aboutsummaryrefslogtreecommitdiff
path: root/lib/Bytecode/Writer
diff options
context:
space:
mode:
authorReid Spencer <rspencer@reidspencer.com>2004-07-25 18:07:36 +0000
committerReid Spencer <rspencer@reidspencer.com>2004-07-25 18:07:36 +0000
commitad89bd6a1a74d3d3223d9eb23e16f10c02f836fa (patch)
treea8ec89130546e3cc17246b1c143eb9143d8a1b02 /lib/Bytecode/Writer
parent0be13e7f1468ba101188a5e1b1f1a20a676b3569 (diff)
bug 263:
- encode/decode target triple and dependent libraries bug 401: - fix encoding/decoding of FP values to be little-endian only bug 402: - initial (compatible) cut at 24-bit types instead of 32-bit - reduce size of block headers by 50% Other: - cleanup Writer by consolidating to one compilation unit, rem. other files - use a std::vector instead of std::deque so the buffer can be allocated in multiples of 64KByte chunks rather than in multiples of some smaller (default) number. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15210 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Bytecode/Writer')
-rw-r--r--lib/Bytecode/Writer/ConstantWriter.cpp220
-rw-r--r--lib/Bytecode/Writer/InstructionWriter.cpp348
-rw-r--r--lib/Bytecode/Writer/Writer.cpp809
-rw-r--r--lib/Bytecode/Writer/WriterInternals.h97
-rw-r--r--lib/Bytecode/Writer/WriterPrimitives.h141
5 files changed, 832 insertions, 783 deletions
diff --git a/lib/Bytecode/Writer/ConstantWriter.cpp b/lib/Bytecode/Writer/ConstantWriter.cpp
deleted file mode 100644
index 7aa8febda3..0000000000
--- a/lib/Bytecode/Writer/ConstantWriter.cpp
+++ /dev/null
@@ -1,220 +0,0 @@
-//===-- ConstantWriter.cpp - Functions for writing constants --------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the routines for encoding constants to a bytecode
-// stream.
-//
-//===----------------------------------------------------------------------===//
-
-#include "WriterInternals.h"
-#include "llvm/Constants.h"
-#include "llvm/SymbolTable.h"
-#include "llvm/DerivedTypes.h"
-#include "Support/Statistic.h"
-using namespace llvm;
-
-void BytecodeWriter::outputType(const Type *T) {
- output_vbr((unsigned)T->getTypeID(), Out);
-
- // That's all there is to handling primitive types...
- if (T->isPrimitiveType()) {
- return; // We might do this if we alias a prim type: %x = type int
- }
-
- switch (T->getTypeID()) { // Handle derived types now.
- case Type::FunctionTyID: {
- const FunctionType *MT = cast<FunctionType>(T);
- int Slot = Table.getSlot(MT->getReturnType());
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
-
- // Output the number of arguments to function (+1 if varargs):
- output_vbr((unsigned)MT->getNumParams()+MT->isVarArg(), Out);
-
- // Output all of the arguments...
- FunctionType::param_iterator I = MT->param_begin();
- for (; I != MT->param_end(); ++I) {
- Slot = Table.getSlot(*I);
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
- }
-
- // Terminate list with VoidTy if we are a varargs function...
- if (MT->isVarArg())
- output_vbr((unsigned)Type::VoidTyID, Out);
- break;
- }
-
- case Type::ArrayTyID: {
- const ArrayType *AT = cast<ArrayType>(T);
- int Slot = Table.getSlot(AT->getElementType());
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
- //std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl;
-
- output_vbr(AT->getNumElements(), Out);
- break;
- }
-
- case Type::StructTyID: {
- const StructType *ST = cast<StructType>(T);
-
- // Output all of the element types...
- for (StructType::element_iterator I = ST->element_begin(),
- E = ST->element_end(); I != E; ++I) {
- int Slot = Table.getSlot(*I);
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
- }
-
- // Terminate list with VoidTy
- output_vbr((unsigned)Type::VoidTyID, Out);
- break;
- }
-
- case Type::PointerTyID: {
- const PointerType *PT = cast<PointerType>(T);
- int Slot = Table.getSlot(PT->getElementType());
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
- break;
- }
-
- case Type::OpaqueTyID: {
- // No need to emit anything, just the count of opaque types is enough.
