diff options
author | John Criswell <criswell@uiuc.edu> | 2006-12-13 19:41:57 +0000 |
---|---|---|
committer | John Criswell <criswell@uiuc.edu> | 2006-12-13 19:41:57 +0000 |
commit | 2957f129a7390a068610e9af5a079c6fa1bead24 (patch) | |
tree | 5e33193ba255f6f8872fb0e56f0d2bed37158878 /lib/Analysis/DataStructure/DataStructure.cpp | |
parent | 64225643331b608ea3558623b6eee6649bca7c6c (diff) |
Remove DSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32550 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/Analysis/DataStructure/DataStructure.cpp')
-rw-r--r-- | lib/Analysis/DataStructure/DataStructure.cpp | 2435 |
1 files changed, 0 insertions, 2435 deletions
diff --git a/lib/Analysis/DataStructure/DataStructure.cpp b/lib/Analysis/DataStructure/DataStructure.cpp deleted file mode 100644 index 666b615825..0000000000 --- a/lib/Analysis/DataStructure/DataStructure.cpp +++ /dev/null @@ -1,2435 +0,0 @@ -//===- DataStructure.cpp - Implement the core data structure analysis -----===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the core data structure functionality. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/DataStructure/DSGraphTraits.h" -#include "llvm/Constants.h" -#include "llvm/Function.h" -#include "llvm/GlobalVariable.h" -#include "llvm/Instructions.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Assembly/Writer.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SCCIterator.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Support/Timer.h" -#include <algorithm> -using namespace llvm; - -#define COLLAPSE_ARRAYS_AGGRESSIVELY 0 - -namespace { - Statistic NumFolds ("dsa", "Number of nodes completely folded"); - Statistic NumCallNodesMerged("dsa", "Number of call nodes merged"); - Statistic NumNodeAllocated ("dsa", "Number of nodes allocated"); - Statistic NumDNE ("dsa", "Number of nodes removed by reachability"); - Statistic NumTrivialDNE ("dsa", "Number of nodes trivially removed"); - Statistic NumTrivialGlobalDNE("dsa", "Number of globals trivially removed"); - static cl::opt<unsigned> - DSAFieldLimit("dsa-field-limit", cl::Hidden, - cl::desc("Number of fields to track before collapsing a node"), - cl::init(256)); -} - -#if 0 -#define TIME_REGION(VARNAME, DESC) \ - NamedRegionTimer VARNAME(DESC) -#else -#define TIME_REGION(VARNAME, DESC) -#endif - -using namespace DS; - -/// isForwarding - Return true if this NodeHandle is forwarding to another -/// one. -bool DSNodeHandle::isForwarding() const { - return N && N->isForwarding(); -} - -DSNode *DSNodeHandle::HandleForwarding() const { - assert(N->isForwarding() && "Can only be invoked if forwarding!"); - DEBUG( - { //assert not looping - DSNode* NH = N; - std::set<DSNode*> seen; - while(NH && NH->isForwarding()) { - assert(seen.find(NH) == seen.end() && "Loop detected"); - seen.insert(NH); - NH = NH->ForwardNH.N; - } - } - ); - // Handle node forwarding here! - DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage - Offset += N->ForwardNH.getOffset(); - - if (--N->NumReferrers == 0) { - // Removing the last referrer to the node, sever the forwarding link - N->stopForwarding(); - } - - N = Next; - N->NumReferrers++; - if (N->Size <= Offset) { - assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?"); - Offset = 0; - } - return N; -} - -//===----------------------------------------------------------------------===// -// DSScalarMap Implementation -//===----------------------------------------------------------------------===// - -DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) { - assert(ValueMap.count(GV) == 0 && "GV already exists!"); - - // If the node doesn't exist, check to see if it's a global that is - // equated to another global in the program. - EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV); - if (ECI != GlobalECs.end()) { - GlobalValue *Leader = *GlobalECs.findLeader(ECI); - if (Leader != GV) { - GV = Leader; - iterator I = ValueMap.find(GV); - if (I != ValueMap.end()) - return I->second; - } - } - - // Okay, this is either not an equivalenced global or it is the leader, it - // will be inserted into the scalar map now. - GlobalSet.insert(GV); - - return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second; -} - - -//===----------------------------------------------------------------------===// -// DSNode Implementation -//===----------------------------------------------------------------------===// - -DSNode::DSNode(const Type *T, DSGraph *G) - : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) { - // Add the type entry if it is specified... - if (T) mergeTypeInfo(T, 0); - if (G) G->addNode(this); - ++NumNodeAllocated; -} - -// DSNode copy constructor... do not copy over the referrers list! -DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks) - : NumReferrers(0), Size(N.Size), ParentGraph(G), - Ty(N.Ty), Globals(N.Globals), NodeType(N.NodeType) { - if (!NullLinks) { - Links = N.Links; - } else - Links.resize(N.Links.size()); // Create the appropriate number of null links - G->addNode(this); - ++NumNodeAllocated; -} - -/// getTargetData - Get the target data object used to construct this node. -/// -const TargetData &DSNode::getTargetData() const { - return ParentGraph->getTargetData(); -} - -void DSNode::assertOK() const { - assert((Ty != Type::VoidTy || - Ty == Type::VoidTy && (Size == 0 || - (NodeType & DSNode::Array))) && - "Node not OK!"); - - assert(ParentGraph && "Node has no parent?"); - const DSScalarMap &SM = ParentGraph->getScalarMap(); - for (unsigned i = 0, e = Globals.size(); i != e; ++i) { - assert(SM.global_count(Globals[i])); - assert(SM.find(Globals[i])->second.getNode() == this); - } -} - -/// forwardNode - Mark this node as being obsolete, and all references to it -/// should be forwarded to the specified node and offset. -/// -void DSNode::forwardNode(DSNode *To, unsigned Offset) { - assert(this != To && "Cannot forward a node to itself!"); - assert(ForwardNH.isNull() && "Already forwarding from this node!"); - if (To->Size <= 1) Offset = 0; - assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) && - "Forwarded offset is wrong!"); - ForwardNH.setTo(To, Offset); - NodeType = DEAD; - Size = 0; - Ty = Type::VoidTy; - - // Remove this node from the parent graph's Nodes list. - ParentGraph->unlinkNode(this); - ParentGraph = 0; -} - -// addGlobal - Add an entry for a global value to the Globals list. This also -// marks the node with the 'G' flag if it does not already have it. -// -void DSNode::addGlobal(GlobalValue *GV) { - // First, check to make sure this is the leader if the global is in an - // equivalence class. - GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV); - - // Keep the list sorted. - std::vector<GlobalValue*>::iterator I = - std::lower_bound(Globals.begin(), Globals.end(), GV); - - if (I == Globals.end() || *I != GV) { - Globals.insert(I, GV); - NodeType |= GlobalNode; - } -} - -// removeGlobal - Remove the specified global that is explicitly in the globals -// list. -void DSNode::removeGlobal(GlobalValue *GV) { - std::vector<GlobalValue*>::iterator I = - std::lower_bound(Globals.begin(), Globals.end(), GV); - assert(I != Globals.end() && *I == GV && "Global not in node!"); - Globals.erase(I); -} - -/// foldNodeCompletely - If we determine that this node has some funny -/// behavior happening to it that we cannot represent, we fold it down to a -/// single, completely pessimistic, node. This node is represented as a -/// single byte with a single TypeEntry of "void". -/// -void DSNode::foldNodeCompletely() { - if (isNodeCompletelyFolded()) return; // If this node is already folded... - - ++NumFolds; - - // If this node has a size that is <= 1, we don't need to create a forwarding - // node. - if (getSize() <= 1) { - NodeType |= DSNode::Array; - Ty = Type::VoidTy; - Size = 1; - assert(Links.size() <= 1 && "Size is 1, but has more links?"); - Links.resize(1); - } else { - // Create the node we are going to forward to. This is required because - // some referrers may have an offset that is > 0. By forcing them to - // forward, the forwarder has the opportunity to correct the offset. - DSNode *DestNode = new DSNode(0, ParentGraph); - DestNode->NodeType = NodeType|DSNode::Array; - DestNode->Ty = Type::VoidTy; - DestNode->Size = 1; - DestNode->Globals.swap(Globals); - - // Start forwarding to the destination node... - forwardNode(DestNode, 0); - - if (!Links.empty()) { - DestNode->Links.reserve(1); - - DSNodeHandle NH(DestNode); - DestNode->Links.push_back(Links[0]); - - // If we have links, merge all of our outgoing links together... - for (unsigned i = Links.size()-1; i != 0; --i) - NH.getNode()->Links[0].mergeWith(Links[i]); - Links.clear(); - } else { - DestNode->Links.resize(1); - } - } -} - -/// isNodeCompletelyFolded - Return true if this node has been completely -/// folded down to something that can never be expanded, effectively losing -/// all of the field sensitivity that may be present in the node. -/// -bool DSNode::isNodeCompletelyFolded() const { - return getSize() == 1 && Ty == Type::VoidTy && isArray(); -} - -/// addFullGlobalsList - Compute the full set of global values that are -/// represented by this node. Unlike getGlobalsList(), this requires fair -/// amount of work to compute, so don't treat this method call as free. -void DSNode::addFullGlobalsList(std::vector<GlobalValue*> &List) const { - if (globals_begin() == globals_end()) return; - - EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs(); - - for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) { - EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I); - if (ECI == EC.end()) - List.push_back(*I); - else - List.insert(List.end(), EC.member_begin(ECI), EC.member_end()); - } -} - -/// addFullFunctionList - Identical to addFullGlobalsList, but only return the -/// functions in the full list. -void DSNode::addFullFunctionList(std::vector<Function*> &List) const { - if (globals_begin() == globals_end()) return; - - EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs(); - - for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) { - EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I); - if (ECI == EC.end()) { - if (Function *F = dyn_cast<Function>(*I)) - List.push_back(F); - } else { - for (EquivalenceClasses<GlobalValue*>::member_iterator MI = - EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI) - if (Function *F = dyn_cast<Function>(*MI)) - List.push_back(F); - } - } -} - -namespace { - /// TypeElementWalker Class - Used for implementation of physical subtyping... - /// - class TypeElementWalker { - struct StackState { - const Type *Ty; - unsigned Offset; - unsigned Idx; - StackState(const Type *T, unsigned Off = 0) - : Ty(T), Offset(Off), Idx(0) {} - }; - - std::vector<StackState> Stack; - const