diff options
author | Reid Spencer <rspencer@reidspencer.com> | 2004-07-25 18:07:36 +0000 |
---|---|---|
committer | Reid Spencer <rspencer@reidspencer.com> | 2004-07-25 18:07:36 +0000 |
commit | ad89bd6a1a74d3d3223d9eb23e16f10c02f836fa (patch) | |
tree | a8ec89130546e3cc17246b1c143eb9143d8a1b02 /lib/Bytecode/Writer | |
parent | 0be13e7f1468ba101188a5e1b1f1a20a676b3569 (diff) |
bug 263:
- encode/decode target triple and dependent libraries
bug 401:
- fix encoding/decoding of FP values to be little-endian only
bug 402:
- initial (compatible) cut at 24-bit types instead of 32-bit
- reduce size of block headers by 50%
Other:
- cleanup Writer by consolidating to one compilation unit, rem. other files
- use a std::vector instead of std::deque so the buffer can be allocated
in multiples of 64KByte chunks rather than in multiples of some smaller
(default) number.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15210 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Bytecode/Writer')
-rw-r--r-- | lib/Bytecode/Writer/ConstantWriter.cpp | 220 | ||||
-rw-r--r-- | lib/Bytecode/Writer/InstructionWriter.cpp | 348 | ||||
-rw-r--r-- | lib/Bytecode/Writer/Writer.cpp | 809 | ||||
-rw-r--r-- | lib/Bytecode/Writer/WriterInternals.h | 97 | ||||
-rw-r--r-- | lib/Bytecode/Writer/WriterPrimitives.h | 141 |
5 files changed, 832 insertions, 783 deletions
diff --git a/lib/Bytecode/Writer/ConstantWriter.cpp b/lib/Bytecode/Writer/ConstantWriter.cpp deleted file mode 100644 index 7aa8febda3..0000000000 --- a/lib/Bytecode/Writer/ConstantWriter.cpp +++ /dev/null @@ -1,220 +0,0 @@ -//===-- ConstantWriter.cpp - Functions for writing constants --------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the routines for encoding constants to a bytecode -// stream. -// -//===----------------------------------------------------------------------===// - -#include "WriterInternals.h" -#include "llvm/Constants.h" -#include "llvm/SymbolTable.h" -#include "llvm/DerivedTypes.h" -#include "Support/Statistic.h" -using namespace llvm; - -void BytecodeWriter::outputType(const Type *T) { - output_vbr((unsigned)T->getTypeID(), Out); - - // That's all there is to handling primitive types... - if (T->isPrimitiveType()) { - return; // We might do this if we alias a prim type: %x = type int - } - - switch (T->getTypeID()) { // Handle derived types now. - case Type::FunctionTyID: { - const FunctionType *MT = cast<FunctionType>(T); - int Slot = Table.getSlot(MT->getReturnType()); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - - // Output the number of arguments to function (+1 if varargs): - output_vbr((unsigned)MT->getNumParams()+MT->isVarArg(), Out); - - // Output all of the arguments... - FunctionType::param_iterator I = MT->param_begin(); - for (; I != MT->param_end(); ++I) { - Slot = Table.getSlot(*I); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - } - - // Terminate list with VoidTy if we are a varargs function... - if (MT->isVarArg()) - output_vbr((unsigned)Type::VoidTyID, Out); - break; - } - - case Type::ArrayTyID: { - const ArrayType *AT = cast<ArrayType>(T); - int Slot = Table.getSlot(AT->getElementType()); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - //std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl; - - output_vbr(AT->getNumElements(), Out); - break; - } - - case Type::StructTyID: { - const StructType *ST = cast<StructType>(T); - - // Output all of the element types... - for (StructType::element_iterator I = ST->element_begin(), - E = ST->element_end(); I != E; ++I) { - int Slot = Table.getSlot(*I); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - } - - // Terminate list with VoidTy - output_vbr((unsigned)Type::VoidTyID, Out); - break; - } - - case Type::PointerTyID: { - const PointerType *PT = cast<PointerType>(T); - int Slot = Table.getSlot(PT->getElementType()); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - break; - } - - case Type::OpaqueTyID: { - // No need to emit anything, just the count of opaque types is enough. - break; - } - - //case Type::PackedTyID: - default: - std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" - << " Type '" << T->getDescription() << "'\n"; - break; - } -} - -void BytecodeWriter::outputConstant(const Constant *CPV) { - assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) && - "Shouldn't output null constants!"); - - // We