- break;
- }
-
- //case Type::PackedTyID:
- default:
- std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
- << " Type '" << T->getDescription() << "'\n";
- break;
- }
-}
-
-void BytecodeWriter::outputConstant(const Constant *CPV) {
- assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) &&
- "Shouldn't output null constants!");
-
- // We must check for a ConstantExpr before switching by type because
- // a ConstantExpr can be of any type, and has no explicit value.
- //
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
- // FIXME: Encoding of constant exprs could be much more compact!
- assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
- output_vbr(CE->getNumOperands(), Out); // flags as an expr
- output_vbr(CE->getOpcode(), Out); // flags as an expr
-
- for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
- int Slot = Table.getSlot(*OI);
- assert(Slot != -1 && "Unknown constant used in ConstantExpr!!");
- output_vbr((unsigned)Slot, Out);
- Slot = Table.getSlot((*OI)->getType());
- output_vbr((unsigned)Slot, Out);
- }
- return;
- } else {
- output_vbr(0U, Out); // flag as not a ConstantExpr
- }
-
- switch (CPV->getType()->getTypeID()) {
- case Type::BoolTyID: // Boolean Types
- if (cast<ConstantBool>(CPV)->getValue())
- output_vbr(1U, Out);
- else
- output_vbr(0U, Out);
- break;
-
- case Type::UByteTyID: // Unsigned integer types...
- case Type::UShortTyID:
- case Type::UIntTyID:
- case Type::ULongTyID:
- output_vbr(cast<ConstantUInt>(CPV)->getValue(), Out);
- break;
-
- case Type::SByteTyID: // Signed integer types...
- case Type::ShortTyID:
- case Type::IntTyID:
- case Type::LongTyID:
- output_vbr(cast<ConstantSInt>(CPV)->getValue(), Out);
- break;
-
- case Type::ArrayTyID: {
- const ConstantArray *CPA = cast<ConstantArray>(CPV);
- assert(!CPA->isString() && "Constant strings should be handled specially!");
-
- for (unsigned i = 0; i != CPA->getNumOperands(); ++i) {
- int Slot = Table.getSlot(CPA->getOperand(i));
- assert(Slot != -1 && "Constant used but not available!!");
- output_vbr((unsigned)Slot, Out);
- }
- break;
- }
-
- case Type::StructTyID: {
- const ConstantStruct *CPS = cast<ConstantStruct>(CPV);
- const std::vector<Use> &Vals = CPS->getValues();
-
- for (unsigned i = 0; i < Vals.size(); ++i) {
- int Slot = Table.getSlot(Vals[i]);
- assert(Slot != -1 && "Constant used but not available!!");
- output_vbr((unsigned)Slot, Out);
- }
- break;
- }
-
- case Type::PointerTyID:
- assert(0 && "No non-null, non-constant-expr constants allowed!");
- abort();
-
- case Type::FloatTyID: { // Floating point types...
- float Tmp = (float)cast<ConstantFP>(CPV)->getValue();
- output_float(Tmp, Out);
- break;
- }
- case Type::DoubleTyID: {
- double Tmp = cast<ConstantFP>(CPV)->getValue();
- output_double(Tmp, Out);
- break;
- }
-
- case Type::VoidTyID:
- case Type::LabelTyID:
- default:
- std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
- << " type '" << *CPV->getType() << "'\n";
- break;
- }
- return;
-}
-
-void BytecodeWriter::outputConstantStrings() {
- SlotCalculator::string_iterator I = Table.string_begin();
- SlotCalculator::string_iterator E = Table.string_end();
- if (I == E) return; // No strings to emit
-
- // If we have != 0 strings to emit, output them now. Strings are emitted into
- // the 'void' type plane.
- output_vbr(unsigned(E-I), Out);
- output_vbr(Type::VoidTyID, Out);
-
- // Emit all of the strings.
- for (I = Table.string_begin(); I != E; ++I) {
- const ConstantArray *Str = *I;
- int Slot = Table.getSlot(Str->getType());
- assert(Slot != -1 && "Constant string of unknown type?");
- output_vbr((unsigned)Slot, Out);
-
- // Now that we emitted the type (which indicates the size of the string),
- // emit all of the characters.