TargetData &TD; - public: - TypeElementWalker(const Type *T, const TargetData &td) : TD(td) { - Stack.push_back(T); - StepToLeaf(); - } - - bool isDone() const { return Stack.empty(); } - const Type *getCurrentType() const { return Stack.back().Ty; } - unsigned getCurrentOffset() const { return Stack.back().Offset; } - - void StepToNextType() { - PopStackAndAdvance(); - StepToLeaf(); - } - - private: - /// PopStackAndAdvance - Pop the current element off of the stack and - /// advance the underlying element to the next contained member. - void PopStackAndAdvance() { - assert(!Stack.empty() && "Cannot pop an empty stack!"); - Stack.pop_back(); - while (!Stack.empty()) { - StackState &SS = Stack.back(); - if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) { - ++SS.Idx; - if (SS.Idx != ST->getNumElements()) { - const StructLayout *SL = TD.getStructLayout(ST); - SS.Offset += - unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]); - return; - } - Stack.pop_back(); // At the end of the structure - } else { - const ArrayType *AT = cast<ArrayType>(SS.Ty); - ++SS.Idx; - if (SS.Idx != AT->getNumElements()) { - SS.Offset += unsigned(TD.getTypeSize(AT->getElementType())); - return; - } - Stack.pop_back(); // At the end of the array - } - } - } - - /// StepToLeaf - Used by physical subtyping to move to the first leaf node - /// on the type stack. - void StepToLeaf() { - if (Stack.empty()) return; - while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) { - StackState &SS = Stack.back(); - if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) { - if (ST->getNumElements() == 0) { - assert(SS.Idx == 0); - PopStackAndAdvance(); - } else { - // Step into the structure... - assert(SS.Idx < ST->getNumElements()); - const StructLayout *SL = TD.getStructLayout(ST); - Stack.push_back(StackState(ST->getElementType(SS.Idx), - SS.Offset+unsigned(SL->MemberOffsets[SS.Idx]))); - } - } else { - const ArrayType *AT = cast<ArrayType>(SS.Ty); - if (AT->getNumElements() == 0) { - assert(SS.Idx == 0); - PopStackAndAdvance(); - } else { - // Step into the array... - assert(SS.Idx < AT->getNumElements()); - Stack.push_back(StackState(AT->getElementType(), - SS.Offset+SS.Idx* - unsigned(TD.getTypeSize(AT->getElementType())))); - } - } - } - } - }; -} // end anonymous namespace - -/// ElementTypesAreCompatible - Check to see if the specified types are -/// "physically" compatible. If so, return true, else return false. We only -/// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1 -/// is true, then we also allow a larger T1. -/// -static bool ElementTypesAreCompatible(const Type *T1, const Type *T2, - bool AllowLargerT1, const TargetData &TD){ - TypeElementWalker T1W(T1, TD), T2W(T2, TD); - - while (!T1W.isDone() && !T2W.isDone()) { - if (T1W.getCurrentOffset() != T2W.getCurrentOffset()) - return false; - - const Type *T1 = T1W.getCurrentType(); - const Type *T2 = T2W.getCurrentType(); - if (T1 != T2 && !T1->canLosslesslyBitCastTo(T2)) - return false; - - T1W.StepToNextType(); - T2W.StepToNextType(); - } - - return AllowLargerT1 || T1W.isDone(); -} - - -/// mergeTypeInfo - This method merges the specified type into the current node -/// at the specified offset. This may update the current node's type record if -/// this gives more information to the node, it may do nothing to the node if -/// this information is already known, or it may merge the node completely (and -/// return true) if the information is incompatible with what is already known. -/// -/// This method returns true if the node is completely folded, otherwise false. -/// -bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset, - bool FoldIfIncompatible) { - DOUT << "merging " << *NewTy << " at " << Offset << " with " << *Ty << "\n"; - const TargetData &TD = getTargetData(); - // Check to make sure the Size member is up-to-date. Size can be one of the - // following: - // Size = 0, Ty = Void: Nothing is known about this node. - // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero - // Size = 1, Ty = Void, Array = 1: The node is collapsed - // Otherwise, sizeof(Ty) = Size - // - assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) || - (Size == 0 && !Ty->isSized() && !isArray()) || - (Size == 1 && Ty == Type::VoidTy && isArray()) || - (Size == 0 && !Ty->isSized() && !isArray()) || - (TD.getTypeSize(Ty) == Size)) && - "Size member of DSNode doesn't match the type structure!"); - assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); - - if (Offset == 0 && NewTy == Ty) - return false; // This should be a common case, handle it efficiently - - // Return true immediately if the node is completely folded. - if (isNodeCompletelyFolded()) return true; - - // If this is an array type, eliminate the outside arrays because they won't - // be used anyway. This greatly reduces the size of large static arrays used - // as global variables, for example. - // - bool WillBeArray = false; - while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) { - // FIXME: we might want to keep small arrays, but must be careful about - // things like: [2 x [10000 x int*]] - NewTy = AT->getElementType(); - WillBeArray = true; - } - - // Figure out how big the new type we're merging in is... - unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0; - - // Otherwise check to see if we can fold this type into the current node. If - // we can't, we fold the node completely, if we can, we potentially update our - // internal state. - // - if (Ty == Type::VoidTy) { - // If this is the first type that this node has seen, just accept it without - // question.... - assert(Offset == 0 && !isArray() && - "Cannot have an offset into a void node!"); - - // If this node would have to have an unreasonable number of fields, just - // collapse it. This can occur for fortran common blocks, which have stupid - // things like { [100000000 x double], [1000000 x double] }. - unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift; - if (NumFields > DSAFieldLimit) { - foldNodeCompletely(); - return true; - } - - Ty = NewTy; - NodeType &= ~Array; - if (WillBeArray) NodeType |= Array; - Size = NewTySize; - - // Calculate the number of outgoing links from this node. - Links.resize(NumFields); - return false; - } - - // Handle node expansion case here... - if (Offset+NewTySize > Size) { - // It is illegal to grow this node if we have treated it as an array of - // objects... - if (isArray()) { - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - } - - // If this node would have to have an unreasonable number of fields, just - // collapse it. This can occur for fortran common blocks, which have stupid - // things like { [100000000 x double], [1000000 x double] }. - unsigned NumFields = (NewTySize+Offset+DS::PointerSize-1) >> DS::PointerShift; - if (NumFields > DSAFieldLimit) { - foldNodeCompletely(); - return true; - } - - if (Offset) { - //handle some common cases: - // Ty: struct { t1, t2, t3, t4, ..., tn} - // NewTy: struct { offset, stuff...} - // try merge with NewTy: struct {t1, t2, stuff...} if offset lands exactly - // on a field in Ty - if (isa<StructType>(NewTy) && isa<StructType>(Ty)) { - DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n"; - const StructType *STy = cast<StructType>(Ty); - const StructLayout &SL = *TD.getStructLayout(STy); - unsigned i = SL.getElementContainingOffset(Offset); - //Either we hit it exactly or give up - if (SL.MemberOffsets[i] != Offset) { - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - } - std::vector<const Type*> nt; - for (unsigned x = 0; x < i; ++x) - nt.push_back(STy->getElementType(x)); - STy = cast<StructType>(NewTy); - nt.insert(nt.end(), STy->element_begin(), STy->element_end()); - //and merge - STy = StructType::get(nt); - DOUT << "Trying with: " << *STy << "\n"; - return mergeTypeInfo(STy, 0); - } - - //Ty: struct { t1, t2, t3 ... tn} - //NewTy T offset x - //try merge with NewTy: struct : {t1, t2, T} if offset lands on a field - //in Ty - if (isa<StructType>(Ty)) { - DOUT << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n"; - const StructType *STy = cast<StructType>(Ty); - const StructLayout &SL = *TD.getStructLayout(STy); - unsigned i = SL.getElementContainingOffset(Offset); - //Either we hit it exactly or give up - if (SL.MemberOffsets[i] != Offset) { - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - } - std::vector<const Type*> nt; - for (unsigned x = 0; x < i; ++x) - nt.push_back(STy->getElementType(x)); - nt.push_back(NewTy); - //and merge - STy = StructType::get(nt); - DOUT << "Trying with: " << *STy << "\n"; - return mergeTypeInfo(STy, 0); - } - - assert(0 && - "UNIMP: Trying to merge a growth type into " - "offset != 0: Collapsing!"); - abort(); - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - - } - - - // Okay, the situation is nice and simple, we are trying to merge a type in - // at offset 0 that is bigger than our current type. Implement this by - // switching to the new type and then merge in the smaller one, which should - // hit the other code path here. If the other code path decides it's not - // ok, it will collapse the node as appropriate. - // - - const Type *OldTy = Ty; - Ty = NewTy; - NodeType &= ~Array; - if (WillBeArray) NodeType |= Array; - Size = NewTySize; - - // Must grow links to be the appropriate size... - Links.resize(NumFields); - - // Merge in the old type now... which is guaranteed to be smaller than the - // "current" type. - return mergeTypeInfo(OldTy, 0); - } - - assert(Offset <= Size && - "Cannot merge something into a part of our type that doesn't exist!"); - - // Find the section of Ty that NewTy overlaps with... first we find the - // type that starts at offset Offset. - // - unsigned O = 0; - const Type *SubType = Ty; - while (O < Offset) { - assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); - - switch (SubType->getTypeID()) { - case Type::StructTyID: { - const StructType *STy = cast<StructType>(SubType); - const StructLayout &SL = *TD.getStructLayout(STy); - unsigned i = SL.getElementContainingOffset(Offset-O); - - // The offset we are looking for must be in the i'th element... - SubType = STy->getElementType(i); - O += (unsigned)SL.MemberOffsets[i]; - break; - } - case Type::ArrayTyID: { - SubType = cast<ArrayType>(SubType)->getElementType(); - unsigned ElSize = (unsigned)TD.getTypeSize(SubType); - unsigned Remainder = (Offset-O) % ElSize; - O = Offset-Remainder; - break; - } - default: - if (FoldIfIncompatible) foldNodeCompletely(); - return true; - } - } - - assert(O == Offset && "Could not achieve the correct offset!"); - - // If we found our type exactly, early exit - if (SubType == NewTy) return false; - - // Differing function types