must check for a ConstantExpr before switching by type because - // a ConstantExpr can be of any type, and has no explicit value. - // - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { - // FIXME: Encoding of constant exprs could be much more compact! - assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands"); - output_vbr(CE->getNumOperands(), Out); // flags as an expr - output_vbr(CE->getOpcode(), Out); // flags as an expr - - for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){ - int Slot = Table.getSlot(*OI); - assert(Slot != -1 && "Unknown constant used in ConstantExpr!!"); - output_vbr((unsigned)Slot, Out); - Slot = Table.getSlot((*OI)->getType()); - output_vbr((unsigned)Slot, Out); - } - return; - } else { - output_vbr(0U, Out); // flag as not a ConstantExpr - } - - switch (CPV->getType()->getTypeID()) { - case Type::BoolTyID: // Boolean Types - if (cast<ConstantBool>(CPV)->getValue()) - output_vbr(1U, Out); - else - output_vbr(0U, Out); - break; - - case Type::UByteTyID: // Unsigned integer types... - case Type::UShortTyID: - case Type::UIntTyID: - case Type::ULongTyID: - output_vbr(cast<ConstantUInt>(CPV)->getValue(), Out); - break; - - case Type::SByteTyID: // Signed integer types... - case Type::ShortTyID: - case Type::IntTyID: - case Type::LongTyID: - output_vbr(cast<ConstantSInt>(CPV)->getValue(), Out); - break; - - case Type::ArrayTyID: { - const ConstantArray *CPA = cast<ConstantArray>(CPV); - assert(!CPA->isString() && "Constant strings should be handled specially!"); - - for (unsigned i = 0; i != CPA->getNumOperands(); ++i) { - int Slot = Table.getSlot(CPA->getOperand(i)); - assert(Slot != -1 && "Constant used but not available!!"); - output_vbr((unsigned)Slot, Out); - } - break; - } - - case Type::StructTyID: { - const ConstantStruct *CPS = cast<ConstantStruct>(CPV); - const std::vector<Use> &Vals = CPS->getValues(); - - for (unsigned i = 0; i < Vals.size(); ++i) { - int Slot = Table.getSlot(Vals[i]); - assert(Slot != -1 && "Constant used but not available!!"); - output_vbr((unsigned)Slot, Out); - } - break; - } - - case Type::PointerTyID: - assert(0 && "No non-null, non-constant-expr constants allowed!"); - abort(); - - case Type::FloatTyID: { // Floating point types... - float Tmp = (float)cast<ConstantFP>(CPV)->getValue(); - output_float(Tmp, Out); - break; - } - case Type::DoubleTyID: { - double Tmp = cast<ConstantFP>(CPV)->getValue(); - output_double(Tmp, Out); - break; - } - - case Type::VoidTyID: - case Type::LabelTyID: - default: - std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" - << " type '" << *CPV->getType() << "'\n"; - break; - } - return; -} - -void BytecodeWriter::outputConstantStrings() { - SlotCalculator::string_iterator I = Table.string_begin(); - SlotCalculator::string_iterator E = Table.string_end(); - if (I == E) return; // No strings to emit - - // If we have != 0 strings to emit, output them now. Strings are emitted into - // the 'void' type plane. - output_vbr(unsigned(E-I), Out); - output_vbr(Type::VoidTyID, Out); - - // Emit all of the strings. - for (I = Table.string_begin(); I != E; ++I) { - const ConstantArray *Str = *I; - int Slot = Table.getSlot(Str->getType()); - assert(Slot != -1 && "Constant string of unknown type?"); - output_vbr((unsigned)Slot, Out); - - // Now that we emitted the type (which indicates the size of the string), - // emit all of the characters. - std::string Val = Str->getAsString(); - output_data(Val.c_str(), Val.c_str()+Val.size(), Out); - } -} diff --git a/lib/Bytecode/Writer/InstructionWriter.cpp b/lib/Bytecode/Writer/InstructionWriter.cpp deleted file mode 100644 index 188136718d..0000000000 --- a/lib/Bytecode/Writer/InstructionWriter.cpp +++ /dev/null @@ -1,348 +0,0 @@ -//===-- InstructionWriter.cpp - Functions for writing instructions --------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the routines for encoding instruction opcodes to a -// bytecode stream. -// -//===----------------------------------------------------------------------===// - -#include "WriterInternals.h" -#include "llvm/Module.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Instructions.