- std::string Val = Str->getAsString();
- output_data(Val.c_str(), Val.c_str()+Val.size(), Out);
- }
-}
diff --git a/lib/Bytecode/Writer/InstructionWriter.cpp b/lib/Bytecode/Writer/InstructionWriter.cpp
deleted file mode 100644
index 188136718d..0000000000
--- a/lib/Bytecode/Writer/InstructionWriter.cpp
+++ /dev/null
@@ -1,348 +0,0 @@
-//===-- InstructionWriter.cpp - Functions for writing instructions --------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the routines for encoding instruction opcodes to a
-// bytecode stream.
-//
-//===----------------------------------------------------------------------===//
-
-#include "WriterInternals.h"
-#include "llvm/Module.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "Support/Statistic.h"
-#include <algorithm>
-using namespace llvm;
-
-typedef unsigned char uchar;
-
-// outputInstructionFormat0 - Output those wierd instructions that have a large
-// number of operands or have large operands themselves...
-//
-// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
-//
-static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table,
- unsigned Type, std::deque<uchar> &Out) {
- // Opcode must have top two bits clear...
- output_vbr(Opcode << 2, Out); // Instruction Opcode ID
- output_vbr(Type, Out); // Result type
-
- unsigned NumArgs = I->getNumOperands();
- output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
- isa<VAArgInst>(I)), Out);
-
- if (!isa<GetElementPtrInst>(&I)) {
- for (unsigned i = 0; i < NumArgs; ++i) {
- int Slot = Table.getSlot(I->getOperand(i));
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr((unsigned)Slot, Out);
- }
-
- if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
- int Slot = Table.getSlot(I->getType());
- assert(Slot != -1 && "Cast return type unknown?");
- output_vbr((unsigned)Slot, Out);
- } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
- int Slot = Table.getSlot(VAI->getArgType());
- assert(Slot != -1 && "VarArg argument type unknown?");
- output_vbr((unsigned)Slot, Out);
- }
-
- } else {
- int Slot = Table.getSlot(I->getOperand(0));
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr(unsigned(Slot), Out);
-
- // We need to encode the type of sequential type indices into their slot #
- unsigned Idx = 1;
- for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
- Idx != NumArgs; ++TI, ++Idx) {
- Slot = Table.getSlot(I->getOperand(Idx));
- assert(Slot >= 0 && "No slot number for value!?!?");
-
- if (isa<SequentialType>(*TI)) {
- unsigned IdxId;
- switch (I->getOperand(Idx)->getType()->getTypeID()) {
- default: assert(0 && "Unknown index type!");
- case Type::UIntTyID: IdxId = 0; break;
- case Type::IntTyID: IdxId = 1; break;
- case Type::ULongTyID: IdxId = 2; break;
- case Type::LongTyID: IdxId = 3; break;
- }
- Slot = (Slot << 2) | IdxId;
- }
- output_vbr(unsigned(Slot), Out);
- }
- }
-
- align32(Out); // We must maintain correct alignment!
-}
-
-
-// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
-// This are more annoying than most because the signature of the call does not
-// tell us anything about the types of the arguments in the varargs portion.
-// Because of this, we encode (as type 0) all of the argument types explicitly
-// before the argument value. This really sucks, but you shouldn't be using
-// varargs functions in your code! *death to printf*!
-//
-// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
-//
-static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table, unsigned Type,
- std::deque<uchar> &Out) {
- assert(isa<CallInst>(I) || isa<InvokeInst>(I));
- // Opcode must have top two bits clear...
- output_vbr(Opcode << 2, Out); // Instruction Opcode ID
- output_vbr(Type, Out); // Result type (varargs type)
-
- const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- unsigned NumParams = FTy->getNumParams();
-
- unsigned NumFixedOperands;
- if (isa<CallInst>(I)) {
- // Output an operand for the callee and each fixed argument, then two for
- // each variable argument.
- NumFixedOperands = 1+NumParams;
- } else {
- assert(isa<InvokeInst>(I) && "Not call or invoke??");
- // Output an operand for the callee and destinations, then two for each
- // variable argument.