don't require us to merge. They are not values - // anyway. - if (isa<FunctionType>(SubType) && - isa<FunctionType>(NewTy)) return false; - - unsigned SubTypeSize = SubType->isSized() ? - (unsigned)TD.getTypeSize(SubType) : 0; - - // Ok, we are getting desperate now. Check for physical subtyping, where we - // just require each element in the node to be compatible. - if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 && - SubTypeSize && SubTypeSize < 256 && - ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD)) - return false; - - // Okay, so we found the leader type at the offset requested. Search the list - // of types that starts at this offset. If SubType is currently an array or - // structure, the type desired may actually be the first element of the - // composite type... - // - unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored - while (SubType != NewTy) { - const Type *NextSubType = 0; - unsigned NextSubTypeSize = 0; - unsigned NextPadSize = 0; - switch (SubType->getTypeID()) { - case Type::StructTyID: { - const StructType *STy = cast<StructType>(SubType); - const StructLayout &SL = *TD.getStructLayout(STy); - if (SL.MemberOffsets.size() > 1) - NextPadSize = (unsigned)SL.MemberOffsets[1]; - else - NextPadSize = SubTypeSize; - NextSubType = STy->getElementType(0); - NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType); - break; - } - case Type::ArrayTyID: - NextSubType = cast<ArrayType>(SubType)->getElementType(); - NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType); - NextPadSize = NextSubTypeSize; - break; - default: ; - // fall out - } - - if (NextSubType == 0) - break; // In the default case, break out of the loop - - if (NextPadSize < NewTySize) - break; // Don't allow shrinking to a smaller type than NewTySize - SubType = NextSubType; - SubTypeSize = NextSubTypeSize; - PadSize = NextPadSize; - } - - // If we found the type exactly, return it... - if (SubType == NewTy) - return false; - - // Check to see if we have a compatible, but different type... - if (NewTySize == SubTypeSize) { - // Check to see if this type is obviously convertible... int -> uint f.e. - if (NewTy->canLosslesslyBitCastTo(SubType)) - return false; - - // Check to see if we have a pointer & integer mismatch going on here, - // loading a pointer as a long, for example. - // - if (SubType->isInteger() && isa<PointerType>(NewTy) || - NewTy->isInteger() && isa<PointerType>(SubType)) - return false; - } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) { - // We are accessing the field, plus some structure padding. Ignore the - // structure padding. - return false; - } - - Module *M = 0; - if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end()) - M = getParentGraph()->retnodes_begin()->first->getParent(); - - DOUT << "MergeTypeInfo Folding OrigTy: "; - DEBUG(WriteTypeSymbolic(*cerr.stream(), Ty, M) << "\n due to:"; - WriteTypeSymbolic(*cerr.stream(), NewTy, M) << " @ " << Offset << "!\n" - << "SubType: "; - WriteTypeSymbolic(*cerr.stream(), SubType, M) << "\n\n"); - - if (FoldIfIncompatible) foldNodeCompletely(); - return true; -} - - - -/// addEdgeTo - Add an edge from the current node to the specified node. This -/// can cause merging of nodes in the graph. -/// -void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { - if (NH.isNull()) return; // Nothing to do - - if (isNodeCompletelyFolded()) - Offset = 0; - - DSNodeHandle &ExistingEdge = getLink(Offset); - if (!ExistingEdge.isNull()) { - // Merge the two nodes... - ExistingEdge.mergeWith(NH); - } else { // No merging to perform... - setLink(Offset, NH); // Just force a link in there... - } -} - - -/// MergeSortedVectors - Efficiently merge a vector into another vector where -/// duplicates are not allowed and both are sorted. This assumes that 'T's are -/// efficiently copyable and have sane comparison semantics. -/// -static void MergeSortedVectors(std::vector<GlobalValue*> &Dest, - const std::vector<GlobalValue*> &Src) { - // By far, the most common cases will be the simple ones. In these cases, - // avoid having to allocate a temporary vector... - // - if (Src.empty()) { // Nothing to merge in... - return; - } else if (Dest.empty()) { // Just copy the result in... - Dest = Src; - } else if (Src.size() == 1) { // Insert a single element... - const GlobalValue *V = Src[0]; - std::vector<GlobalValue*>::iterator I = - std::lower_bound(Dest.begin(), Dest.end(), V); - if (I == Dest.end() || *I != Src[0]) // If not already contained... - Dest.insert(I, Src[0]); - } else if (Dest.size() == 1) { - GlobalValue *Tmp = Dest[0]; // Save value in temporary... - Dest = Src; // Copy over list... - std::vector<GlobalValue*>::iterator I = - std::lower_bound(Dest.begin(), Dest.end(), Tmp); - if (I == Dest.end() || *I != Tmp) // If not already contained... - Dest.insert(I, Tmp); - - } else { - // Make a copy to the side of Dest... - std::vector<GlobalValue*> Old(Dest); - - // Make space for all of the type entries now... - Dest.resize(Dest.size()+Src.size()); - - // Merge the two sorted ranges together... into Dest. - std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); - - // Now erase any duplicate entries that may have accumulated into the - // vectors (because they were in both of the input sets) - Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); - } -} - -void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) { - MergeSortedVectors(Globals, RHS); -} - -// MergeNodes - Helper function for DSNode::mergeWith(). -// This function does the hard work of merging two nodes, CurNodeH -// and NH after filtering out trivial cases and making sure that -// CurNodeH.offset >= NH.offset. -// -// ***WARNING*** -// Since merging may cause either node to go away, we must always -// use the node-handles to refer to the nodes. These node handles are -// automatically updated during merging, so will always provide access -// to the correct node after a merge. -// -void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) { - assert(CurNodeH.getOffset() >= NH.getOffset() && - "This should have been enforced in the caller."); - assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() && - "Cannot merge two nodes that are not in the same graph!"); - - // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with - // respect to NH.Offset) is now zero. NOffset is the distance from the base - // of our object that N starts from. - // - unsigned NOffset = CurNodeH.getOffset()-NH.getOffset(); - unsigned NSize = NH.getNode()->getSize(); - - // If the two nodes are of different size, and the smaller node has the array - // bit set, collapse! - if (NSize != CurNodeH.getNode()->getSize()) { -#if COLLAPSE_ARRAYS_AGGRESSIVELY - if (NSize < CurNodeH.getNode()->getSize()) { - if (NH.getNode()->isArray()) - NH.getNode()->foldNodeCompletely(); - } else if (CurNodeH.getNode()->isArray()) { - NH.getNode()->foldNodeCompletely(); - } -#endif - } - - // Merge the type entries of the two nodes together... - if (NH.getNode()->Ty != Type::VoidTy) - CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset); - assert(!CurNodeH.getNode()->isDeadNode()); - - // If we are merging a node with a completely folded node, then both nodes are - // now completely folded. - // - if (CurNodeH.getNode()->isNodeCompletelyFolded()) { - if (!NH.getNode()->isNodeCompletelyFolded()) { - NH.getNode()->foldNodeCompletely(); - assert(NH.getNode() && NH.getOffset() == 0 && - "folding did not make offset 0?"); - NOffset = NH.getOffset(); - NSize = NH.getNode()->getSize(); - assert(NOffset == 0 && NSize == 1); - } - } else if (NH.getNode()->isNodeCompletelyFolded()) { - CurNodeH.getNode()->foldNodeCompletely(); - assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 && - "folding did not make offset 0?"); - NSize = NH.getNode()->getSize(); - NOffset = NH.getOffset(); - assert(NOffset == 0 && NSize == 1); - } - - DSNode *N = NH.getNode(); - if (CurNodeH.getNode() == N || N == 0) return; - assert(!CurNodeH.getNode()->isDeadNode()); - - // Merge the NodeType information. - CurNodeH.getNode()->NodeType |= N->NodeType; - - // Start forwarding to the new node! - N->forwardNode(CurNodeH.getNode(), NOffset); - assert(!CurNodeH.getNode()->isDeadNode()); - - // Make all of the outgoing links of N now be outgoing links of CurNodeH. - // - for (unsigned i = 0; i < N->getNumLinks(); ++i) { - DSNodeHandle &Link = N->getLink(i << DS::PointerShift); - if (Link.getNode()) { - // Compute the offset into the current node at which to - // merge this link. In the common case, this is a linear - // relation to the offset in the original node (with - // wrapping), but if the current node gets collapsed due to - // recursive merging, we must make sure to merge in all remaining - // links at offset zero. - unsigned MergeOffset = 0; - DSNode *CN = CurNodeH.getNode(); - if (CN->Size != 1) - MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize(); - CN->addEdgeTo(MergeOffset, Link); - } - } - - // Now that there are no outgoing edges, all of the Links are dead. - N->Links.clear(); - - // Merge the globals list... - if (!N->Globals.empty()) { - CurNodeH.getNode()->mergeGlobals(N->Globals); - - // Delete the globals from the old node... - std::vector<GlobalValue*>().swap(N->Globals); - } -} - - -/// mergeWith - Merge this node and the specified node, moving all links to and -/// from the argument node into the current node, deleting the node argument. -/// Offset indicates what offset the specified node is to be merged into the -/// current node. -/// -/// The specified node may be a null pointer (in which case, we update it to -/// point to this node). -/// -void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { - DSNode *N = NH.getNode(); - if (N == this && NH.getOffset() == Offset) - return; // Noop - - // If the RHS is a null node, make it point to this node! - if (N == 0) { - NH.mergeWith(DSNodeHandle(this, Offset)); - return; - } - - assert(!N->isDeadNode() && !isDeadNode()); - assert(!hasNoReferrers() && "Should not try to fold a useless node!"); - - if (N == this) { - // We cannot merge two pieces of the same node together, collapse the node - // completely. - DOUT << "Attempting to merge two chunks of the same node together!