aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/InlineCost.cpp
diff options
context:
space:
mode:
authorChandler Carruth <chandlerc@gmail.com>2013-01-21 12:09:41 +0000
committerChandler Carruth <chandlerc@gmail.com>2013-01-21 12:09:41 +0000
commit184e3ff52c7c1b279439c4a4a80c1d46a5a7293d (patch)
tree5fb3c440b70ddd7504205e2155af632a58b87d4a /lib/Analysis/InlineCost.cpp
parentb5da8a4ae1fbd8e4ffab06cfeb5b32a94d0381bb (diff)
Sink InlineCost.cpp into IPA -- it is now officially an interprocedural
analysis. How cute that it wasn't previously. ;] Part of this confusion stems from the flattened header file tree. Thanks to Benjamin for pointing out the goof on IRC, and we're considering un-flattening the headers, so speak now if that would bug you. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173033 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/InlineCost.cpp')
-rw-r--r--lib/Analysis/InlineCost.cpp1237
1 files changed, 0 insertions, 1237 deletions
diff --git a/lib/Analysis/InlineCost.cpp b/lib/Analysis/InlineCost.cpp
deleted file mode 100644
index cd211c408d..0000000000
--- a/lib/Analysis/InlineCost.cpp
+++ /dev/null
@@ -1,1237 +0,0 @@
-//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements inline cost analysis.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "inline-cost"
-#include "llvm/Analysis/InlineCost.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/TargetTransformInfo.h"
-#include "llvm/IR/CallingConv.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/InstVisitor.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace llvm;
-
-STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
-
-namespace {
-
-class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
- typedef InstVisitor<CallAnalyzer, bool> Base;
- friend class InstVisitor<CallAnalyzer, bool>;
-
- // DataLayout if available, or null.
- const DataLayout *const TD;
-
- /// The TargetTransformInfo available for this compilation.
- const TargetTransformInfo &TTI;
-
- // The called function.
- Function &F;
-
- int Threshold;
- int Cost;
-
- bool IsCallerRecursive;
- bool IsRecursiveCall;
- bool ExposesReturnsTwice;
- bool HasDynamicAlloca;
- bool ContainsNoDuplicateCall;
-
- /// Number of bytes allocated statically by the callee.
- uint64_t AllocatedSize;
- unsigned NumInstructions, NumVectorInstructions;
- int FiftyPercentVectorBonus, TenPercentVectorBonus;
- int VectorBonus;
-
- // While we walk the potentially-inlined instructions, we build up and
- // maintain a mapping of simplified values specific to this callsite. The
- // idea is to propagate any special information we have about arguments to
- // this call through the inlinable section of the function, and account for
- // likely simplifications post-inlining. The most important aspect we track
- // is CFG altering simplifications -- when we prove a basic block dead, that
- // can cause dramatic shifts in the cost of inlining a function.
- DenseMap<Value *, Constant *> SimplifiedValues;
-
- // Keep track of the values which map back (through function arguments) to
- // allocas on the caller stack which could be simplified through SROA.
- DenseMap<Value *, Value *> SROAArgValues;
-
- // The mapping of caller Alloca values to their accumulated cost savings. If
- // we have to disable SROA for one of the allocas, this tells us how much
- // cost must be added.
- DenseMap<Value *, int> SROAArgCosts;
-
- // Keep track of values which map to a pointer base and constant offset.
- DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
-
- // Custom simplification helper routines.
- bool isAllocaDerivedArg(Value *V);
- bool lookupSROAArgAndCost(Value *V, Value *&Arg,
- DenseMap<Value *, int>::iterator &CostIt);
- void disableSROA(DenseMap<Value *, int>::iterator CostIt);
- void disableSROA(Value *V);
- void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
- int InstructionCost);
- bool handleSROACandidate(bool IsSROAValid,
- DenseMap<Value *, int>::iterator CostIt,
- int InstructionCost);
- bool isGEPOffsetConstant(GetElementPtrInst &GEP);
- bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
- bool simplifyCallSite(Function *F, CallSite CS);
- ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
-
- // Custom analysis routines.
