned NumModuleTypes; - - SlotCalculator(const SlotCalculator &); // DO NOT IMPLEMENT - void operator=(const SlotCalculator &); // DO NOT IMPLEMENT -public: - SlotCalculator(const Module *M); - - /// getSlot - Return the slot number of the specified value in it's type - /// plane. - /// - unsigned getSlot(const Value *V) const { - NodeMapType::const_iterator I = NodeMap.find(V); - assert(I != NodeMap.end() && "Value not in slotcalculator!"); - return I->second; - } - - unsigned getTypeSlot(const Type* T) const { - TypeMapType::const_iterator I = TypeMap.find(T); - assert(I != TypeMap.end() && "Type not in slotcalc!"); - return I->second; - } - - inline unsigned getNumPlanes() const { return Table.size(); } - inline unsigned getNumTypes() const { return Types.size(); } - - TypePlane &getPlane(unsigned Plane) { - // Okay we are just returning an entry out of the main Table. Make sure the - // plane exists and return it. - if (Plane >= Table.size()) - Table.resize(Plane+1); - return Table[Plane]; - } - - TypeList& getTypes() { return Types; } - - /// incorporateFunction/purgeFunction - If you'd like to deal with a function, - /// use these two methods to get its data into the SlotCalculator! - /// - void incorporateFunction(const Function *F); - void purgeFunction(); - - /// string_iterator/string_begin/end - Access the list of module-level - /// constant strings that have been incorporated. This is only applicable to - /// bytecode files. - typedef std::vector<const ConstantArray*>::const_iterator string_iterator; - string_iterator string_begin() const { return ConstantStrings.begin(); } - string_iterator string_end() const { return ConstantStrings.end(); } - -private: - void CreateSlotIfNeeded(const Value *V); - void CreateFunctionValueSlot(const Value *V); - unsigned getOrCreateTypeSlot(const Type *T); - - // processModule - Process all of the module level function declarations and - // types that are available. - // - void processModule(); - - // processSymbolTable - Insert all of the values in the specified symbol table - // into the values table... - // - void processTypeSymbolTable(const TypeSymbolTable *ST); - void processValueSymbolTable(const ValueSymbolTable *ST); - - // insertPrimitives - helper for constructors to insert primitive types. - void insertPrimitives(); -}; - -} // End llvm namespace - -#endif diff --git a/lib/Bytecode/Writer/Writer.cpp b/lib/Bytecode/Writer/Writer.cpp deleted file mode 100644 index ea5159b28f..0000000000 --- a/lib/Bytecode/Writer/Writer.cpp +++ /dev/null @@ -1,1266 +0,0 @@ -//===-- Writer.cpp - Library for writing LLVM bytecode files --------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This library implements the functionality defined in llvm/Bytecode/Writer.h -// -// Note that this file uses an unusual technique of outputting all the bytecode -// to a vector of unsigned char, then copies the vector to an ostream. The -// reason for this is that we must do "seeking" in the stream to do back- -// patching, and some very important ostreams that we want to support (like -// pipes) do not support seeking. :( :( :( -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "bcwriter" -#include "WriterInternals.h" -#include "llvm/Bytecode/WriteBytecodePass.h" -#include "llvm/CallingConv.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/ParameterAttributes.h" -#include "llvm/InlineAsm.h" -#include "llvm/Instructions.h" -#include "llvm/Module.h" -#include "llvm/TypeSymbolTable.h" -#include "llvm/ValueSymbolTable.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "llvm/Support/Compressor.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/Streams.h" -#include "llvm/System/Program.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/Statistic.h" -#include <cstring> -#include <algorithm> -using namespace llvm; - -/// This value needs to be incremented every time the bytecode format changes -/// so that the reader can distinguish which format of the bytecode file has -/// been written. -/// @brief The bytecode version number -const unsigned BCVersionNum = 7; - -char WriteBytecodePass::ID = 0; -static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer"); - -STATISTIC(BytesWritten, "Number of bytecode bytes written"); - -//===----------------------------------------------------------------------===// -//=== Output Primitives ===// -//===----------------------------------------------------------------------===// - -// output - If a position is specified, it must be in the valid portion of the -// string... note that this should be inlined always so only the relevant IF -// body should be included. -inline void BytecodeWriter::output(unsigned