\n"; - foldNodeCompletely(); - return; - } - - // If both nodes are not at offset 0, make sure that we are merging the node - // at an later offset into the node with the zero offset. - // - if (Offset < NH.getOffset()) { - N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); - return; - } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { - // If the offsets are the same, merge the smaller node into the bigger node - N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); - return; - } - - // Ok, now we can merge the two nodes. Use a static helper that works with - // two node handles, since "this" may get merged away at intermediate steps. - DSNodeHandle CurNodeH(this, Offset); - DSNodeHandle NHCopy(NH); - if (CurNodeH.getOffset() >= NHCopy.getOffset()) - DSNode::MergeNodes(CurNodeH, NHCopy); - else - DSNode::MergeNodes(NHCopy, CurNodeH); -} - - -//===----------------------------------------------------------------------===// -// ReachabilityCloner Implementation -//===----------------------------------------------------------------------===// - -DSNodeHandle ReachabilityCloner::getClonedNH(const DSNodeHandle &SrcNH) { - if (SrcNH.isNull()) return DSNodeHandle(); - const DSNode *SN = SrcNH.getNode(); - - DSNodeHandle &NH = NodeMap[SN]; - if (!NH.isNull()) { // Node already mapped? - DSNode *NHN = NH.getNode(); - return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset()); - } - - // If SrcNH has globals and the destination graph has one of the same globals, - // merge this node with the destination node, which is much more efficient. - if (SN->globals_begin() != SN->globals_end()) { - DSScalarMap &DestSM = Dest.getScalarMap(); - for (DSNode::globals_iterator I = SN->globals_begin(),E = SN->globals_end(); - I != E; ++I) { - GlobalValue *GV = *I; - DSScalarMap::iterator GI = DestSM.find(GV); - if (GI != DestSM.end() && !GI->second.isNull()) { - // We found one, use merge instead! - merge(GI->second, Src.getNodeForValue(GV)); - assert(!NH.isNull() && "Didn't merge node!"); - DSNode *NHN = NH.getNode(); - return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset()); - } - } - } - - DSNode *DN = new DSNode(*SN, &Dest, true /* Null out all links */); - DN->maskNodeTypes(BitsToKeep); - NH = DN; - - // Next, recursively clone all outgoing links as necessary. Note that - // adding these links can cause the node to collapse itself at any time, and - // the current node may be merged with arbitrary other nodes. For this - // reason, we must always go through NH. - DN = 0; - for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) { - const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift); - if (!SrcEdge.isNull()) { - const DSNodeHandle &DestEdge = getClonedNH(SrcEdge); - // Compute the offset into the current node at which to - // merge this link. In the common case, this is a linear - // relation to the offset in the original node (with - // wrapping), but if the current node gets collapsed due to - // recursive merging, we must make sure to merge in all remaining - // links at offset zero. - unsigned MergeOffset = 0; - DSNode *CN = NH.getNode(); - if (CN->getSize() != 1) - MergeOffset = ((i << DS::PointerShift)+NH.getOffset()) % CN->getSize(); - CN->addEdgeTo(MergeOffset, DestEdge); - } - } - - // If this node contains any globals, make sure they end up in the scalar - // map with the correct offset. - for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end(); - I != E; ++I) { - GlobalValue *GV = *I; - const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); - DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; - assert(DestGNH.getNode() == NH.getNode() &&"Global mapping inconsistent"); - Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), - DestGNH.getOffset()+SrcGNH.getOffset())); - } - NH.getNode()->mergeGlobals(SN->getGlobalsList()); - - return DSNodeHandle(NH.getNode(), NH.getOffset()+SrcNH.getOffset()); -} - -void ReachabilityCloner::merge(const DSNodeHandle &NH, - const DSNodeHandle &SrcNH) { - if (SrcNH.isNull()) return; // Noop - if (NH.isNull()) { - // If there is no destination node, just clone the source and assign the - // destination node to be it. - NH.mergeWith(getClonedNH(SrcNH)); - return; - } - - // Okay, at this point, we know that we have both a destination and a source - // node that need to be merged. Check to see if the source node has already - // been cloned. - const DSNode *SN = SrcNH.getNode(); - DSNodeHandle &SCNH = NodeMap[SN]; // SourceClonedNodeHandle - if (!SCNH.isNull()) { // Node already cloned? - DSNode *SCNHN = SCNH.getNode(); - NH.mergeWith(DSNodeHandle(SCNHN, - SCNH.getOffset()+SrcNH.getOffset())); - return; // Nothing to do! - } - - // Okay, so the source node has not already been cloned. Instead of creating - // a new DSNode, only to merge it into the one we already have, try to perform - // the merge in-place. The only case we cannot handle here is when the offset - // into the existing node is less than the offset into the virtual node we are - // merging in. In this case, we have to extend the existing node, which - // requires an allocation anyway. - DSNode *DN = NH.getNode(); // Make sure the Offset is up-to-date - if (NH.getOffset() >= SrcNH.getOffset()) { - if (!DN->isNodeCompletelyFolded()) { - // Make sure the destination node is folded if the source node is folded. - if (SN->isNodeCompletelyFolded()) { - DN->foldNodeCompletely(); - DN = NH.getNode(); - } else if (SN->getSize() != DN->getSize()) { - // If the two nodes are of different size, and the smaller node has the - // array bit set, collapse! -#if COLLAPSE_ARRAYS_AGGRESSIVELY - if (SN->getSize() < DN->getSize()) { - if (SN->isArray()) { - DN->foldNodeCompletely(); - DN = NH.getNode(); - } - } else if (DN->isArray()) { - DN->foldNodeCompletely(); - DN = NH.getNode(); - } -#endif - } - - // Merge the type entries of the two nodes together... - if (SN->getType() != Type::VoidTy && !DN->isNodeCompletelyFolded()) { - DN->mergeTypeInfo(SN->getType(), NH.getOffset()-SrcNH.getOffset()); - DN = NH.getNode(); - } - } - - assert(!DN->isDeadNode()); - - // Merge the NodeType information. - DN->mergeNodeFlags(SN->getNodeFlags() & BitsToKeep); - - // Before we start merging outgoing links and updating the scalar map, make - // sure it is known that this is the representative node for the src node. - SCNH = DSNodeHandle(DN, NH.getOffset()-SrcNH.getOffset()); - - // If the source node contains any globals, make sure they end up in the - // scalar map with the correct offset. - if (SN->globals_begin() != SN->globals_end()) { - // Update the globals in the destination node itself. - DN->mergeGlobals(SN->getGlobalsList()); - - // Update the scalar map for the graph we are merging the source node - // into. - for (DSNode::globals_iterator I = SN->globals_begin(), - E = SN->globals_end(); I != E; ++I) { - GlobalValue *GV = *I; - const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); - DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; - assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent"); - Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), - DestGNH.getOffset()+SrcGNH.getOffset())); - } - NH.getNode()->mergeGlobals(SN->getGlobalsList()); - } - } else { - // We cannot handle this case without allocating a temporary node. Fall - // back on being simple. - DSNode *NewDN = new DSNode(*SN, &Dest, true /* Null out all links */); - NewDN->maskNodeTypes(BitsToKeep); - - unsigned NHOffset = NH.getOffset(); - NH.mergeWith(DSNodeHandle(NewDN, SrcNH.getOffset())); - - assert(NH.getNode() && - (NH.getOffset() > NHOffset || - (NH.getOffset() == 0 && NH.getNode()->isNodeCompletelyFolded())) && - "Merging did not adjust the offset!"); - - // Before we start merging outgoing links and updating the scalar map, make - // sure it is known that this is the representative node for the src node. - SCNH = DSNodeHandle(NH.getNode(), NH.getOffset()-SrcNH.getOffset()); - - // If the source node contained any globals, make sure to create entries - // in the scalar map for them! - for (DSNode::globals_iterator I = SN->globals_begin(), - E = SN->globals_end(); I != E; ++I) { - GlobalValue *GV = *I; - const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); - DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; - assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent"); - assert(SrcGNH.getNode() == SN && "Global mapping inconsistent"); - Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), - DestGNH.getOffset()+SrcGNH.getOffset())); - } - } - - - // Next, recursively merge all outgoing links as necessary. Note that - // adding these links can cause the destination node to collapse itself at - // any time, and the current node may be merged with arbitrary other nodes. - // For this reason, we must always go through NH. - DN = 0; - for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) { - const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift); - if (!SrcEdge.isNull()) { - // Compute the offset into the current node at which to - // merge this link. In the common case, this is a linear - // relation to the offset in the original node (with - // wrapping), but if the current node gets collapsed due to - // recursive merging, we must make sure to merge in all remaining - // links at offset zero. - DSNode *CN = SCNH.getNode(); - unsigned MergeOffset = - ((i << DS::PointerShift)+SCNH.getOffset()) % CN->getSize(); - - DSNodeHandle Tmp = CN->getLink(MergeOffset); - if (!Tmp.isNull()) { - // Perform the recursive merging. Make sure to create a temporary NH, - // because the Link can disappear in the process of recursive merging. - merge(Tmp, SrcEdge); - } else { - Tmp.mergeWith(getClonedNH(SrcEdge)); - // Merging this could cause all kinds of recursive things to happen, - // culminating in the current node being eliminated. Since this is - // possible, make sure to reaquire the link from 'CN'. - - unsigned MergeOffset = 0; - CN = SCNH.getNode(); - MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) %CN->getSize(); - CN->getLink(MergeOffset).mergeWith(Tmp); - } - } - } -} - -/// mergeCallSite - Merge the nodes reachable from the specified src call -/// site into the nodes reachable from DestCS. -void ReachabilityCloner::mergeCallSite(DSCallSite &DestCS, - const DSCallSite &SrcCS) { - merge(DestCS.getRetVal(), SrcCS.getRetVal()); - unsigned MinArgs = DestCS.getNumPtrArgs(); - if (SrcCS.getNumPtrArgs() < MinArgs) MinArgs = SrcCS.getNumPtrArgs(); - - for (unsigned a = 0; a != MinArgs; ++a) - merge(DestCS.getPtrArg(a), SrcCS.getPtrArg(a)); - - for (unsigned a = MinArgs, e = SrcCS.getNumPtrArgs(); a != e; ++a) - DestCS.addPtrArg(getClonedNH(SrcCS.getPtrArg(a))); -} - - -//===----------------------------------------------------------------------===// -// DSCallSite Implementation -//===----------------------------------------------------------------------===// - -// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h -Function &DSCallSite::getCaller() const { - return *Site.getInstruction()->getParent()->getParent(); -} - -void DSCallSite::InitNH(DSNodeHandle &NH, const DSNodeHandle &Src, - ReachabilityCloner &RC) { - NH = RC.getClonedNH(Src); -} - -//===----------------------------------------------------------------------===// -// DSGraph