- bool analyzeBlock(BasicBlock *BB);
-
- // Disable several entry points to the visitor so we don't accidentally use
- // them by declaring but not defining them here.
- void visit(Module *); void visit(Module &);
- void visit(Function *); void visit(Function &);
- void visit(BasicBlock *); void visit(BasicBlock &);
-
- // Provide base case for our instruction visit.
- bool visitInstruction(Instruction &I);
-
- // Our visit overrides.
- bool visitAlloca(AllocaInst &I);
- bool visitPHI(PHINode &I);
- bool visitGetElementPtr(GetElementPtrInst &I);
- bool visitBitCast(BitCastInst &I);
- bool visitPtrToInt(PtrToIntInst &I);
- bool visitIntToPtr(IntToPtrInst &I);
- bool visitCastInst(CastInst &I);
- bool visitUnaryInstruction(UnaryInstruction &I);
- bool visitICmp(ICmpInst &I);
- bool visitSub(BinaryOperator &I);
- bool visitBinaryOperator(BinaryOperator &I);
- bool visitLoad(LoadInst &I);
- bool visitStore(StoreInst &I);
- bool visitExtractValue(ExtractValueInst &I);
- bool visitInsertValue(InsertValueInst &I);
- bool visitCallSite(CallSite CS);
-
-public:
- CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
- Function &Callee, int Threshold)
- : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
- IsCallerRecursive(false), IsRecursiveCall(false),
- ExposesReturnsTwice(false), HasDynamicAlloca(false),
- ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0),
- NumVectorInstructions(0), FiftyPercentVectorBonus(0),
- TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0),
- NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0),
- NumConstantPtrDiffs(0), NumInstructionsSimplified(0),
- SROACostSavings(0), SROACostSavingsLost(0) {}
-
- bool analyzeCall(CallSite CS);
-
- int getThreshold() { return Threshold; }
- int getCost() { return Cost; }
-
- // Keep a bunch of stats about the cost savings found so we can print them
- // out when debugging.
- unsigned NumConstantArgs;
- unsigned NumConstantOffsetPtrArgs;
- unsigned NumAllocaArgs;
- unsigned NumConstantPtrCmps;
- unsigned NumConstantPtrDiffs;
- unsigned NumInstructionsSimplified;
- unsigned SROACostSavings;
- unsigned SROACostSavingsLost;
-
- void dump();
-};
-
-} // namespace
-
-/// \brief Test whether the given value is an Alloca-derived function argument.
-bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
- return SROAArgValues.count(V);
-}
-
-/// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
-/// Returns false if V does not map to a SROA-candidate.
-bool CallAnalyzer::lookupSROAArgAndCost(
- Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
- if (SROAArgValues.empty() || SROAArgCosts.empty())
- return false;
-
- DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
- if (ArgIt == SROAArgValues.end())
- return false;
-
- Arg = ArgIt->second;
- CostIt = SROAArgCosts.find(Arg);
- return CostIt != SROAArgCosts.end();
-}
-
-/// \brief Disable SROA for the candidate marked by this cost iterator.
-///
-/// This marks the candidate as no longer viable for SROA, and adds the cost
-/// savings associated with it back into the inline cost measurement.
-void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
- // If we're no longer able to perform SROA we need to undo its cost savings
- // and prevent subsequent analysis.
- Cost += CostIt->second;
- SROACostSavings -= CostIt->second;
- SROACostSavingsLost += CostIt->second;
- SROAArgCosts.erase(CostIt);
-}
-
-/// \brief If 'V' maps to a SROA candidate, disable SROA for it.
-void CallAnalyzer::disableSROA(Value *V) {
- Value *SROAArg;
- DenseMap<Value *, int>::iterator CostIt;
- if (lookupSROAArgAndCost(V, SROAArg, CostIt))
- disableSROA(CostIt);
-}
-
-/// \brief Accumulate the given cost for a particular SROA candidate.
-void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
- int InstructionCost) {
- CostIt->second += InstructionCost;
- SROACostSavings += InstructionCost;
-}
-
-/// \brief Helper for the common pattern of handling a SROA candidate.
-/// Either accumulates the cost savings if the SROA remains valid, or disables
-/// SROA for the candidate.
-bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
- DenseMap<Value *, int>::iterator CostIt,
- int InstructionCost) {
- if (IsSROAValid) {
- accumulateSROACost(CostIt, InstructionCost);
- return true;
- }
-
- disableSROA(CostIt);
- return false;
-}
-
-/// \brief Check whether a GEP's indices are all constant.
-///
-/// Respects any simplified values known during the analysis of this callsite.
-bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
- for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
- if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
- return false;
-
- return true;
-}
-
-/// \brief Accumulate a constant GEP offset into an APInt if possible.
-///
-/// Returns false if unable to compute the offset for any reason. Respects any
-/// simplified values known during the analysis of this callsite.
-bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
- if (!TD)
- return false;
-
- unsigned IntPtrWidth = TD->getPointerSizeInBits();
- assert(IntPtrWidth == Offset.getBitWidth());
-
- for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
- if (!OpC)
- if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
- OpC = dyn_cast<ConstantInt>(SimpleOp);
- if (!OpC)
- return false;
- if (OpC->isZero()) continue;
-
- // Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = TD->getStructLayout(STy);
- Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
- continue;
- }
-
- APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
- Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
- }
- return true;
-}
-
-bool CallAnalyzer::visitAlloca(AllocaInst &I) {
- // FIXME: Check whether inlining will turn a dynamic alloca into a static
- // alloca, and handle that case.
-
- // Accumulate the allocated size.
- if (I.isStaticAlloca()) {
- Type *Ty = I.getAllocatedType();
- AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
- Ty->getPrimitiveSizeInBits());
- }
-
- // We will happily inline static alloca instructions.
- if (I.isStaticAlloca())
- return Base::visitAlloca(I);
-
- // FIXME: This is overly conservative. Dynamic allocas are inefficient for
- // a variety of reasons, and so we would like to not inline them into
- // functions which don't currently have a dynamic alloca. This simply
- // disables inlining altogether in the presence of a dynamic alloca.
- HasDynamicAlloca = true;
- return false;
-}
-
-bool CallAnalyzer::visitPHI(PHINode &I) {
- // FIXME: We should potentially be tracking values through phi nodes,
- // especially when they collapse to a single value due to deleted CFG edges
- // during inlining.
-
- // FIXME: We need to propagate SROA *disabling* through phi nodes, even
- // though we don't want to propagate it's bonuses. The idea is to disable
- // SROA if it *might* be used in an inappropriate manner.
-
- // Phi nodes are always zero-cost.
- return true;
-}
-
-bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
- Value *SROAArg;
- DenseMap<Value *, int>::iterator CostIt;
- bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
- SROAArg, CostIt);
-
- // Try to fold GEPs of constant-offset call site argument pointers. This
- // requires target data and inbounds GEPs.
- if (TD && I.isInBounds()) {
- // Check if we have a base + offset for the pointer.
- Value *Ptr = I.getPointerOperand();
- std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
- if (BaseAndOffset.first) {
- // Check if the offset of this GEP is constant, and if so accumulate it
- // into Offset.
- if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
- // Non-constant GEPs aren't folded, and disable SROA.
- if (SROACandidate)
- disableSROA(CostIt);
- return false;
- }
-
- // Add the result as a new mapping to Base + Offset.
- ConstantOffsetPtrs[&I] = BaseAndOffset;
-
- // Also handle SROA candidates here, we already know that the GEP is
- // all-constant indexed.
- if (SROACandidate)
- SROAArgValues[&I] = SROAArg;
-
- return true;
- }
- }
-
- if (isGEPOffsetConstant(I)) {
- if (SROACandidate)
- SROAArgValues[&I] = SROAArg;
-
- // Constant GEPs are modeled as free.
- return true;
- }
-
- // Variable GEPs will require math and will disable SROA.
- if (SROACandidate)
- disableSROA(CostIt);
- return false;
-}
-
-bool CallAnalyzer::visitBitCast(BitCastInst &I) {
- // Propagate constants through bitcasts.