- NumFixedOperands = 3+NumParams;
- }
- output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out);
-
- // The type for the function has already been emitted in the type field of the
- // instruction. Just emit the slot # now.
- for (unsigned i = 0; i != NumFixedOperands; ++i) {
- int Slot = Table.getSlot(I->getOperand(i));
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr((unsigned)Slot, Out);
- }
-
- for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
- // Output Arg Type ID
- int Slot = Table.getSlot(I->getOperand(i)->getType());
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr((unsigned)Slot, Out);
-
- // Output arg ID itself
- Slot = Table.getSlot(I->getOperand(i));
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr((unsigned)Slot, Out);
- }
- align32(Out); // We must maintain correct alignment!
-}
-
-
-// outputInstructionFormat1 - Output one operand instructions, knowing that no
-// operand index is >= 2^12.
-//
-static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table,
- unsigned *Slots, unsigned Type,
- std::deque<uchar> &Out) {
- // bits Instruction format:
- // --------------------------
- // 01-00: Opcode type, fixed to 1.
- // 07-02: Opcode
- // 19-08: Resulting type plane
- // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
- //
- unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
- // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
- output(Bits, Out);
-}
-
-
-// outputInstructionFormat2 - Output two operand instructions, knowing that no
-// operand index is >= 2^8.
-//
-static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table,
- unsigned *Slots, unsigned Type,
- std::deque<uchar> &Out) {
- // bits Instruction format:
- // --------------------------
- // 01-00: Opcode type, fixed to 2.
- // 07-02: Opcode
- // 15-08: Resulting type plane
- // 23-16: Operand #1
- // 31-24: Operand #2
- //
- unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
- (Slots[0] << 16) | (Slots[1] << 24);
- // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " "
- // << Slots[1] << endl;
- output(Bits, Out);
-}
-
-
-// outputInstructionFormat3 - Output three operand instructions, knowing that no
-// operand index is >= 2^6.
-//
-static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table,
- unsigned *Slots, unsigned Type,
- std::deque<uchar> &Out) {
- // bits Instruction format:
- // --------------------------
- // 01-00: Opcode type, fixed to 3.
- // 07-02: Opcode
- // 13-08: Resulting type plane
- // 19-14: Operand #1
- // 25-20: Operand #2
- // 31-26: Operand #3
- //
- unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
- (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
- //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " "
- // << Slots[1] << " " << Slots[2] << endl;
- output(Bits, Out);
-}
-
-void BytecodeWriter::outputInstruction(const Instruction &I) {
- assert(I.getOpcode() < 62 && "Opcode too big???");
- unsigned Opcode = I.getOpcode();
- unsigned NumOperands = I.getNumOperands();
-
- // Encode 'volatile load' as 62 and 'volatile store' as 63.
- if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
- Opcode = 62;
- if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
- Opcode = 63;
-
- // Figure out which type to encode with the instruction. Typically we want
- // the type of the first parameter, as opposed to the type of the instruction
- // (for example, with setcc, we always know it returns bool, but the type of
- // the first param is actually interesting). But if we have no arguments
- // we take the type of the instruction itself.
- //
- const Type *Ty;
- switch (I.getOpcode()) {
- case Instruction::Select:
- case Instruction::Malloc:
- case Instruction::Alloca:
- Ty = I.getType(); // These ALWAYS want to encode the return type
- break;
- case Instruction::Store:
- Ty = I.getOperand(1)->getType(); // Encode the pointer type...
- assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
- break;
- default: // Otherwise use the default behavior...
- Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
- break;
- }
-
- unsigned Type;
- int Slot = Table.getSlot(Ty);
- assert(Slot != -1 && "Type not available!!?!");
- Type = (unsigned)Slot;
-
- // Varargs calls and invokes are encoded entirely different from any other
- // instructions.
- if (const CallInst *CI = dyn_cast<CallInst>(&I)){
- const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
- if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
- outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
- return;
- }
- } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
- const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
- if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
- outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
- return;
- }
- }
-
- if (NumOperands <= 3) {
- // Make sure that we take the type number into consideration. We don't want
- // to overflow the field size for the instruction format we select.