i, int pos) { - if (pos == -1) { // Be endian clean, little endian is our friend - Out.push_back((unsigned char)i); - Out.push_back((unsigned char)(i >> 8)); - Out.push_back((unsigned char)(i >> 16)); - Out.push_back((unsigned char)(i >> 24)); - } else { - Out[pos ] = (unsigned char)i; - Out[pos+1] = (unsigned char)(i >> 8); - Out[pos+2] = (unsigned char)(i >> 16); - Out[pos+3] = (unsigned char)(i >> 24); - } -} - -inline void BytecodeWriter::output(int32_t i) { - output((uint32_t)i); -} - -/// output_vbr - Output an unsigned value, by using the least number of bytes -/// possible. This is useful because many of our "infinite" values are really -/// very small most of the time; but can be large a few times. -/// Data format used: If you read a byte with the high bit set, use the low -/// seven bits as data and then read another byte. -inline void BytecodeWriter::output_vbr(uint64_t i) { - while (1) { - if (i < 0x80) { // done? - Out.push_back((unsigned char)i); // We know the high bit is clear... - return; - } - - // Nope, we are bigger than a character, output the next 7 bits and set the - // high bit to say that there is more coming... - Out.push_back(0x80 | ((unsigned char)i & 0x7F)); - i >>= 7; // Shift out 7 bits now... - } -} - -inline void BytecodeWriter::output_vbr(uint32_t i) { - while (1) { - if (i < 0x80) { // done? - Out.push_back((unsigned char)i); // We know the high bit is clear... - return; - } - - // Nope, we are bigger than a character, output the next 7 bits and set the - // high bit to say that there is more coming... - Out.push_back(0x80 | ((unsigned char)i & 0x7F)); - i >>= 7; // Shift out 7 bits now... - } -} - -inline void BytecodeWriter::output_typeid(unsigned i) { - if (i <= 0x00FFFFFF) - this->output_vbr(i); - else { - this->output_vbr(0x00FFFFFF); - this->output_vbr(i); - } -} - -inline void BytecodeWriter::output_vbr(int64_t i) { - if (i < 0) - output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit... - else - output_vbr((uint64_t)i << 1); // Low order bit is clear. -} - - -inline void BytecodeWriter::output_vbr(int i) { - if (i < 0) - output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit... - else - output_vbr((unsigned)i << 1); // Low order bit is clear. -} - -inline void BytecodeWriter::output_str(const char *Str, unsigned Len) { - output_vbr(Len); // Strings may have an arbitrary length. - Out.insert(Out.end(), Str, Str+Len); -} - -inline void BytecodeWriter::output_data(const void *Ptr, const void *End) { - Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End); -} - -inline void BytecodeWriter::output_float(float& FloatVal) { - /// FIXME: This isn't optimal, it has size problems on some platforms - /// where FP is not IEEE. - uint32_t i = FloatToBits(FloatVal); - Out.push_back( static_cast<unsigned char>( (i ) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 8 ) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 16) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 24) & 0xFF)); -} - -inline void BytecodeWriter::output_double(double& DoubleVal) { - /// FIXME: This isn't optimal, it has size problems on some platforms - /// where FP is not IEEE. - uint64_t i = DoubleToBits(DoubleVal); - Out.push_back( static_cast<unsigned char>( (i ) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 8 ) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 16) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 24) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 32) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 40) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 48) & 0xFF)); - Out.push_back( static_cast<unsigned char>( (i >> 56) & 0xFF)); -} - -inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter &w, - bool elideIfEmpty, bool hasLongFormat) - : Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){ - - if (HasLongFormat) { - w.output(ID); - w.output(0U); // For length in long format - } else { - w.output(0U); /// Place holder for ID and length for this block - } - Loc = w.size(); -} - -inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out - // of scope... - if (Loc == Writer.size() && ElideIfEmpty) { - // If the block is empty, and we are allowed to, do not emit the block at - // all! - Writer.resize(Writer.size()-(HasLongFormat?8:4)); - return; - } - - if (HasLongFormat) - Writer.output(unsigned(Writer.size()-Loc), int(Loc-4)); - else - Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4)); -} - -//===----------------------------------------------------------------------===// -//=== Constant Output ===// -//===----------------------------------------------------------------------===// - -void