Implementation -//===----------------------------------------------------------------------===// - -/// getFunctionNames - Return a space separated list of the name of the -/// functions in this graph (if any) -std::string DSGraph::getFunctionNames() const { - switch (getReturnNodes().size()) { - case 0: return "Globals graph"; - case 1: return retnodes_begin()->first->getName(); - default: - std::string Return; - for (DSGraph::retnodes_iterator I = retnodes_begin(); - I != retnodes_end(); ++I) - Return += I->first->getName() + " "; - Return.erase(Return.end()-1, Return.end()); // Remove last space character - return Return; - } -} - - -DSGraph::DSGraph(const DSGraph &G, EquivalenceClasses<GlobalValue*> &ECs, - unsigned CloneFlags) - : GlobalsGraph(0), ScalarMap(ECs), TD(G.TD) { - PrintAuxCalls = false; - cloneInto(G, CloneFlags); -} - -DSGraph::~DSGraph() { - FunctionCalls.clear(); - AuxFunctionCalls.clear(); - ScalarMap.clear(); - ReturnNodes.clear(); - - // Drop all intra-node references, so that assertions don't fail... - for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) - NI->dropAllReferences(); - - // Free all of the nodes. - Nodes.clear(); -} - -// dump - Allow inspection of graph in a debugger. -void DSGraph::dump() const { print(cerr); } - - -/// remapLinks - Change all of the Links in the current node according to the -/// specified mapping. -/// -void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) { - for (unsigned i = 0, e = Links.size(); i != e; ++i) - if (DSNode *N = Links[i].getNode()) { - DSGraph::NodeMapTy::const_iterator ONMI = OldNodeMap.find(N); - if (ONMI != OldNodeMap.end()) { - DSNode *ONMIN = ONMI->second.getNode(); - Links[i].setTo(ONMIN, Links[i].getOffset()+ONMI->second.getOffset()); - } - } -} - -/// addObjectToGraph - This method can be used to add global, stack, and heap -/// objects to the graph. This can be used when updating DSGraphs due to the -/// introduction of new temporary objects. The new object is not pointed to -/// and does not point to any other objects in the graph. -DSNode *DSGraph::addObjectToGraph(Value *Ptr, bool UseDeclaredType) { - assert(isa<PointerType>(Ptr->getType()) && "Ptr is not a pointer!"); - const Type *Ty = cast<PointerType>(Ptr->getType())->getElementType(); - DSNode *N = new DSNode(UseDeclaredType ? Ty : 0, this); - assert(ScalarMap[Ptr].isNull() && "Object already in this graph!"); - ScalarMap[Ptr] = N; - - if (GlobalValue *GV = dyn_cast<GlobalValue>(Ptr)) { - N->addGlobal(GV); - } else if (isa<MallocInst>(Ptr)) { - N->setHeapNodeMarker(); - } else if (isa<AllocaInst>(Ptr)) { - N->setAllocaNodeMarker(); - } else { - assert(0 && "Illegal memory object input!"); - } - return N; -} - - -/// cloneInto - Clone the specified DSGraph into the current graph. The -/// translated ScalarMap for the old function is filled into the ScalarMap -/// for the graph, and the translated ReturnNodes map is returned into -/// ReturnNodes. -/// -/// The CloneFlags member controls various aspects of the cloning process. -/// -void DSGraph::cloneInto(const DSGraph &G, unsigned CloneFlags) { - TIME_REGION(X, "cloneInto"); - assert(&G != this && "Cannot clone graph into itself!"); - - NodeMapTy OldNodeMap; - - // Remove alloca or mod/ref bits as specified... - unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0) - | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0) - | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0); - BitsToClear |= DSNode::DEAD; // Clear dead flag... - - for (node_const_iterator I = G.node_begin(), E = G.node_end(); I != E; ++I) { - assert(!I->isForwarding() && - "Forward nodes shouldn't be in node list!"); - DSNode *New = new DSNode(*I, this); - New->maskNodeTypes(~BitsToClear); - OldNodeMap[I] = New; - } - -#ifndef NDEBUG - Timer::addPeakMemoryMeasurement(); -#endif - - // Rewrite the links in the new nodes to point into the current graph now. - // Note that we don't loop over the node's list to do this. The problem is - // that remaping links can cause recursive merging to happen, which means - // that node_iterator's can get easily invalidated! Because of this, we - // loop over the OldNodeMap, which contains all of the new nodes as the - // .second element of the map elements. Also note that if we remap a node - // more than once, we won't break anything. - for (NodeMapTy::iterator I = OldNodeMap.begin(), E = OldNodeMap.end(); - I != E; ++I) - I->second.getNode()->remapLinks(OldNodeMap); - - // Copy the scalar map... merging all of the global nodes... - for (DSScalarMap::const_iterator I = G.ScalarMap.begin(), - E = G.ScalarMap.end(); I != E; ++I) { - DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()]; - DSNodeHandle &H = ScalarMap.getRawEntryRef(I->first); - DSNode *MappedNodeN = MappedNode.getNode(); - H.mergeWith(DSNodeHandle(MappedNodeN, - I->second.getOffset()+MappedNode.getOffset())); - } - - if (!(CloneFlags & DontCloneCallNodes)) { - // Copy the function calls list. - for (fc_iterator I = G.fc_begin(), E = G.fc_end(); I != E; ++I) - FunctionCalls.push_back(DSCallSite(*I, OldNodeMap)); - } - - if (!(CloneFlags & DontCloneAuxCallNodes)) { - // Copy the auxiliary function calls list. - for (afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I) - AuxFunctionCalls.push_back(DSCallSite(*I, OldNodeMap)); - } - - // Map the return node pointers over... - for (retnodes_iterator I = G.retnodes_begin(), - E = G.retnodes_end(); I != E; ++I) { - const DSNodeHandle &Ret = I->second; - DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()]; - DSNode *MappedRetN = MappedRet.getNode(); - ReturnNodes.insert(std::make_pair(I->first, - DSNodeHandle(MappedRetN, - MappedRet.getOffset()+Ret.getOffset()))); - } -} - -/// spliceFrom - Logically perform the operation of cloning the RHS graph into -/// this graph, then clearing the RHS graph. Instead of performing this as -/// two seperate operations, do it as a single, much faster, one. -/// -void DSGraph::spliceFrom(DSGraph &RHS) { - // Change all of the nodes in RHS to think we are their parent. - for (NodeListTy::iterator I = RHS.Nodes.begin(), E = RHS.Nodes.end(); - I != E; ++I) - I->setParentGraph(this); - // Take all of the nodes. - Nodes.splice(Nodes.end(), RHS.Nodes); - - // Take all of the calls. - FunctionCalls.splice(FunctionCalls.end(), RHS.FunctionCalls); - AuxFunctionCalls.splice(AuxFunctionCalls.end(), RHS.AuxFunctionCalls); - - // Take all of the return nodes. - if (ReturnNodes.empty()) { - ReturnNodes.swap(RHS.ReturnNodes); - } else { - ReturnNodes.insert(RHS.ReturnNodes.begin(), RHS.ReturnNodes.end()); - RHS.ReturnNodes.clear(); - } - - // Merge the scalar map in. - ScalarMap.spliceFrom(RHS.ScalarMap); -} - -/// spliceFrom - Copy all entries from RHS, then clear RHS. -/// -void DSScalarMap::spliceFrom(DSScalarMap &RHS) { - // Special case if this is empty. - if (ValueMap.empty()) { - ValueMap.swap(RHS.ValueMap); - GlobalSet.swap(RHS.GlobalSet); - } else { - GlobalSet.insert(RHS.GlobalSet.begin(), RHS.GlobalSet.end()); - for (ValueMapTy::iterator I = RHS.ValueMap.begin(), E = RHS.ValueMap.end(); - I != E; ++I) - ValueMap[I->first].mergeWith(I->second); - RHS.ValueMap.clear(); - } -} - - -/// getFunctionArgumentsForCall - Given a function that is currently in this -/// graph, return the DSNodeHandles that correspond to the pointer-compatible -/// function arguments. The vector is filled in with the return value (or -/// null if it is not pointer compatible), followed by all of the -/// pointer-compatible arguments. -void DSGraph::getFunctionArgumentsForCall(Function *F, - std::vector<DSNodeHandle> &Args) const { - Args.push_back(getReturnNodeFor(*F)); - for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); - AI != E; ++AI) - if (isPointerType(AI->getType())) { - Args.push_back(getNodeForValue(AI)); - assert(!Args.back().isNull() && "Pointer argument w/o scalarmap entry!?"); - } -} - -namespace { - // HackedGraphSCCFinder - This is used to find nodes that have a path from the - // node to a node cloned by the ReachabilityCloner object contained. To be - // extra obnoxious it ignores edges from nodes that are globals, and truncates - // search at RC marked nodes. This is designed as an object so that - // intermediate results can be memoized across invocations of - // PathExistsToClonedNode. - struct HackedGraphSCCFinder { - ReachabilityCloner &RC; - unsigned CurNodeId; - std::vector<const DSNode*> SCCStack; - std::map<const DSNode*, std::pair<unsigned, bool> > NodeInfo; - - HackedGraphSCCFinder(ReachabilityCloner &rc) : RC(rc), CurNodeId(1) { - // Remove null pointer as a special case. - NodeInfo[0] = std::make_pair(0, false); - } - - std::pair<unsigned, bool> &VisitForSCCs(const DSNode *N); - - bool PathExistsToClonedNode(const DSNode *N) { - return VisitForSCCs(N).second; - } - - bool PathExistsToClonedNode(const DSCallSite &CS) { - if (PathExistsToClonedNode(CS.getRetVal().getNode())) - return true; - for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) - if (PathExistsToClonedNode(CS.getPtrArg(i).getNode())) - return true; - return false; - } - }; -} - -std::pair<unsigned, bool> &HackedGraphSCCFinder:: -VisitForSCCs(const DSNode *N) { - std::map<const DSNode*, std::pair<unsigned, bool> >::iterator - NodeInfoIt = NodeInfo.lower_bound(N); - if (NodeInfoIt != NodeInfo.end() && NodeInfoIt->first == N) - return NodeInfoIt->second; - - unsigned Min = CurNodeId++; - unsigned MyId = Min; - std::pair<unsigned, bool> &ThisNodeInfo = - NodeInfo.insert(NodeInfoIt, - std::make_pair(N, std::make_pair(MyId, false)))->second; - - // Base case: if we find a global, this doesn't reach the cloned graph - // portion. - if (N->isGlobalNode()) { - ThisNodeInfo.second = false; - return ThisNodeInfo; - } - - // Base case: if this does reach the cloned graph portion... it does. :) - if (RC.hasClonedNode(N)) { - ThisNodeInfo.second = true; - return ThisNodeInfo; - } - - SCCStack.push_back(N); - - // Otherwise, check all successors. - bool AnyDirectSuccessorsReachClonedNodes = false; - for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end(); - EI != EE; ++EI) - if (DSNode *Succ = EI->getNode()) { - std::pair<unsigned, bool> &SuccInfo = VisitForSCCs(Succ); - if (SuccInfo.first < Min) Min = SuccInfo.first; - AnyDirectSuccessorsReachClonedNodes |= SuccInfo.second; - } - - if (Min != MyId) - return ThisNodeInfo; // Part of a large SCC. Leave self on stack. - - if (SCCStack.back() == N) { // Special case single node SCC. - SCCStack.pop_back(); - ThisNodeInfo.second = AnyDirectSuccessorsReachClonedNodes; - return ThisNodeInfo; - } - - // Find out if any direct successors of any node reach cloned nodes. - if (!AnyDirectSuccessorsReachClonedNodes) - for (unsigned i = SCCStack.size()-1; SCCStack[i] != N; --i) - for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end(); - EI != EE; ++EI) - if (DSNode *N = EI->getNode()) - if (NodeInfo[N].second) { - AnyDirectSuccessorsReachClonedNodes = true; - goto OutOfLoop; - } -OutOfLoop: - // If any successor reaches a cloned node, mark all nodes in this SCC as - // reaching the cloned node. - if (AnyDirectSuccessorsReachClonedNodes) - while (SCCStack.back() != N) { - NodeInfo[SCCStack.back()].second = true; - SCCStack.pop_back(); - } - SCCStack.pop_back(); - ThisNodeInfo.second = true; - return ThisNodeInfo; -} - -/// mergeInCallFromOtherGraph - This graph merges in the minimal number of -/// nodes from G2 into 'this' graph, merging the bindings specified by the -/// call site (in this graph) with the bindings specified by the vector in G2. -/// The two DSGraphs must be different. -/// -void DSGraph::mergeInGraph(const DSCallSite &CS, - std::vector<DSNodeHandle> &Args, - const DSGraph &Graph, unsigned CloneFlags) { - TIME_REGION(X, "mergeInGraph"); - - assert((CloneFlags & DontCloneCallNodes) && - "Doesn't support copying of call nodes!"); - - // If this is not a recursive call, clone the graph into this graph... - if (&Graph == this) { - // Merge the return value with the return value of the context. - Args[0].mergeWith(CS.getRetVal()); - - // Resolve all of the function arguments. - for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) { - if (i == Args.size()-1) - break; - - // Add the link from the argument scalar to the provided value. - Args[i+1].mergeWith(CS.getPtrArg(i)); - } - return; - } - - // Clone the callee's graph into the current graph, keeping track of where - // scalars in the old graph _used_ to point, and of the new nodes matching - // nodes of the old graph. - ReachabilityCloner RC(*this, Graph, CloneFlags); - - // Map the return node pointer over. - if (!CS.getRetVal().isNull()) - RC.merge(CS.getRetVal(), Args[0]); - - // Map over all of the arguments. - for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) { - if (i == Args.size()-1) - break; - - // Add the link from the argument scalar to the provided value. - RC.merge(CS.getPtrArg(i), Args[i+1]); - } - - // We generally don't want to copy global nodes or aux calls from the callee - // graph to the caller graph. However, we have to copy them if there is a - // path from the node to a node we have already copied which does not go - // through another global. Compute the set of node that can reach globals and - // aux call nodes to copy over, then do it. - std::vector<const DSCallSite*> AuxCallToCopy; - std::vector<GlobalValue*> GlobalsToCopy; - - // NodesReachCopiedNodes - Memoize results for efficiency. Contains a - // true/false value for every visited node that reaches a copied node without - // going through a global. - HackedGraphSCCFinder SCCFinder(RC); - - if (!(CloneFlags & DontCloneAuxCallNodes)) - for (afc_iterator I = Graph.afc_begin(), E = Graph.afc_end(); I!=E; ++I) - if (SCCFinder.PathExistsToClonedNode(*I)) - AuxCallToCopy.push_back(&*I); -// else if (I->isIndirectCall()){ -// //If the call node doesn't have any callees, clone it -// std::vector< Function *> List; -// I->getCalleeNode()->addFullFunctionList(List); -// if (!List.size()) -// AuxCallToCopy.push_back(&*I); -// } - - const DSScalarMap &GSM = Graph.getScalarMap(); - for (DSScalarMap::global_iterator GI = GSM.global_begin(), - E = GSM.global_end(); GI != E; ++GI) { - DSNode *GlobalNode = Graph.getNodeForValue(*GI).getNode(); - for (DSNode::edge_iterator EI = GlobalNode->edge_begin(), - EE = GlobalNode->edge_end(); EI != EE; ++EI) - if (SCCFinder.PathExistsToClonedNode(EI->getNode())) { - GlobalsToCopy.push_back(*GI); - break; - } - } - - // Copy aux calls that are needed. - for (unsigned i = 0, e = AuxCallToCopy.size(); i != e; ++i) - AuxFunctionCalls.push_back(DSCallSite(*AuxCallToCopy[i], RC)); - - // Copy globals that are needed. - for (unsigned i = 0, e = GlobalsToCopy.size(); i != e; ++i) - RC.getClonedNH(Graph.getNodeForValue(GlobalsToCopy[i])); -} - - - -/// mergeInGraph - The method is used for merging graphs together. If the -/// argument graph is not *this, it makes a clone of the specified graph, then -/// merges the nodes specified in the call site with the formal arguments in the -/// graph. -/// -void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F, - const DSGraph &Graph, unsigned CloneFlags) { - // Set up argument bindings. - std::vector<DSNodeHandle> Args; - Graph.getFunctionArgumentsForCall(&F, Args); - - mergeInGraph(CS, Args, Graph, CloneFlags); -} - -/// getCallSiteForArguments - Get the arguments and return value bindings for -/// the specified function in the current graph. -/// -DSCallSite DSGraph::getCallSiteForArguments(Function &F) const { - std::vector<DSNodeHandle> Args; - - for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) - if (isPointerType(I->getType())) - Args.push_back(getNodeForValue(I)); - - return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args); -} - -/// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in -/// the context of this graph, return the DSCallSite for it. -DSCallSite DSGraph::getDSCallSiteForCallSite(CallSite CS) const { - DSNodeHandle RetVal; - Instruction *I = CS.getInstruction(); - if (isPointerType(I->getType())) - RetVal = getNodeForValue(I); - - std::vector<DSNodeHandle> Args; - Args.reserve(CS.arg_end()-CS.arg_begin()); - - // Calculate the arguments vector... - for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) - if (isPointerType((*I)->getType())) - if (isa<ConstantPointerNull>(*I)) - Args.push_back(DSNodeHandle()); - else - Args.push_back(getNodeForValue(*I)); - - // Add a new function call entry... - if (Function *F = CS.getCalledFunction()) - return DSCallSite(CS, RetVal, F, Args); - else - return DSCallSite(CS, RetVal, - getNodeForValue(CS.getCalledValue()).getNode(), Args); -} - - - -// markIncompleteNodes - Mark the specified node as having contents that are not -// known with the current analysis we have performed. Because a node makes all -// of the nodes it can reach incomplete if the node itself is incomplete, we -// must recursively traverse the data structure graph, marking all reachable -// nodes as incomplete. -// -static void markIncompleteNode(DSNode *N) { - // Stop recursion if no node, or if node already marked... - if (N == 0 || N->isIncomplete()) return; - - // Actually mark the node - N->setIncompleteMarker(); - - // Recursively process children... - for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I) - if (DSNode *DSN = I->getNode()) - markIncompleteNode(DSN); -} - -static void markIncomplete(DSCallSite &Call) { - // Then the return value is certainly incomplete! - markIncompleteNode(Call.getRetVal().getNode()); - - // All objects pointed to by function arguments are incomplete! - for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) - markIncompleteNode(Call.getPtrArg(i).getNode()); -} - -// markIncompleteNodes - Traverse the graph, identifying nodes that may be -// modified by other functions that have not been resolved yet. This marks -// nodes that are reachable through three sources of "unknownness": -// -// Global Variables, Function Calls, and Incoming Arguments -// -// For any node that may have unknown components (because something outside the -// scope of current analysis may have modified it), the 'Incomplete' flag is -// added to the NodeType. -// -void DSGraph::markIncompleteNodes(unsigned Flags) { - // Mark any incoming arguments as incomplete. - if (Flags & DSGraph::MarkFormalArgs) - for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end(); - FI != E; ++FI) { - Function &F = *FI->first; - for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); - I != E; ++I) - if (isPointerType(I->getType())) - markIncompleteNode(getNodeForValue(I).getNode()); - markIncompleteNode(FI->second.getNode()); - } - - // Mark stuff passed into functions calls as being incomplete. - if (!shouldPrintAuxCalls()) - for (std::list<DSCallSite>::iterator I = FunctionCalls.begin(), - E = FunctionCalls.end(); I != E; ++I) - markIncomplete(*I); - else - for (std::list<DSCallSite>::iterator I = AuxFunctionCalls.begin(), - E = AuxFunctionCalls.end(); I != E; ++I) - markIncomplete(*I); - - // Mark all global nodes as incomplete. - for (DSScalarMap::global_iterator I = ScalarMap.global_begin(), - E = ScalarMap.global_end(); I != E; ++I) - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I)) - if (!GV->hasInitializer() || // Always mark external globals incomp. - (!GV->isConstant() && (Flags & DSGraph::IgnoreGlobals) == 0)) - markIncompleteNode(ScalarMap[GV].getNode()); -} - -static inline void killIfUselessEdge(DSNodeHandle &Edge) { - if (DSNode *N = Edge.getNode()) // Is there an edge? - if (N->getNumReferrers() == 1) // Does it point to a lonely node? - // No interesting info? - if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 && - N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded()) - Edge.setTo(0, 0); // Kill the edge! -} - -static inline bool nodeContainsExternalFunction(const DSNode *N) { - std::vector<Function*> Funcs; - N->addFullFunctionList(Funcs); - for (unsigned i = 0, e = Funcs.size(); i != e; ++i) - if (Funcs[i]->isExternal()) return true; - return false; -} - -static void removeIdenticalCalls(std::list<DSCallSite> &Calls) { - // Remove trivially identical function calls - Calls.sort(); // Sort by callee as primary key! - - // Scan the call list cleaning it up as necessary... - DSNodeHandle LastCalleeNode; -#if 0 - Function *LastCalleeFunc = 0; - unsigned NumDuplicateCalls = 0; -#endif - bool LastCalleeContainsExternalFunction = false; - - unsigned NumDeleted = 0; - for (std::list<DSCallSite>::iterator I = Calls.begin(), E = Calls.end(); - I != E;) { - DSCallSite &CS = *I; - std::list<DSCallSite>::iterator OldIt = I++; - - if (!CS.isIndirectCall()) { - LastCalleeNode = 0; - } else { - DSNode *Callee = CS.getCalleeNode(); - - // If the Callee is a useless edge, this must be an unreachable call site, - // eliminate it. - if (Callee->getNumReferrers() == 1 && Callee->isComplete() && - Callee->getGlobalsList().empty()) { // No useful info? - DOUT << "WARNING: Useless call site found.