- Constant *COp = dyn_cast<Constant>(I.getOperand(0));
- if (!COp)
- COp = SimplifiedValues.lookup(I.getOperand(0));
- if (COp)
- if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
- SimplifiedValues[&I] = C;
- return true;
- }
-
- // Track base/offsets through casts
- std::pair<Value *, APInt> BaseAndOffset
- = ConstantOffsetPtrs.lookup(I.getOperand(0));
- // Casts don't change the offset, just wrap it up.
- if (BaseAndOffset.first)
- ConstantOffsetPtrs[&I] = BaseAndOffset;
-
- // Also look for SROA candidates here.
- Value *SROAArg;
- DenseMap<Value *, int>::iterator CostIt;
- if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
- SROAArgValues[&I] = SROAArg;
-
- // Bitcasts are always zero cost.
- return true;
-}
-
-bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
- // Propagate constants through ptrtoint.
- Constant *COp = dyn_cast<Constant>(I.getOperand(0));
- if (!COp)
- COp = SimplifiedValues.lookup(I.getOperand(0));
- if (COp)
- if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
- SimplifiedValues[&I] = C;
- return true;
- }
-
- // Track base/offset pairs when converted to a plain integer provided the
- // integer is large enough to represent the pointer.
- unsigned IntegerSize = I.getType()->getScalarSizeInBits();
- if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
- std::pair<Value *, APInt> BaseAndOffset
- = ConstantOffsetPtrs.lookup(I.getOperand(0));
- if (BaseAndOffset.first)
- ConstantOffsetPtrs[&I] = BaseAndOffset;
- }
-
- // This is really weird. Technically, ptrtoint will disable SROA. However,
- // unless that ptrtoint is *used* somewhere in the live basic blocks after
- // inlining, it will be nuked, and SROA should proceed. All of the uses which
- // would block SROA would also block SROA if applied directly to a pointer,
- // and so we can just add the integer in here. The only places where SROA is
- // preserved either cannot fire on an integer, or won't in-and-of themselves
- // disable SROA (ext) w/o some later use that we would see and disable.
- Value *SROAArg;
- DenseMap<Value *, int>::iterator CostIt;
- if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
- SROAArgValues[&I] = SROAArg;
-
- return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
-}
-
-bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
- // Propagate constants through ptrtoint.
- Constant *COp = dyn_cast<Constant>(I.getOperand(0));
- if (!COp)
- COp = SimplifiedValues.lookup(I.getOperand(0));
- if (COp)
- if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
- SimplifiedValues[&I] = C;
- return true;
- }
-
- // Track base/offset pairs when round-tripped through a pointer without
- // modifications provided the integer is not too large.
- Value *Op = I.getOperand(0);
- unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
- if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
- std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
- if (BaseAndOffset.first)
- ConstantOffsetPtrs[&I] = BaseAndOffset;
- }
-
- // "Propagate" SROA here in the same manner as we do for ptrtoint above.
- Value *SROAArg;
- DenseMap<Value *, int>::iterator CostIt;
- if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
- SROAArgValues[&I] = SROAArg;
-
- return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
-}
-
-bool CallAnalyzer::visitCastInst(CastInst &I) {
- // Propagate constants through ptrtoint.
- Constant *COp = dyn_cast<Constant>(I.getOperand(0));
- if (!COp)
- COp = SimplifiedValues.lookup(I.getOperand(0));
- if (COp)
- if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
- SimplifiedValues[&I] = C;
- return true;
- }
-
- // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
- disableSROA(I.getOperand(0));
-
- return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
-}
-
-bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
- Value *Operand = I.getOperand(0);
- Constant *Ops[1] = { dyn_cast<Constant>(Operand) };
- if (Ops[0] || (Ops[0] = SimplifiedValues.lookup(Operand)))
- if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
- Ops, TD)) {
- SimplifiedValues[&I] = C;
- return true;
- }
-
- // Disable any SROA on the argument to arbitrary unary operators.
- disableSROA(Operand);
-
- return false;
-}
-
-bool CallAnalyzer::visitICmp(ICmpInst &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- // First try to handle simplified comparisons.
- if (!isa<Constant>(LHS))
- if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
- LHS = SimpleLHS;
- if (!isa<Constant>(RHS))
- if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
- RHS = SimpleRHS;
- if (Constant *CLHS = dyn_cast<Constant>(LHS))
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
- SimplifiedValues[&I] = C;
- return true;
- }
-
- // Otherwise look for a comparison between constant offset pointers with
- // a common base.