- //
- unsigned MaxOpSlot = Type;
- unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
-
- for (unsigned i = 0; i != NumOperands; ++i) {
- int slot = Table.getSlot(I.getOperand(i));
- assert(slot != -1 && "Broken bytecode!");
- if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
- Slots[i] = unsigned(slot);
- }
-
- // Handle the special cases for various instructions...
- if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
- // Cast has to encode the destination type as the second argument in the
- // packet, or else we won't know what type to cast to!
- Slots[1] = Table.getSlot(I.getType());
- assert(Slots[1] != ~0U && "Cast return type unknown?");
- if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
- NumOperands++;
- } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
- Slots[1] = Table.getSlot(VANI->getArgType());
- assert(Slots[1] != ~0U && "va_next return type unknown?");
- if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
- NumOperands++;
- } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- // We need to encode the type of sequential type indices into their slot #
- unsigned Idx = 1;
- for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
- I != E; ++I, ++Idx)
- if (isa<SequentialType>(*I)) {
- unsigned IdxId;
- switch (GEP->getOperand(Idx)->getType()->getTypeID()) {
- default: assert(0 && "Unknown index type!");
- case Type::UIntTyID: IdxId = 0; break;
- case Type::IntTyID: IdxId = 1; break;
- case Type::ULongTyID: IdxId = 2; break;
- case Type::LongTyID: IdxId = 3; break;
- }
- Slots[Idx] = (Slots[Idx] << 2) | IdxId;
- if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
- }
- }
-
- // Decide which instruction encoding to use. This is determined primarily
- // by the number of operands, and secondarily by whether or not the max
- // operand will fit into the instruction encoding. More operands == fewer
- // bits per operand.
- //
- switch (NumOperands) {
- case 0:
- case 1:
- if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
- outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out);
- return;
- }
- break;
-
- case 2:
- if (MaxOpSlot < (1 << 8)) {
- outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out);
- return;
- }
- break;
-
- case 3:
- if (MaxOpSlot < (1 << 6)) {
- outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out);
- return;
- }
- break;
- default:
- break;
- }
- }
-
- // If we weren't handled before here, we either have a large number of
- // operands or a large operand index that we are referring to.
- outputInstructionFormat0(&I, Opcode, Table, Type, Out);
-}
diff --git a/lib/Bytecode/Writer/Writer.cpp b/lib/Bytecode/Writer/Writer.cpp
index 395386d662..9bc5ce600a 100644
--- a/lib/Bytecode/Writer/Writer.cpp
+++ b/lib/Bytecode/Writer/Writer.cpp
@@ -10,24 +10,21 @@
// This library implements the functionality defined in llvm/Bytecode/Writer.h
//
// Note that this file uses an unusual technique of outputting all the bytecode
-// to a deque of unsigned char, then copies the deque to an ostream. The
+// to a vector of unsigned char, then copies the vector to an ostream. The
// reason for this is that we must do "seeking" in the stream to do back-
// patching, and some very important ostreams that we want to support (like
// pipes) do not support seeking. :( :( :(
//
-// The choice of the deque data structure is influenced by the extremely fast
-// "append" speed, plus the free "seek"/replace in the middle of the stream. I
-// didn't use a vector because the stream could end up very large and copying
-// the whole thing to reallocate would be kinda silly.
-//
//===----------------------------------------------------------------------===//
#include "WriterInternals.h"
#include "llvm/Bytecode/WriteBytecodePass.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "Support/STLExtras.h"
#include "Support/Statistic.h"
#include <cstring>
@@ -39,15 +36,720 @@ static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer");
static Statistic<>
BytesWritten("bytecodewriter", "Number of bytecode bytes written");
-BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M)
+//===----------------------------------------------------------------------===//
+//=== Output Primitives ===//
+//===----------------------------------------------------------------------===//
+
+// output - If a position is specified, it must be in the valid portion of the
+// string... note that this should be inlined always so only the relevant IF
+// body should be included.