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "Support/Statistic.h" -#include <algorithm> -using namespace llvm; - -typedef unsigned char uchar; - -// outputInstructionFormat0 - Output those wierd instructions that have a large -// number of operands or have large operands themselves... -// -// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] -// -static void outputInstructionFormat0(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, - unsigned Type, std::deque<uchar> &Out) { - // Opcode must have top two bits clear... - output_vbr(Opcode << 2, Out); // Instruction Opcode ID - output_vbr(Type, Out); // Result type - - unsigned NumArgs = I->getNumOperands(); - output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) || - isa<VAArgInst>(I)), Out); - - if (!isa<GetElementPtrInst>(&I)) { - for (unsigned i = 0; i < NumArgs; ++i) { - int Slot = Table.getSlot(I->getOperand(i)); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr((unsigned)Slot, Out); - } - - if (isa<CastInst>(I) || isa<VAArgInst>(I)) { - int Slot = Table.getSlot(I->getType()); - assert(Slot != -1 && "Cast return type unknown?"); - output_vbr((unsigned)Slot, Out); - } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) { - int Slot = Table.getSlot(VAI->getArgType()); - assert(Slot != -1 && "VarArg argument type unknown?"); - output_vbr((unsigned)Slot, Out); - } - - } else { - int Slot = Table.getSlot(I->getOperand(0)); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr(unsigned(Slot), Out); - - // We need to encode the type of sequential type indices into their slot # - unsigned Idx = 1; - for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I); - Idx != NumArgs; ++TI, ++Idx) { - Slot = Table.getSlot(I->getOperand(Idx)); - assert(Slot >= 0 && "No slot number for value!?!?"); - - if (isa<SequentialType>(*TI)) { - unsigned IdxId; - switch (I->getOperand(Idx)->getType()->getTypeID()) { - default: assert(0 && "Unknown index type!"); - case Type::UIntTyID: IdxId = 0; break; - case Type::IntTyID: IdxId = 1; break; - case Type::ULongTyID: IdxId = 2; break; - case Type::LongTyID: IdxId = 3; break; - } - Slot = (Slot << 2) | IdxId; - } - output_vbr(unsigned(Slot), Out); - } - } - - align32(Out); // We must maintain correct alignment! -} - - -// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls. -// This are more annoying than most because the signature of the call does not -// tell us anything about the types of the arguments in the varargs portion. -// Because of this, we encode (as type 0) all of the argument types explicitly -// before the argument value. This really sucks, but you shouldn't be using -// varargs functions in your code! *death to printf*! -// -// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] -// -static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, unsigned Type, - std::deque<uchar> &Out) { - assert(isa<CallInst>(I) || isa<InvokeInst>(I)); - // Opcode must have top two bits clear... - output_vbr(Opcode << 2, Out); // Instruction Opcode ID - output_vbr(Type, Out); // Result type (varargs type) - - const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType()); - const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); - unsigned NumParams = FTy->getNumParams(); - - unsigned NumFixedOperands; - if (isa<CallInst>(I)) { - // Output an operand for the callee and each fixed argument, then two for - // each variable argument. - NumFixedOperands = 1+NumParams; - } else { - assert(isa<InvokeInst>(I) && "Not call or invoke??"); - // Output an operand for the callee and destinations, then two for each - // variable argument. - NumFixedOperands = 3+NumParams; - } - output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out); - - // The type for the function has already been emitted in the type field of the - // instruction. Just emit the slot # now. - for (unsigned i = 0; i != NumFixedOperands; ++i) { - int Slot = Table.getSlot(I->getOperand(i)); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr((unsigned)Slot, Out); - } - - for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) { - // Output Arg Type ID - int Slot = Table.getSlot(I->getOperand(i)->getType()); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr((unsigned)Slot, Out); - - // Output arg ID itself - Slot = Table.getSlot(I->getOperand(i)); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr((unsigned)Slot, Out); - } - align32(Out); // We must maintain correct alignment! -} - - -// outputInstructionFormat1 - Output one operand instructions, knowing that no -// operand