\n"; - Calls.erase(OldIt); - ++NumDeleted; - continue; - } - - // If the last call site in the list has the same callee as this one, and - // if the callee contains an external function, it will never be - // resolvable, just merge the call sites. - if (!LastCalleeNode.isNull() && LastCalleeNode.getNode() == Callee) { - LastCalleeContainsExternalFunction = - nodeContainsExternalFunction(Callee); - - std::list<DSCallSite>::iterator PrevIt = OldIt; - --PrevIt; - PrevIt->mergeWith(CS); - - // No need to keep this call anymore. - Calls.erase(OldIt); - ++NumDeleted; - continue; - } else { - LastCalleeNode = Callee; - } - } - - // If the return value or any arguments point to a void node with no - // information at all in it, and the call node is the only node to point - // to it, remove the edge to the node (killing the node). - // - killIfUselessEdge(CS.getRetVal()); - for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a) - killIfUselessEdge(CS.getPtrArg(a)); - -#if 0 - // If this call site calls the same function as the last call site, and if - // the function pointer contains an external function, this node will - // never be resolved. Merge the arguments of the call node because no - // information will be lost. - // - if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) || - (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) { - ++NumDuplicateCalls; - if (NumDuplicateCalls == 1) { - if (LastCalleeNode) - LastCalleeContainsExternalFunction = - nodeContainsExternalFunction(LastCalleeNode); - else - LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal(); - } - - // It is not clear why, but enabling this code makes DSA really - // sensitive to node forwarding. Basically, with this enabled, DSA - // performs different number of inlinings based on which nodes are - // forwarding or not. This is clearly a problem, so this code is - // disabled until this can be resolved. -#if 1 - if (LastCalleeContainsExternalFunction -#if 0 - || - // This should be more than enough context sensitivity! - // FIXME: Evaluate how many times this is tripped! - NumDuplicateCalls > 20 -#endif - ) { - - std::list<DSCallSite>::iterator PrevIt = OldIt; - --PrevIt; - PrevIt->mergeWith(CS); - - // No need to keep this call anymore. - Calls.erase(OldIt); - ++NumDeleted; - continue; - } -#endif - } else { - if (CS.isDirectCall()) { - LastCalleeFunc = CS.getCalleeFunc(); - LastCalleeNode = 0; - } else { - LastCalleeNode = CS.getCalleeNode(); - LastCalleeFunc = 0; - } - NumDuplicateCalls = 0; - } -#endif - - if (I != Calls.end() && CS == *I) { - LastCalleeNode = 0; - Calls.erase(OldIt); - ++NumDeleted; - continue; - } - } - - // Resort now that we simplified things. - Calls.sort(); - - // Now that we are in sorted order, eliminate duplicates. - std::list<DSCallSite>::iterator CI = Calls.begin(), CE = Calls.end(); - if (CI != CE) - while (1) { - std::list<DSCallSite>::iterator OldIt = CI++; - if (CI == CE) break; - - // If this call site is now the same as the previous one, we can delete it - // as a duplicate. - if (*OldIt == *CI) { - Calls.erase(CI); - CI = OldIt; - ++NumDeleted; - } - } - - //Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end()); - - // Track the number of call nodes merged away... - NumCallNodesMerged += NumDeleted; - - if (NumDeleted) - DOUT << "Merged " << NumDeleted << " call nodes.\n"; -} - - -// removeTriviallyDeadNodes - After the graph has been constructed, this method -// removes all unreachable nodes that are created because they got merged with -// other nodes in the graph. These nodes will all be trivially unreachable, so -// we don't have to perform any non-trivial analysis here. -// -void DSGraph::removeTriviallyDeadNodes() { - TIME_REGION(X, "removeTriviallyDeadNodes"); - -#if 0 - /// NOTE: This code is disabled. This slows down DSA on 177.mesa - /// substantially! - - // Loop over all of the nodes in the graph, calling getNode on each field. - // This will cause all nodes to update their forwarding edges, causing - // forwarded nodes to be delete-able. - { TIME_REGION(X, "removeTriviallyDeadNodes:node_iterate"); - for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) { - DSNode &N = *NI; - for (unsigned l = 0, e = N.getNumLinks(); l != e; ++l) - N.getLink(l*N.getPointerSize()).getNode(); - } - } - - // NOTE: This code is disabled. Though it should, in theory, allow us to - // remove more nodes down below, the scan of the scalar map is incredibly - // expensive for certain programs (with large SCCs). In the future, if we can - // make the scalar map scan more efficient, then we can reenable this. - { TIME_REGION(X, "removeTriviallyDeadNodes:scalarmap"); - - // Likewise, forward any edges from the scalar nodes. While we are at it, - // clean house a bit. - for (DSScalarMap::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){ - I->second.getNode(); - ++I; - } - } -#endif - bool isGlobalsGraph = !GlobalsGraph; - - for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E; ) { - DSNode &Node = *NI; - - // Do not remove *any* global nodes in the globals graph. - // This is a special case because such nodes may not have I, M, R flags set. - if (Node.isGlobalNode() && isGlobalsGraph) { - ++NI; - continue; - } - - if (Node.isComplete() && !Node.isModified() && !Node.isRead()) { - // This is a useless node if it has no mod/ref info (checked above), - // outgoing edges (which it cannot, as it is not modified in this - // context), and it has no incoming edges. If it is a global node it may - // have all of these properties and still have incoming edges, due to the - // scalar map, so we check those now. - // - if (Node.getNumReferrers() == Node.getGlobalsList().size()) { - const std::vector<GlobalValue*> &Globals = Node.getGlobalsList(); - - // Loop through and make sure all of the globals are referring directly - // to the node... - for (unsigned j = 0, e = Globals.size(); j != e; ++j) { - DSNode *N = getNodeForValue(Globals[j]).getNode(); - assert(N == &Node && "ScalarMap doesn't match globals list!"); - } - - // Make sure NumReferrers still agrees, if so, the node is truly dead. - if (Node.getNumReferrers() == Globals.size()) { - for (unsigned j = 0, e = Globals.size(); j != e; ++j) - ScalarMap.erase(Globals[j]); - Node.makeNodeDead(); - ++NumTrivialGlobalDNE; - } - } - } - - if (Node.getNodeFlags() == 0 && Node.hasNoReferrers()) { - // This node is dead! - NI = Nodes.erase(NI); // Erase & remove from node list. - ++NumTrivialDNE; - } else { - ++NI; - } - } - - removeIdenticalCalls(FunctionCalls); - removeIdenticalCalls(AuxFunctionCalls); -} - - -/// markReachableNodes - This method recursively traverses the specified -/// DSNodes, marking any nodes which are reachable. All reachable nodes it adds -/// to the set, which allows it to only traverse visited nodes once. -/// -void DSNode::markReachableNodes(hash_set<const DSNode*> &ReachableNodes) const { - if (this == 0) return; - assert(getForwardNode() == 0 && "Cannot mark a forwarded node!"); - if (ReachableNodes.insert(this).second) // Is newly reachable? - for (DSNode::const_edge_iterator I = edge_begin(), E = edge_end(); - I != E; ++I) - I->getNode()->markReachableNodes(ReachableNodes); -} - -void DSCallSite::markReachableNodes(hash_set<const DSNode*> &Nodes) const { - getRetVal().getNode()->markReachableNodes(Nodes); - if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes); - - for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i) - getPtrArg(i).getNode()->markReachableNodes(Nodes); -} - -// CanReachAliveNodes - Simple graph walker that recursively traverses the graph -// looking for a node that is marked alive. If an alive node is found, return -// true, otherwise return false. If an alive node is reachable, this node is -// marked as alive... -// -static bool CanReachAliveNodes(DSNode *N, hash_set<const DSNode*> &Alive, - hash_set<const DSNode*> &Visited, - bool IgnoreGlobals) { - if (N == 0) return false; - assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!"); - - // If this is a global node, it will end up in the globals graph anyway, so we - // don't need to worry about it. - if (IgnoreGlobals && N->isGlobalNode()) return false; - - // If we know that this node is alive, return so! - if (Alive.count(N)) return true; - - // Otherwise, we don't think the node is alive yet, check for infinite - // recursion. - if (Visited.count(N)) return false; // Found a cycle - Visited.insert(N); // No recursion, insert into Visited... - - for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I) - if (CanReachAliveNodes(I->getNode(), Alive, Visited, IgnoreGlobals)) { - N->markReachableNodes(Alive); - return true; - } - return false; -} - -// CallSiteUsesAliveArgs - Return true if the specified call site can reach any -// alive nodes. -// -static bool CallSiteUsesAliveArgs(const DSCallSite &CS, - hash_set<const DSNode*> &Alive, - hash_set<const DSNode*> &Visited, - bool IgnoreGlobals) { - if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited, - IgnoreGlobals)) - return true; - if (CS.isIndirectCall() && - CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals)) - return true; - for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) - if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited, - IgnoreGlobals)) - return true; - return false; -} - -// removeDeadNodes - Use a more powerful reachability analysis to eliminate -// subgraphs that are unreachable. This often occurs because the data -// structure doesn't "escape" into it's caller, and thus should be eliminated -// from the caller's graph entirely. This is only appropriate to use when -// inlining graphs. -// -void DSGraph::removeDeadNodes(unsigned Flags) { - DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK()); - - // Reduce the amount of work we have to do... remove dummy nodes left over by - // merging... - removeTriviallyDeadNodes(); - - TIME_REGION(X, "removeDeadNodes"); - - // FIXME: Merge non-trivially identical call nodes... - - // Alive - a set that holds all nodes found to be reachable/alive. - hash_set<const DSNode*> Alive; - std::vector<std::pair<Value*, DSNode*> > GlobalNodes; - - // Copy and merge all information about globals to the GlobalsGraph if this is - // not a final pass (where unreachable globals are removed). - // - // Strip all alloca bits since the current function is only for the BU pass. - // Strip all incomplete bits since they are short-lived properties and they - // will be correctly computed when rematerializing nodes into the functions. - // - ReachabilityCloner GGCloner(*GlobalsGraph, *this, DSGraph::StripAllocaBit | - DSGraph::StripIncompleteBit); - - // Mark all nodes reachable by (non-global) scalar nodes as alive... -{ TIME_REGION(Y, "removeDeadNodes:scalarscan"); - for (DSScalarMap::iterator I = ScalarMap.begin(), E = ScalarMap.end(); - I != E; ++I) - if (isa<GlobalValue>(I->first)) { // Keep track of global nodes - assert(!I->second.isNull() && "Null global node?"); - assert(I->second.getNode()->isGlobalNode() && "Should be a global node!"); - GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode())); - - // Make sure that all globals are cloned over as roots. - if (!