aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
authorNick Lewycky <nicholas@mxc.ca>2011-10-04 06:51:26 +0000
committerNick Lewycky <nicholas@mxc.ca>2011-10-04 06:51:26 +0000
commite97728ecf8a0ee69562cc0e7880cfaa65200c624 (patch)
treeefec7199224c5861d0342b7b7bc827e30ce60947 /lib/Analysis/ScalarEvolution.cpp
parent6744a17dcfb941d9fdd869b9f06e20660e18ff88 (diff)
The product of two chrec's can always be represented as a chrec.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@141066 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--lib/Analysis/ScalarEvolution.cpp104
1 files changed, 72 insertions, 32 deletions
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index f35f11615f..ff2cf12cba 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -1812,6 +1812,38 @@ const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
return S;
}
+static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
+ uint64_t k = i*j;
+ if (j > 1 && k / j != i) Overflow = true;
+ return k;
+}
+
+/// Compute the result of "n choose k", the binomial coefficient. If an
+/// intermediate computation overflows, Overflow will be set and the return will
+/// be garbage. Overflow is not cleared on absense of overflow.
+static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
+ // We use the multiplicative formula:
+ // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
+ // At each iteration, we take the n-th term of the numeral and divide by the
+ // (k-n)th term of the denominator. This division will always produce an
+ // integral result, and helps reduce the chance of overflow in the
+ // intermediate computations. However, we can still overflow even when the
+ // final result would fit.
+
+ if (n == 0 || n == k) return 1;
+ if (k > n) return 0;
+
+ if (k > n/2)
+ k = n-k;
+
+ uint64_t r = 1;
+ for (uint64_t i = 1; i <= k; ++i) {
+ r = umul_ov(r, n-(i-1), Overflow);
+ r /= i;
+ }
+ return r;
+}
+
/// getMulExpr - Get a canonical multiply expression, or something simpler if
/// possible.
const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
@@ -1987,53 +2019,61 @@ const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
for (unsigned OtherIdx = Idx+1;
OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
++OtherIdx) {
- bool Retry = false;
if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
- // {A,+,B}<L> * {C,+,D}<L> --> {A*C,+,A*D + B*C + B*D,+,2*B*D}<L>
- //
- // {A,+,B} * {C,+,D} = A+It*B * C+It*D = A*C + (A*D + B*C)*It + B*D*It^2
- // Given an equation of the form x + y*It + z*It^2 (above), we want to
- // express it in terms of {X,+,Y,+,Z}.
- // {X,+,Y,+,Z} = X + Y*It + Z*(It^2 - It)/2.
- // Rearranging, X = x, Y = y+z, Z = 2z.
+ // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
+ // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
+ // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
+ // ]]],+,...up to x=2n}.
+ // Note that the arguments to choose() are always integers with values
+ // known at compile time, never SCEV objects.
//
- // x = A*C, y = (A*D + B*C), z = B*D.
- // Therefore X = A*C, Y = A*D + B*C + B*D and Z = 2*B*D.
+ // The implementation avoids pointless extra computations when the two
+ // addrec's are of different length (mathematically, it's equivalent to
+ // an infinite stream of zeros on the right).
+ bool OpsModified = false;
for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
++OtherIdx)
if (const SCEVAddRecExpr *OtherAddRec =
dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
if (OtherAddRec->getLoop() == AddRecLoop) {
- const SCEV *A = AddRec->getStart();
- const SCEV *B = AddRec->getStepRecurrence(*this);
- const SCEV *C = OtherAddRec->getStart();
- const SCEV *D = OtherAddRec->getStepRecurrence(*this);
- const SCEV *NewStart = getMulExpr(A, C);
- const SCEV *BD = getMulExpr(B, D);
- const SCEV *NewStep = getAddExpr(getMulExpr(A, D),
- getMulExpr(B, C), BD);
- const SCEV *NewSecondOrderStep =
- getMulExpr(BD, getConstant(BD->getType(), 2));
-
- // This can happen when AddRec or OtherAddRec have >3 operands.
- // TODO: support these add-recs.
- if (isLoopInvariant(NewStart, AddRecLoop) &&
- isLoopInvariant(NewStep, AddRecLoop) &&
- isLoopInvariant(NewSecondOrderStep, AddRecLoop)) {
- SmallVector<const SCEV *, 3> AddRecOps;
- AddRecOps.push_back(NewStart);
- AddRecOps.push_back(NewStep);
- AddRecOps.push_back(NewSecondOrderStep);
+ bool Overflow = false;
+ Type *Ty = AddRec->getType();
+ bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
+ SmallVector<const SCEV*, 7> AddRecOps;
+ for (int x = 0, xe = AddRec->getNumOperands() +
+ OtherAddRec->getNumOperands() - 1;
+ x != xe && !Overflow; ++x) {
+ const SCEV *Term = getConstant(Ty, 0);
+ for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
+ uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
+ for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
+ ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
+ z < ze && !Overflow; ++z) {
+ uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
+ uint64_t Coeff;
+ if (LargerThan64Bits)
+ Coeff = umul_ov(Coeff1, Coeff2, Overflow);
+ else
+ Coeff = Coeff1*Coeff2;
+ const SCEV *CoeffTerm = getConstant(Ty, Coeff);
+ const SCEV *Term1 = AddRec->getOperand(y-z);
+ const SCEV *Term2 = OtherAddRec->getOperand(z);
+ Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
+ }
+ }
+ AddRecOps.push_back(Term);
+ }
+ if (!Overflow) {
const SCEV *NewAddRec = getAddRecExpr(AddRecOps,
AddRec->getLoop(),
SCEV::FlagAnyWrap);
if (Ops.size() == 2) return NewAddRec;
Ops[Idx] = AddRec = cast<SCEVAddRecExpr>(NewAddRec);
Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- Retry = true;
+ OpsModified = true;
}
}
- if (Retry)
+ if (OpsModified)
return getMulExpr(Ops);
}
}