- Value *LHSBase, *RHSBase;
- APInt LHSOffset, RHSOffset;
- llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
- if (LHSBase) {
- llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
- if (RHSBase && LHSBase == RHSBase) {
- // We have common bases, fold the icmp to a constant based on the
- // offsets.
- Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
- Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
- if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
- SimplifiedValues[&I] = C;
- ++NumConstantPtrCmps;
- return true;
- }
- }
- }
-
- // If the comparison is an equality comparison with null, we can simplify it
- // for any alloca-derived argument.
- if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
- if (isAllocaDerivedArg(I.getOperand(0))) {
- // We can actually predict the result of comparisons between an
- // alloca-derived value and null. Note that this fires regardless of
- // SROA firing.
- bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
- SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
- : ConstantInt::getFalse(I.getType());
- return true;
- }
-
- // Finally check for SROA candidates in comparisons.
- Value *SROAArg;
- DenseMap<Value *, int>::iterator CostIt;
- if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
- if (isa<ConstantPointerNull>(I.getOperand(1))) {
- accumulateSROACost(CostIt, InlineConstants::InstrCost);
- return true;
- }
-
- disableSROA(CostIt);
- }
-
- return false;
-}
-
-bool CallAnalyzer::visitSub(BinaryOperator &I) {
- // Try to handle a special case: we can fold computing the difference of two
- // constant-related pointers.
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- Value *LHSBase, *RHSBase;
- APInt LHSOffset, RHSOffset;
- llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
- if (LHSBase) {
- llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
- if (RHSBase && LHSBase == RHSBase) {
- // We have common bases, fold the subtract to a constant based on the
- // offsets.
- Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
- Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
- if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
- SimplifiedValues[&I] = C;
- ++NumConstantPtrDiffs;
- return true;
- }
- }
- }
-
- // Otherwise, fall back to the generic logic for simplifying and handling
- // instructions.
- return Base::visitSub(I);
-}
-
-bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (!isa<Constant>(LHS))
- if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
- LHS = SimpleLHS;
- if (!isa<Constant>(RHS))
- if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
- RHS = SimpleRHS;
- Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
- if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
- SimplifiedValues[&I] = C;
- return true;
- }
-
- // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
- disableSROA(LHS);
- disableSROA(RHS);
-
- return false;
-}
-
-bool CallAnalyzer::visitLoad(LoadInst &I) {
- Value *SROAArg;
- DenseMap<Value *, int>::iterator CostIt;
- if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
- if (I.isSimple()) {
- accumulateSROACost(CostIt, InlineConstants::InstrCost);
- return true;
- }
-
- disableSROA(CostIt);
- }
-
- return false;
-}
-
-bool CallAnalyzer::visitStore(StoreInst &I) {
- Value *SROAArg;
- DenseMap<Value *, int>::iterator CostIt;
- if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
- if (I.isSimple()) {
- accumulateSROACost(CostIt, InlineConstants::InstrCost);
- return true;
- }
-
- disableSROA(CostIt);
- }
-
- return false;
-}
-
-bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
- // Constant folding for extract value is trivial.
- Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
- if (!C)
- C = SimplifiedValues.lookup(I.getAggregateOperand());
- if (C) {
- SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
- return true;
- }
-
- // SROA can look through these but give them a cost.
- return false;
-}
-
-bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
- // Constant folding for insert value is trivial.
- Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
- if (!AggC)
- AggC = SimplifiedValues.lookup(I.getAggregateOperand());
- Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
- if (!InsertedC)
- InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
- if (AggC && InsertedC) {
- SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
- I.getIndices());
- return true;
- }
-
- // SROA can look through these but give them a cost.
- return false;
-}
-
-/// \brief Try to simplify a call site.
-///
-/// Takes a concrete function and callsite and tries to actually simplify it by
-/// analyzing the arguments and call itself with instsimplify. Returns true if
-/// it has simplified the callsite to some other entity (a constant), making it
-/// free.
-bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
- // FIXME: Using the instsimplify logic directly for this is inefficient
- // because we have to continually rebuild the argument list even when no
- // simplifications can be performed. Until that is fixed with remapping
- // inside of instsimplify, directly constant fold calls here.
- if (!canConstantFoldCallTo(F))
- return false;
-
- // Try to re-map the arguments to constants.
- SmallVector<Constant *, 4> ConstantArgs;
- ConstantArgs.reserve(CS.arg_size());
- for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
- I != E; ++I) {
- Constant *C = dyn_cast<Constant>(*I);
- if (!C)
- C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
- if (!C)
- return false; // This argument doesn't map to a constant.
-
- ConstantArgs.push_back(C);
- }
- if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
- SimplifiedValues[CS.getInstruction()] = C;
- return true;
- }
-
- return false;
-}
-
-bool CallAnalyzer::visitCallSite(CallSite CS) {
- if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
- !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::ReturnsTwice)) {
- // This aborts the entire analysis.
- ExposesReturnsTwice = true;
- return false;
- }
- if (CS.isCall() &&
- cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
- ContainsNoDuplicateCall = true;
-
- if (Function *F = CS.getCalledFunction()) {
- // When we have a concrete function, first try to simplify it directly.
- if (simplifyCallSite(F, CS))
- return true;
-
- // Next check if it is an intrinsic we know about.
- // FIXME: Lift this into part of the InstVisitor.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
- switch (II->getIntrinsicID()) {
- default:
- return Base::visitCallSite(CS);
-
- case Intrinsic::memset:
- case Intrinsic::memcpy:
- case Intrinsic::memmove:
- // SROA can usually chew through these intrinsics, but they aren't free.
- return false;
- }
- }
-
- if (F == CS.getInstruction()->getParent()->getParent()) {
- // This flag will fully abort the analysis, so don't bother with anything
- // else.
- IsRecursiveCall = true;
- return false;
- }
-
- if (!callIsSmall(CS)) {
- // We account for the average 1 instruction per call argument setup
- // here.
- Cost += CS.arg_size() * InlineConstants::InstrCost;
-
- // Everything other than inline ASM will also have a significant cost
- // merely from making the call.
- if (!isa<InlineAsm>(CS.getCalledValue()))
- Cost += InlineConstants::CallPenalty;
- }
-
- return Base::visitCallSite(CS);
- }
-
- // Otherwise we're in a very special case -- an indirect function call. See
- // if we can be particularly clever about this.
- Value *Callee = CS.getCalledValue();
-
- // First, pay the price of the argument setup. We account for the average
- // 1 instruction per call argument setup here.
- Cost += CS.arg_size() * InlineConstants::InstrCost;
-
- // Next, check if this happens to be an indirect function call to a known
- // function in this inline context. If not, we've done all we can.
- Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
- if (!F)
- return Base::visitCallSite(CS);
-
- // If we have a constant that we are calling as a function, we can peer
- // through it and see the function target. This happens not infrequently
- // during devirtualization and so we want to give it a hefty bonus for
- // inlining, but cap that bonus in the event that inlining wouldn't pan
- // out. Pretend to inline the function, with a custom threshold.
- CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
- if (CA.analyzeCall(CS)) {
- // We were able to inline the indirect call! Subtract the cost from the
- // bonus we want to apply, but don't go below zero.
- Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
- }
-
- return Base::visitCallSite(CS);
-}
-
-bool CallAnalyzer::visitInstruction(Instruction &I) {
- // Some instructions are free. All of the free intrinsics can also be
- // handled by SROA, etc.
- if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
- return true;
-
- // We found something we don't understand or can't handle. Mark any SROA-able
- // values in the operand list as no longer viable.
- for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
- disableSROA(*OI);
-
- return false;
-}
-
-
-/// \brief Analyze a basic block for its contribution to the inline cost.
-///
-/// This method walks the analyzer over every instruction in the given basic
-/// block and accounts for their cost during inlining at this callsite. It
-/// aborts early if the threshold has been exceeded or an impossible to inline
-/// construct has been detected. It returns false if inlining is no longer
-/// viable, and true if inlining remains viable.
-bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
- for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
- I != E; ++I) {
- ++NumInstructions;
- if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
- ++NumVectorInstructions;
-
- // If the instruction simplified to a constant, there is no cost to this
- // instruction. Visit the instructions using our InstVisitor to account for
- // all of the per-instruction logic. The visit tree returns true if we
- // consumed the instruction in any way, and false if the instruction's base
- // cost should count against inlining.
- if (Base::visit(I))
- ++NumInstructionsSimplified;
- else
- Cost += InlineConstants::InstrCost;
-
- // If the visit this instruction detected an uninlinable pattern, abort.
- if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
- return false;
-
- // If the caller is a recursive function then we don't want to inline
- // functions which allocate a lot of stack space because it would increase
- // the caller stack usage dramatically.
- if (IsCallerRecursive &&
- AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
- return false;
-
- if (NumVectorInstructions > NumInstructions/2)
- VectorBonus = FiftyPercentVectorBonus;
- else if (NumVectorInstructions > NumInstructions/10)
- VectorBonus = TenPercentVectorBonus;
- else
- VectorBonus = 0;
-
- // Check if we've past the threshold so we don't spin in huge basic
- // blocks that will never inline.
- if (Cost > (Threshold + VectorBonus))
- return false;
- }
-
- return true;
-}
-
-/// \brief Compute the base pointer and cumulative constant offsets for V.
-///
-/// This strips all constant offsets off of V, leaving it the base pointer, and
-/// accumulates the total constant offset applied in the returned constant. It
-/// returns 0 if V is not a pointer, and returns the constant '0' if there are
-/// no constant offsets applied.
-ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
- if (!TD || !V->getType()->isPointerTy())
- return 0;
-
- unsigned IntPtrWidth = TD->getPointerSizeInBits();
- APInt Offset = APInt::getNullValue(IntPtrWidth);
-
- // Even though we don't look through PHI nodes, we could be called on an
- // instruction in an unreachable block, which may be on a cycle.
- SmallPtrSet<Value *, 4> Visited;
- Visited.insert(V);
- do {
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
- return 0;
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast) {
- V = cast<Operator>(V)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->mayBeOverridden())
- break;
- V = GA->getAliasee();
- } else {
- break;
- }
- assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- } while (Visited.insert(V));
-
- Type *IntPtrTy = TD->getIntPtrType(V->getContext());
- return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
-}
-
-/// \brief Analyze a call site for potential inlining.
-///
-/// Returns true if inlining this call is viable, and false if it is not
-/// viable. It computes the cost and adjusts the threshold based on numerous
-/// factors and heuristics. If this method returns false but the computed cost
-/// is below the computed threshold, then inlining was forcibly disabled by
-/// some artifact of the routine.
-bool CallAnalyzer::analyzeCall(CallSite CS) {
- ++NumCallsAnalyzed;
-
- // Track whether the post-inlining function would have more than one basic
- // block. A single basic block is often intended for inlining. Balloon the
- // threshold by 50% until we pass the single-BB phase.
- bool SingleBB = true;
- int SingleBBBonus = Threshold / 2;
- Threshold += SingleBBBonus;
-
- // Perform some tweaks to the cost and threshold based on the direct
- // callsite information.
-
- // We want to more aggressively inline vector-dense kernels, so up the
- // threshold, and we'll lower it if the % of vector instructions gets too
- // low.
- assert(NumInstructions == 0);
- assert(NumVectorInstructions == 0);
- FiftyPercentVectorBonus = Threshold;
- TenPercentVectorBonus = Threshold / 2;
-
- // Give out bonuses per argument, as the instructions setting them up will
- // be gone after inlining.
- for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
- if (TD && CS.isByValArgument(I)) {
- // We approximate the number of loads and stores needed by dividing the
- // size of the byval type by the target's pointer size.
- PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
- unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
- unsigned PointerSize = TD->getPointerSizeInBits();
- // Ceiling division.
- unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
-
- // If it generates more than 8 stores it is likely to be expanded as an
- // inline memcpy so we take that as an upper bound. Otherwise we assume
- // one load and one store per word copied.
- // FIXME: The maxStoresPerMemcpy setting from the target should be used
- // here instead of a magic number of 8, but it's not available via
- // DataLayout.
- NumStores = std::min(NumStor