index is >= 2^12. -// -static void outputInstructionFormat1(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, - unsigned *Slots, unsigned Type, - std::deque<uchar> &Out) { - // bits Instruction format: - // -------------------------- - // 01-00: Opcode type, fixed to 1. - // 07-02: Opcode - // 19-08: Resulting type plane - // 31-20: Operand #1 (if set to (2^12-1), then zero operands) - // - unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20); - // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; - output(Bits, Out); -} - - -// outputInstructionFormat2 - Output two operand instructions, knowing that no -// operand index is >= 2^8. -// -static void outputInstructionFormat2(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, - unsigned *Slots, unsigned Type, - std::deque<uchar> &Out) { - // bits Instruction format: - // -------------------------- - // 01-00: Opcode type, fixed to 2. - // 07-02: Opcode - // 15-08: Resulting type plane - // 23-16: Operand #1 - // 31-24: Operand #2 - // - unsigned Bits = 2 | (Opcode << 2) | (Type << 8) | - (Slots[0] << 16) | (Slots[1] << 24); - // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " - // << Slots[1] << endl; - output(Bits, Out); -} - - -// outputInstructionFormat3 - Output three operand instructions, knowing that no -// operand index is >= 2^6. -// -static void outputInstructionFormat3(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, - unsigned *Slots, unsigned Type, - std::deque<uchar> &Out) { - // bits Instruction format: - // -------------------------- - // 01-00: Opcode type, fixed to 3. - // 07-02: Opcode - // 13-08: Resulting type plane - // 19-14: Operand #1 - // 25-20: Operand #2 - // 31-26: Operand #3 - // - unsigned Bits = 3 | (Opcode << 2) | (Type << 8) | - (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26); - //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " - // << Slots[1] << " " << Slots[2] << endl; - output(Bits, Out); -} - -void BytecodeWriter::outputInstruction(const Instruction &I) { - assert(I.getOpcode() < 62 && "Opcode too big???"); - unsigned Opcode = I.getOpcode(); - unsigned NumOperands = I.getNumOperands(); - - // Encode 'volatile load' as 62 and 'volatile store' as 63. - if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) - Opcode = 62; - if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) - Opcode = 63; - - // Figure out which type to encode with the instruction. Typically we want - // the type of the first parameter, as opposed to the type of the instruction - // (for example, with setcc, we always know it returns bool, but the type of - // the first param is actually interesting). But if we have no arguments - // we take the type of the instruction itself. - // - const Type *Ty; - switch (I.getOpcode()) { - case Instruction::Select: - case Instruction::Malloc: - case Instruction::Alloca: - Ty = I.getType(); // These ALWAYS want to encode the return type - break; - case Instruction::Store: - Ty = I.getOperand(1)->getType(); // Encode the pointer type... - assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?"); - break; - default: // Otherwise use the default behavior... - Ty = NumOperands ? I.getOperand(0)->getType() : I.getType(); - break; - } - - unsigned Type; - int Slot = Table.getSlot(Ty); - assert(Slot != -1 && "Type not available!!?!"); - Type = (unsigned)Slot; - - // Varargs calls and invokes are encoded entirely different from any other - // instructions. - if (const CallInst *CI = dyn_cast<CallInst>(&I)){ - const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType()); - if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { - outputInstrVarArgsCall(CI, Opcode, Table, Type, Out); - return; - } - } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { - const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType()); - if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { - outputInstrVarArgsCall(II, Opcode, Table, Type, Out); - return; - } - } - - if (NumOperands <= 3) { - // Make sure that we take the type number into consideration. We don't want - // to overflow the field size for the instruction format we select. - // - unsigned MaxOpSlot = Type; - unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands - - for (unsigned i = 0; i != NumOperands; ++i) { - int slot = Table.getSlot(I.getOperand(i)); - assert(slot != -1 && "Broken bytecode!"); - if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot); - Slots[i] = unsigned(slot); - } - - // Handle the special cases for various instructions... - if (isa<CastInst>(I) || isa<VAArgInst>(I)) { - // Cast has to encode the destination type as the second argument in the - // packet, or else we won't know what type to cast to! - Slots[1] = Table.getSlot(I.getType()); - assert(Slots[1] != ~0U && "Cast return type unknown?"); - if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; - NumOperands++; - } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) { - Slots[1] = Table.getSlot(VANI->getArgType()); - assert(Slots[1] != ~0U && "va_next return type unknown?"); - if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; - NumOperands++; - } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { - // We need to encode the type of sequential type indices into their slot # - unsigned Idx = 1; - for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); - I != E; ++I, ++Idx) - if (isa<SequentialType>(*I)) { - unsigned IdxId; - switch (GEP->getOperand(Idx)->getType()->getTypeID()) { - default: assert(0 && "Unknown index type!"); - case Type::UIntTyID: IdxId = 0; break; - case Type::IntTyID: IdxId = 1; break; - case Type::ULongTyID: IdxId = 2; break; - case Type::LongTyID: IdxId = 3; break; - } - Slots[Idx] = (Slots[Idx] << 2) | IdxId; - if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx]; - } - } - - // Decide which instruction encoding to use. This is determined primarily - // by the number of operands, and secondarily by whether or not the max - // operand will fit into the instruction encoding. More operands == fewer - // bits per operand. - // - switch (NumOperands) { - case 0: - case 1: - if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops - outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out); - return; - } - break; - - case 2: - if (MaxOpSlot < (1 << 8)) { - outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out); - return; - } - break; - - case 3: - if (MaxOpSlot < (1 << 6)) { - outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out); - return; - } - break; - default: - break; - } - } - - // If we weren't handled before here, we either have a large number of - // operands or a large operand index that we are referring to. - outputInstructionFormat0(&I, Opcode, Table, Type, Out); -} diff --git a/lib/Bytecode/Writer/Writer.cpp b/lib/Bytecode/Writer/Writer.cpp index 395386d662..9bc5ce600a 100644 --- a/lib/Bytecode/Writer/Writer.cpp +++ b/lib/Bytecode/Writer/Writer.cpp @@ -10,24 +10,21 @@ // This library implements the functionality defined in llvm/Bytecode/Writer.h // // Note that this file uses an unusual technique of outputting all the bytecode -// to a deque of unsigned char, then copies the deque to an ostream. The +// to a vector of unsigned char, then copies the vector to an ostream. The // reason for this is that we must do "seeking" in the stream to do back- // patching, and some very important ostreams that we want to support (like // pipes) do not support seeking. :( :( :( // -// The choice of the deque data structure is influenced by the extremely fast -// "append" speed, plus the free "seek"/replace in the middle of the stream. I -// didn't use a vector because the stream could end up very large and copying -// the whole thing to reallocate would be kinda silly. -// //===----------------------------------------------------------------------===// #include "WriterInternals.h" #include "llvm/Bytecode/WriteBytecodePass.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" #include "Support/STLExtras.h" #include "Support/Statistic.h" #include <cstring> @@ -39,15 +36,720 @@ static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer"); static Statistic<> BytesWritten("bytecodewriter", "Number of bytecode bytes written"); -BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M) +//===----------------------------------------------------------------------===// +//=== Output Primitives ===// +//===----------------------------------------------------------------------===// + +// output - If a position is specified, it must be in the valid portion of the +// string... note that this should be inlined always so only the relevant IF +// body should be included. +inline void BytecodeWriter::output(unsigned