+inline void BytecodeWriter::output(unsigned i, int pos) {
+ if (pos == -1) { // Be endian clean, little endian is our friend
+ Out.push_back((unsigned char)i);
+ Out.push_back((unsigned char)(i >> 8));
+ Out.push_back((unsigned char)(i >> 16));
+ Out.push_back((unsigned char)(i >> 24));
+ } else {
+ Out[pos ] = (unsigned char)i;
+ Out[pos+1] = (unsigned char)(i >> 8);
+ Out[pos+2] = (unsigned char)(i >> 16);
+ Out[pos+3] = (unsigned char)(i >> 24);
+ }
+}
+
+inline void BytecodeWriter::output(int i) {
+ output((unsigned)i);
+}
+
+/// output_vbr - Output an unsigned value, by using the least number of bytes
+/// possible. This is useful because many of our "infinite" values are really
+/// very small most of the time; but can be large a few times.
+/// Data format used: If you read a byte with the high bit set, use the low
+/// seven bits as data and then read another byte. Note that using this may
+/// cause the output buffer to become unaligned.
+inline void BytecodeWriter::output_vbr(uint64_t i) {
+ while (1) {
+ if (i < 0x80) { // done?
+ Out.push_back((unsigned char)i); // We know the high bit is clear...
+ return;
+ }
+
+ // Nope, we are bigger than a character, output the next 7 bits and set the
+ // high bit to say that there is more coming...
+ Out.push_back(0x80 | ((unsigned char)i & 0x7F));
+ i >>= 7; // Shift out 7 bits now...
+ }
+}
+
+inline void BytecodeWriter::output_vbr(unsigned i) {
+ while (1) {
+ if (i < 0x80) { // done?
+ Out.push_back((unsigned char)i); // We know the high bit is clear...
+ return;
+ }
+
+ // Nope, we are bigger than a character, output the next 7 bits and set the
+ // high bit to say that there is more coming...
+ Out.push_back(0x80 | ((unsigned char)i & 0x7F));
+ i >>= 7; // Shift out 7 bits now...
+ }
+}
+
+inline void BytecodeWriter::output_typeid(unsigned i) {
+ if (i <= 0x00FFFFFF)
+ this->output_vbr(i);
+ else {
+ this->output_vbr(0x00FFFFFF);
+ this->output_vbr(i);
+ }
+}
+
+inline void BytecodeWriter::output_vbr(int64_t i) {
+ if (i < 0)
+ output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit...
+ else
+ output_vbr((uint64_t)i << 1); // Low order bit is clear.
+}
+
+
+inline void BytecodeWriter::output_vbr(int i) {
+ if (i < 0)
+ output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit...
+ else
+ output_vbr((unsigned)i << 1); // Low order bit is clear.
+}
+
+// align32 - emit the minimal number of bytes that will bring us to 32 bit
+// alignment...
+//
+inline void BytecodeWriter::align32() {
+ int NumPads = (4-(Out.size() & 3)) & 3; // Bytes to get padding to 32 bits
+ while (NumPads--) Out.push_back((unsigned char)0xAB);
+}
+
+inline void BytecodeWriter::output(const std::string &s, bool Aligned ) {
+ unsigned Len = s.length();
+ output_vbr(Len ); // Strings may have an arbitrary length...
+ Out.insert(Out.end(), s.begin(), s.end());
+
+ if (Aligned)
+ align32(); // Make sure we are now aligned...
+}
+
+inline void BytecodeWriter::output_data(const void *Ptr, const void *End) {
+ Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End);
+}
+
+inline void BytecodeWriter::output_float(float& FloatVal) {
+ /// FIXME: This isn't optimal, it has size problems on some platforms
+ /// where FP is not IEEE.
+ union {
+ float f;
+ uint32_t i;
+ } FloatUnion;
+ FloatUnion.f = FloatVal;
+ Out.push_back( static_cast<unsigned char>( (FloatUnion.i & 0xFF )));
+ Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 8) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 16) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 24) & 0xFF));
+}
+
+inline void BytecodeWriter::output_double(double& DoubleVal) {
+ /// FIXME: This isn't optimal, it has size problems on some platforms
+ /// where FP is not IEEE.
+ union {
+ double d;
+ uint64_t i;
+ } DoubleUnion;
+ DoubleUnion.d = DoubleVal;
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i & 0xFF )));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 8) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 16) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 24) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 32) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 40) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 48) & 0xFF));
+ Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 56) & 0xFF));
+}
+
+inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter& w,
+ bool elideIfEmpty, bool hasLongFormat )
+ : Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){
+
+ if (HasLongFormat) {
+ w.output(ID);
+ w.output(0U); // For length in long format
+ } else {
+ w.output(0U); /// Place holder for ID and length for this block
+ }
+ Loc = w.size();
+}
+
+inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out
+ // of scope...