(Flags & DSGraph::RemoveUnreachableGlobals) && GlobalsGraph) { - DSGraph::ScalarMapTy::iterator SMI = - GlobalsGraph->getScalarMap().find(I->first); - if (SMI != GlobalsGraph->getScalarMap().end()) - GGCloner.merge(SMI->second, I->second); - else - GGCloner.getClonedNH(I->second); - } - } else { - I->second.getNode()->markReachableNodes(Alive); - } -} - - // The return values are alive as well. - for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end(); - I != E; ++I) - I->second.getNode()->markReachableNodes(Alive); - - // Mark any nodes reachable by primary calls as alive... - for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I) - I->markReachableNodes(Alive); - - - // Now find globals and aux call nodes that are already live or reach a live - // value (which makes them live in turn), and continue till no more are found. - // - bool Iterate; - hash_set<const DSNode*> Visited; - hash_set<const DSCallSite*> AuxFCallsAlive; - do { - Visited.clear(); - // If any global node points to a non-global that is "alive", the global is - // "alive" as well... Remove it from the GlobalNodes list so we only have - // unreachable globals in the list. - // - Iterate = false; - if (!(Flags & DSGraph::RemoveUnreachableGlobals)) - for (unsigned i = 0; i != GlobalNodes.size(); ++i) - if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited, - Flags & DSGraph::RemoveUnreachableGlobals)) { - std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to... - GlobalNodes.pop_back(); // erase efficiently - Iterate = true; - } - - // Mark only unresolvable call nodes for moving to the GlobalsGraph since - // call nodes that get resolved will be difficult to remove from that graph. - // The final unresolved call nodes must be handled specially at the end of - // the BU pass (i.e., in main or other roots of the call graph). - for (afc_iterator CI = afc_begin(), E = afc_end(); CI != E; ++CI) - if (!AuxFCallsAlive.count(&*CI) && - (CI->isIndirectCall() - || CallSiteUsesAliveArgs(*CI, Alive, Visited, - Flags & DSGraph::RemoveUnreachableGlobals))) { - CI->markReachableNodes(Alive); - AuxFCallsAlive.insert(&*CI); - Iterate = true; - } - } while (Iterate); - - // Move dead aux function calls to the end of the list - for (std::list<DSCallSite>::iterator CI = AuxFunctionCalls.begin(), - E = AuxFunctionCalls.end(); CI != E; ) - if (AuxFCallsAlive.count(&*CI)) - ++CI; - else { - // Copy and merge global nodes and dead aux call nodes into the - // GlobalsGraph, and all nodes reachable from those nodes. Update their - // target pointers using the GGCloner. - // - if (!(Flags & DSGraph::RemoveUnreachableGlobals)) - GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(*CI, GGCloner)); - - AuxFunctionCalls.erase(CI++); - } - - // We are finally done with the GGCloner so we can destroy it. - GGCloner.destroy(); - - // At this point, any nodes which are visited, but not alive, are nodes - // which can be removed. Loop over all nodes, eliminating completely - // unreachable nodes. - // - std::vector<DSNode*> DeadNodes; - DeadNodes.reserve(Nodes.size()); - for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E;) { - DSNode *N = NI++; - assert(!N->isForwarding() && "Forwarded node in nodes list?"); - - if (!Alive.count(N)) { - Nodes.remove(N); - assert(!N->isForwarding() && "Cannot remove a forwarding node!"); - DeadNodes.push_back(N); - N->dropAllReferences(); - ++NumDNE; - } - } - - // Remove all unreachable globals from the ScalarMap. - // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes. - // In either case, the dead nodes will not be in the set Alive. - for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) - if (!Alive.count(GlobalNodes[i].second)) - ScalarMap.erase(GlobalNodes[i].first); - else - assert((Flags & DSGraph::RemoveUnreachableGlobals) && "non-dead global"); - - // Delete all dead nodes now since their referrer counts are zero. - for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i) - delete DeadNodes[i]; - - DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK()); -} - -void DSGraph::AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const { - assert(std::find(N->globals_begin(),N->globals_end(), GV) != - N->globals_end() && "Global value not in node!"); -} - -void DSGraph::AssertCallSiteInGraph(const DSCallSite &CS) const { - if (CS.isIndirectCall()) { - AssertNodeInGraph(CS.getCalleeNode()); -#if 0 - if (CS.getNumPtrArgs() && CS.getCalleeNode() == CS.getPtrArg(0).getNode() && - CS.getCalleeNode() && CS.getCalleeNode()->getGlobals().empty()) - DOUT << "WARNING: WEIRD CALL SITE FOUND!\n"; -#endif - } - AssertNodeInGraph(CS.getRetVal().getNode()); - for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j) - AssertNodeInGraph(CS.getPtrArg(j).getNode()); -} - -void DSGraph::AssertCallNodesInGraph() const { - for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I) - AssertCallSiteInGraph(*I); -} -void DSGraph::AssertAuxCallNodesInGraph() const { - for (afc_iterator I = afc_begin(), E = afc_end(); I != E; ++I) - AssertCallSiteInGraph(*I); -} - -void DSGraph::AssertGraphOK() const { - for (node_const_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) - NI->assertOK(); - - for (ScalarMapTy::const_iterator I = ScalarMap.begin(), - E = ScalarMap.end(); I != E; ++I) { - assert(!I->second.isNull() && "Null node in scalarmap!"); - AssertNodeInGraph(I->second.getNode()); - if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) { - assert(I->second.getNode()->isGlobalNode() && - "Global points to node, but node isn't global?"); - AssertNodeContainsGlobal(I->second.getNode(), GV); - } - } - AssertCallNodesInGraph(); - AssertAuxCallNodesInGraph(); - - // Check that all pointer arguments to any functions in this graph have - // destinations. - for (ReturnNodesTy::const_iterator RI = ReturnNodes.begin(), - E = ReturnNodes.end(); - RI != E; ++RI) { - Function &F = *RI->first; - for (Function::arg_iterator AI = F.arg_begin(); AI != F.arg_end(); ++AI) - if (isPointerType(AI->getType())) - assert(!getNodeForValue(AI).isNull() && - "Pointer argument must be in the scalar map!"); - } -} - -/// computeNodeMapping - Given roots in two different DSGraphs, traverse the -/// nodes reachable from the two graphs, computing the mapping of nodes from the -/// first to the second graph. This mapping may be many-to-one (i.e. the first -/// graph may have multiple nodes representing one node in the second graph), -/// but it will not work if there is a one-to-many or many-to-many mapping. -/// -void DSGraph::computeNodeMapping(const DSNodeHandle &NH1, - const DSNodeHandle &NH2, NodeMapTy &NodeMap, - bool StrictChecking) { - DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode(); - if (N1 == 0 || N2 == 0) return; - - DSNodeHandle &Entry = NodeMap[N1]; - if (!Entry.isNull()) { - // Termination of recursion! - if (StrictChecking) { - assert(Entry.getNode() == N2 && "Inconsistent mapping detected!"); - assert((Entry.getOffset() == (NH2.getOffset()-NH1.getOffset()) || - Entry.getNode()->isNodeCompletelyFolded()) && - "Inconsistent mapping detected!"); - } - return; - } - - Entry.setTo(N2, NH2.getOffset()-NH1.getOffset()); - - // Loop over all of the fields that N1 and N2 have in common, recursively - // mapping the edges together now. - int N2Idx = NH2.getOffset()-NH1.getOffset(); - unsigned N2Size = N2->getSize(); - if (N2Size == 0) return; // No edges to map to. - - for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize) { - const DSNodeHandle &N1NH = N1->getLink(i); - // Don't call N2->getLink if not needed (avoiding crash if N2Idx is not - // aligned right). - if (!N1NH.isNull()) { - if (unsigned(N2Idx)+i < N2Size) - computeNodeMapping(N1NH, N2->getLink(N2Idx+i), NodeMap); - else - computeNodeMapping(N1NH, - N2->getLink(unsigned(N2Idx+i) % N2Size), NodeMap); - } - } -} - - -/// computeGToGGMapping - Compute the mapping of nodes in the global graph to -/// nodes in this graph. -void DSGraph::computeGToGGMapping(NodeMapTy &NodeMap) { - DSGraph &GG = *getGlobalsGraph(); - - DSScalarMap &SM = getScalarMap(); - for (DSScalarMap::global_iterator I = SM.global_begin(), - E = SM.global_end(); I != E; ++I) - DSGraph::computeNodeMapping(SM[*I], GG.getNodeForValue(*I), NodeMap); -} - -/// computeGGToGMapping - Compute the mapping of nodes in the global graph to -/// nodes in this graph. Note that any uses of this method are probably bugs, -/// unless it is known that the globals graph has been merged into this graph! -void DSGraph::computeGGToGMapping(InvNodeMapTy &InvNodeMap) { - NodeMapTy NodeMap; - computeGToGGMapping(NodeMap); - - while (!NodeMap.empty()) { - InvNodeMap.insert(std::make_pair(NodeMap.begin()->second, - NodeMap.begin()->first)); - NodeMap.erase(NodeMap.begin()); - } -} - - -/// computeCalleeCallerMapping - Given a call from a function in the current -/// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the -/// mapping of nodes from the callee to nodes in the caller. -void DSGraph::computeCalleeCallerMapping(DSCallSite CS, const Function &Callee, - DSGraph &CalleeGraph, - NodeMapTy &NodeMap) { - - DSCallSite CalleeArgs = - CalleeGraph.getCallSiteForArguments(const_cast<Function&>(Callee)); - - computeNodeMapping(CalleeArgs.getRetVal(), CS.getRetVal(), NodeMap); - - unsigned NumArgs = CS.getNumPtrArgs(); - if (NumArgs > CalleeArgs.getNumPtrArgs()) - NumArgs = CalleeArgs.getNumPtrArgs(); - - for (unsigned i = 0; i != NumArgs; ++i) - computeNodeMapping(CalleeArgs.getPtrArg(i), CS.getPtrArg(i), NodeMap); - - // Map the nodes that are pointed to by globals. - DSScalarMap &CalleeSM = CalleeGraph.getScalarMap(); - DSScalarMap &CallerSM = getScalarMap(); - - if (CalleeSM.global_size() >= CallerSM.global_size()) { - for (DSScalarMap::global_iterator GI = CallerSM.global_begin(), - E = CallerSM.global_end(); GI != E; ++GI) - if (CalleeSM.global_count(*GI)) - computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap); - } else { - for (DSScalarMap::global_iterator GI = CalleeSM.global_begin(), - E = CalleeSM.global_end(); GI != E; ++GI) - if (CallerSM.global_count(*GI)) - computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap); - } -} - -/// updateFromGlobalGraph - This function rematerializes global nodes and -/// nodes reachable from them from the globals graph into the current graph. -/// -void DSGraph::updateFromGlobalGraph() { - TIME_REGION(X, "updateFromGlobalGraph"); - ReachabilityCloner RC(*this, *GlobalsGraph, 0); - - // Clone the non-up-to-date global nodes into this graph. - for (DSScalarMap::global_iterator I = getScalarMap().global_begin(), - E = getScalarMap().global_end(); I != E; ++I) { - DSScalarMap::iterator It = GlobalsGraph->ScalarMap.find(*I); - if (It != GlobalsGraph->ScalarMap.end()) - RC.merge(getNodeForValue(*I), It->second); - } -} |