i, int pos) { + if (pos == -1) { // Be endian clean, little endian is our friend + Out.push_back((unsigned char)i); + Out.push_back((unsigned char)(i >> 8)); + Out.push_back((unsigned char)(i >> 16)); + Out.push_back((unsigned char)(i >> 24)); + } else { + Out[pos ] = (unsigned char)i; + Out[pos+1] = (unsigned char)(i >> 8); + Out[pos+2] = (unsigned char)(i >> 16); + Out[pos+3] = (unsigned char)(i >> 24); + } +} + +inline void BytecodeWriter::output(int i) { + output((unsigned)i); +} + +/// output_vbr - Output an unsigned value, by using the least number of bytes +/// possible. This is useful because many of our "infinite" values are really +/// very small most of the time; but can be large a few times. +/// Data format used: If you read a byte with the high bit set, use the low +/// seven bits as data and then read another byte. Note that using this may +/// cause the output buffer to become unaligned. +inline void BytecodeWriter::output_vbr(uint64_t i) { + while (1) { + if (i < 0x80) { // done? + Out.push_back((unsigned char)i); // We know the high bit is clear... + return; + } + + // Nope, we are bigger than a character, output the next 7 bits and set the + // high bit to say that there is more coming... + Out.push_back(0x80 | ((unsigned char)i & 0x7F)); + i >>= 7; // Shift out 7 bits now... + } +} + +inline void BytecodeWriter::output_vbr(unsigned i) { + while (1) { + if (i < 0x80) { // done? + Out.push_back((unsigned char)i); // We know the high bit is clear... + return; + } + + // Nope, we are bigger than a character, output the next 7 bits and set the + // high bit to say that there is more coming... + Out.push_back(0x80 | ((unsigned char)i & 0x7F)); + i >>= 7; // Shift out 7 bits now... + } +} + +inline void BytecodeWriter::output_typeid(unsigned i) { + if (i <= 0x00FFFFFF) + this->output_vbr(i); + else { + this->output_vbr(0x00FFFFFF); + this->output_vbr(i); + } +} + +inline void BytecodeWriter::output_vbr(int64_t i) { + if (i < 0) + output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit... + else + output_vbr((uint64_t)i << 1); // Low order bit is clear. +} + + +inline void BytecodeWriter::output_vbr(int i) { + if (i < 0) + output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit... + else + output_vbr((unsigned)i << 1); // Low order bit is clear. +} + +// align32 - emit the minimal number of bytes that will bring us to 32 bit +// alignment... +// +inline void BytecodeWriter::align32() { + int NumPads = (4-(Out.size() & 3)) & 3; // Bytes to get padding to 32 bits + while (NumPads--) Out.push_back((unsigned char)0xAB); +} + +inline void BytecodeWriter::output(const std::string &s, bool Aligned ) { + unsigned Len = s.length(); + output_vbr(Len ); // Strings may have an arbitrary length... + Out.insert(Out.end(), s.begin(), s.end()); + + if (Aligned) + align32(); // Make sure we are now aligned... +} + +inline void BytecodeWriter::output_data(const void *Ptr, const void *End) { + Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End); +} + +inline void BytecodeWriter::output_float(float& FloatVal) { + /// FIXME: This isn't optimal, it has size problems on some platforms + /// where FP is not IEEE. + union { + float f; + uint32_t i; + } FloatUnion; + FloatUnion.f = FloatVal; + Out.push_back( static_cast<unsigned char>( (FloatUnion.i & 0xFF ))); + Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 8) & 0xFF)); + Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 16) & 0xFF)); + Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 24) & 0xFF)); +} + +inline void BytecodeWriter::output_double(double& DoubleVal) { + /// FIXME: This isn't optimal, it has size problems on some platforms + /// where FP is not IEEE. + union { + double d; + uint64_t i; + } DoubleUnion; + DoubleUnion.d = DoubleVal; + Out.push_back( static_cast<unsigned char>( (DoubleUnion.i & 0xFF ))); + Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 8) & 0xFF)); + Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 16) & 0xFF)); + Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 24) & 0xFF)); + Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 32) & 0xFF)); + Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 40) & 0xFF)); + Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 48) & 0xFF)); + Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 56) & 