+ if (Loc == Writer.size() && ElideIfEmpty) {
+ // If the block is empty, and we are allowed to, do not emit the block at
+ // all!
+ Writer.resize(Writer.size()-(HasLongFormat?8:4));
+ return;
+ }
+
+ //cerr << "OldLoc = " << Loc << " NewLoc = " << NewLoc << " diff = "
+ // << (NewLoc-Loc) << endl;
+ if (HasLongFormat)
+ Writer.output(unsigned(Writer.size()-Loc), int(Loc-4));
+ else
+ Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4));
+ Writer.align32(); // Blocks must ALWAYS be aligned
+}
+
+//===----------------------------------------------------------------------===//
+//=== Constant Output ===//
+//===----------------------------------------------------------------------===//
+
+void BytecodeWriter::outputType(const Type *T) {
+ output_vbr((unsigned)T->getTypeID());
+
+ // That's all there is to handling primitive types...
+ if (T->isPrimitiveType()) {
+ return; // We might do this if we alias a prim type: %x = type int
+ }
+
+ switch (T->getTypeID()) { // Handle derived types now.
+ case Type::FunctionTyID: {
+ const FunctionType *MT = cast<FunctionType>(T);
+ int Slot = Table.getSlot(MT->getReturnType());
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+
+ // Output the number of arguments to function (+1 if varargs):
+ output_vbr((unsigned)MT->getNumParams()+MT->isVarArg());
+
+ // Output all of the arguments...
+ FunctionType::param_iterator I = MT->param_begin();
+ for (; I != MT->param_end(); ++I) {
+ Slot = Table.getSlot(*I);
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+ }
+
+ // Terminate list with VoidTy if we are a varargs function...
+ if (MT->isVarArg())
+ output_typeid((unsigned)Type::VoidTyID);
+ break;
+ }
+
+ case Type::ArrayTyID: {
+ const ArrayType *AT = cast<ArrayType>(T);
+ int Slot = Table.getSlot(AT->getElementType());
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+ //std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl;
+
+ output_vbr(AT->getNumElements());
+ break;
+ }
+
+ case Type::StructTyID: {
+ const StructType *ST = cast<StructType>(T);
+
+ // Output all of the element types...
+ for (StructType::element_iterator I = ST->element_begin(),
+ E = ST->element_end(); I != E; ++I) {
+ int Slot = Table.getSlot(*I);
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+ }
+
+ // Terminate list with VoidTy
+ output_typeid((unsigned)Type::VoidTyID);
+ break;
+ }
+
+ case Type::PointerTyID: {
+ const PointerType *PT = cast<PointerType>(T);
+ int Slot = Table.getSlot(PT->getElementType());
+ assert(Slot != -1 && "Type used but not available!!");
+ output_typeid((unsigned)Slot);
+ break;
+ }
+
+ case Type::OpaqueTyID: {
+ // No need to emit anything, just the count of opaque types is enough.
+ break;
+ }
+
+ //case Type::PackedTyID:
+ default:
+ std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
+ << " Type '" << T->getDescription() << "'\n";
+ break;
+ }
+}
+
+void BytecodeWriter::outputConstant(const Constant *CPV) {
+ assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) &&
+ "Shouldn't output null constants!");
+
+ // We must check for a ConstantExpr before switching by type because
+ // a ConstantExpr can be of any type, and has no explicit value.
+ //
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
+ // FIXME: Encoding of constant exprs could be much more compact!
+ assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
+ output_vbr(CE->getNumOperands()); // flags as an expr
+ output_vbr(CE->getOpcode()); // flags as an expr
+
+ for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
+ int Slot = Table.getSlot(*OI);
+ assert(Slot != -1 && "Unknown constant used in ConstantExpr!!");
+ output_vbr((unsigned)Slot);
+ Slot = Table.getSlot((*OI)->getType());
+ output_typeid((unsigned)Slot);
+ }
+ return;
+ } el