BytecodeWriter::outputParamAttrsList(const ParamAttrsList *Attrs) { - if (!Attrs) { - output_vbr(unsigned(0)); - return; - } - unsigned numAttrs = Attrs->size(); - output_vbr(numAttrs); - for (unsigned i = 0; i < numAttrs; ++i) { - uint16_t index = Attrs->getParamIndex(i); - uint16_t attrs = Attrs->getParamAttrs(index); - output_vbr(uint32_t(index)); - output_vbr(uint32_t(attrs)); - } -} - -void BytecodeWriter::outputType(const Type *T) { - const StructType* STy = dyn_cast<StructType>(T); - if(STy && STy->isPacked()) - output_vbr((unsigned)Type::PackedStructTyID); - else - output_vbr((unsigned)T->getTypeID()); - - // That's all there is to handling primitive types... - if (T->isPrimitiveType()) - return; // We might do this if we alias a prim type: %x = type int - - switch (T->getTypeID()) { // Handle derived types now. - case Type::IntegerTyID: - output_vbr(cast<IntegerType>(T)->getBitWidth()); - break; - case Type::FunctionTyID: { - const FunctionType *FT = cast<FunctionType>(T); - output_typeid(Table.getTypeSlot(FT->getReturnType())); - - // Output the number of arguments to function (+1 if varargs): - output_vbr((unsigned)FT->getNumParams()+FT->isVarArg()); - - // Output all of the arguments... - FunctionType::param_iterator I = FT->param_begin(); - for (; I != FT->param_end(); ++I) - output_typeid(Table.getTypeSlot(*I)); - - // Terminate list with VoidTy if we are a varargs function... - if (FT->isVarArg()) - output_typeid((unsigned)Type::VoidTyID); - - // Put out all the parameter attributes - outputParamAttrsList(FT->getParamAttrs()); - break; - } - - case Type::ArrayTyID: { - const ArrayType *AT = cast<ArrayType>(T); - output_typeid(Table.getTypeSlot(AT->getElementType())); - output_vbr(AT->getNumElements()); - break; - } - - case Type::VectorTyID: { - const VectorType *PT = cast<VectorType>(T); - output_typeid(Table.getTypeSlot(PT->getElementType())); - output_vbr(PT->getNumElements()); - break; - } - - case Type::StructTyID: { - const StructType *ST = cast<StructType>(T); - // Output all of the element types... - for (StructType::element_iterator I = ST->element_begin(), - E = ST->element_end(); I != E; ++I) { - output_typeid(Table.getTypeSlot(*I)); - } - - // Terminate list with VoidTy - output_typeid((unsigned)Type::VoidTyID); - break; - } - - case Type::PointerTyID: - output_typeid(Table.getTypeSlot(cast<PointerType>(T)->getElementType())); - break; - - case Type::OpaqueTyID: - // No need to emit anything, just the count of opaque types is enough. - break; - - default: - cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" - << " Type '" << T->getDescription() << "'\n"; - break; - } -} - -void BytecodeWriter::outputConstant(const Constant *CPV) { - assert(((CPV->getType()->isPrimitiveType() || CPV->getType()->isInteger()) || - !CPV->isNullValue()) && "Shouldn't output null constants!"); - - // We must check for a ConstantExpr before switching by type because - // a ConstantExpr can be of any type, and has no explicit value. - // - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { - // FIXME: Encoding of constant exprs could be much more compact! - assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands"); - assert(CE->getNumOperands() != 1 || CE->isCast()); - output_vbr(1+CE->getNumOperands()); // flags as an expr - output_vbr(CE->getOpcode()); // Put out the CE op code - - for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){ - output_vbr(Table.getSlot(*OI)); - output_typeid(Table.getTypeSlot((*OI)->getType())); - } - if (CE->isCompare()) - output_vbr((unsigned)CE->getPredicate()); - return; - } else if (isa<UndefValue>(CPV)) { - output_vbr(1U); // 1 -> UndefValue constant. - return; - } else { - output_vbr(0U); // flag as not a ConstantExpr (i.e. 0 operands) - } - - switch (CPV->getType()->getTypeID()) { - case Type::IntegerTyID: { // Integer types... - const ConstantInt *CI = cast<ConstantInt>(CPV); - unsigned NumBits = cast<IntegerType>(CPV->getType())->getBitWidth(); - if (NumBits <= 32) - output_vbr(uint32_t(CI->getZExtValue())); - else if (NumBits <= 64) - output_vbr(uint64_t(CI->getZExtValue())); - else { - // We have an arbitrary precision integer value to write whose - // bit width is > 64. However, in canonical unsigned integer - // format it is likely that the high bits are going to be zero. - // So, we only write the number of active words. - uint32_t activeWords = CI->getValue().getActiveWords(); - const uint64_t *rawData = CI->getValue().getRawData(); - output_vbr(activeWords); - for (uint32_t i = 0; i < activeWords; ++i) - output_vbr(rawData[i]); - } - break; - } - - case Type::ArrayTyID: { - const Cons |