0xFF)); +} + +inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter& w, + bool elideIfEmpty, bool hasLongFormat ) + : Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){ + + if (HasLongFormat) { + w.output(ID); + w.output(0U); // For length in long format + } else { + w.output(0U); /// Place holder for ID and length for this block + } + Loc = w.size(); +} + +inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out + // of scope... + if (Loc == Writer.size() && ElideIfEmpty) { + // If the block is empty, and we are allowed to, do not emit the block at + // all! + Writer.resize(Writer.size()-(HasLongFormat?8:4)); + return; + } + + //cerr << "OldLoc = " << Loc << " NewLoc = " << NewLoc << " diff = " + // << (NewLoc-Loc) << endl; + if (HasLongFormat) + Writer.output(unsigned(Writer.size()-Loc), int(Loc-4)); + else + Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4)); + Writer.align32(); // Blocks must ALWAYS be aligned +} + +//===----------------------------------------------------------------------===// +//=== Constant Output ===// +//===----------------------------------------------------------------------===// + +void BytecodeWriter::outputType(const Type *T) { + output_vbr((unsigned)T->getTypeID()); + + // That's all there is to handling primitive types... + if (T->isPrimitiveType()) { + return; // We might do this if we alias a prim type: %x = type int + } + + switch (T->getTypeID()) { // Handle derived types now. + case Type::FunctionTyID: { + const FunctionType *MT = cast<FunctionType>(T); + int Slot = Table.getSlot(MT->getReturnType()); + assert(Slot != -1 && "Type used but not available!!"); + output_typeid((unsigned)Slot); + + // Output the number of arguments to function (+1 if varargs): + output_vbr((unsigned)MT->getNumParams()+MT->isVarArg()); + + // Output all of the arguments... + FunctionType::param_iterator I = MT->param_begin(); + for (; I != MT->param_end(); ++I) { + Slot = Table.getSlot(*I); + assert(Slot != -1 && "Type used but not available!!"); + output_typeid((unsigned)Slot); + } + + // Terminate list with VoidTy if we are a varargs function... + if (MT->isVarArg()) + output_typeid((unsigned)Type::VoidTyID); + break; + } + + case Type::ArrayTyID: { + const ArrayType *AT = cast<ArrayType>(T); + int Slot = Table.getSlot(AT->getElementType()); + assert(Slot != -1 && "Type used but not available!!"); + output_typeid((unsigned)Slot); + //std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl; + + output_vbr(AT->getNumElements()); + break; + } + + case Type::StructTyID: { + const StructType *ST = cast<StructType>(T); + + // Output all of the element types... + for (StructType::element_iterator I = ST->element_begin(), + E = ST->element_end(); I != E; ++I) { + int Slot = Table.getSlot(*I); + assert(Slot != -1 && "Type used but not available!!"); + output_typeid((unsigned)Slot); + } + + // Terminate list with VoidTy + output_typeid((unsigned)Type::VoidTyID); + break; + } + + case Type::PointerTyID: { + const PointerType *PT = cast<PointerType>(T); + int Slot = Table.getSlot(PT->getElementType()); + assert(Slot != -1 && "Type used but not available!!"); + output_typeid((unsigned)Slot); + break; + } + + case Type::OpaqueTyID: { + // No need to emit anything, just the count of opaque types is enough. + break; + } + + //case Type::PackedTyID: + default: + std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" + << " Type '" << T->getDescription() << "'\n"; + break; + } +} + +void BytecodeWriter::outputConstant(const Constant *CPV) { + assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) && + "Shouldn't output null constants!"); + + // We must check for a ConstantExpr before switching by type because + // a ConstantExpr can be of any type, and has no explicit value. + // + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { + // FIXME: Encoding of constant exprs could be much more compact! + assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands"); + output_vbr(CE->getNumOperands()); // flags as an expr + output_vbr(CE->getOpcode()); // flags as an expr + + for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){ + int Slot = Table.getSlot(*OI); + assert(Slot != -1 && "Unknown constant used in ConstantExpr!!"); + output_vbr((unsigned)Slot); + Slot = Table.getSlot((*OI)->getType()); + output_typeid((unsigned)Slot); + } + return; + } el |