aboutsummaryrefslogtreecommitdiff
path: root/docs/tutorial/LangImpl3.rst
diff options
context:
space:
mode:
authorSean Silva <silvas@purdue.edu>2012-12-05 00:26:32 +0000
committerSean Silva <silvas@purdue.edu>2012-12-05 00:26:32 +0000
commitee47edfd8e2dd048522ebd47305aeefbe9d8729c (patch)
tree1149ccaddfcba655771ab114e383a2cae3b6b200 /docs/tutorial/LangImpl3.rst
parent4e5448053163e0d9c2107b240ccdb5a95c107b07 (diff)
docs: Sphinxify `docs/tutorial/`
Sorry for the massive commit, but I just wanted to knock this one down and it is really straightforward. There are still a couple trivial (i.e. not related to the content) things left to fix: - Use of raw HTML links where :doc:`...` and :ref:`...` could be used instead. If you are a newbie and want to help fix this it would make for some good bite-sized patches; more experienced developers should be focusing on adding new content (to this tutorial or elsewhere, but please _do not_ waste your time on formatting when there is such dire need for documentation (see docs/SphinxQuickstartTemplate.rst to get started writing)). - Highlighting of the kaleidoscope code blocks (currently left as bare `::`). I will be working on writing a custom Pygments highlighter for this, mostly as training for maintaining the `llvm` code-block's lexer in-tree. I want to do this because I am extremely unhappy with how it just "gives up" on the slightest deviation from the expected syntax and leaves the whole code-block un-highlighted. More generally I am looking at writing some Sphinx extensions and keeping them in-tree as well, to support common use cases that currently have no good solution (like "monospace text inside a link"). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169343 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs/tutorial/LangImpl3.rst')
-rw-r--r--docs/tutorial/LangImpl3.rst1162
1 files changed, 1162 insertions, 0 deletions
diff --git a/docs/tutorial/LangImpl3.rst b/docs/tutorial/LangImpl3.rst
new file mode 100644
index 0000000000..01935a443b
--- /dev/null
+++ b/docs/tutorial/LangImpl3.rst
@@ -0,0 +1,1162 @@
+========================================
+Kaleidoscope: Code generation to LLVM IR
+========================================
+
+.. contents::
+ :local:
+
+Written by `Chris Lattner <mailto:sabre@nondot.org>`_
+
+Chapter 3 Introduction
+======================
+
+Welcome to Chapter 3 of the "`Implementing a language with
+LLVM <index.html>`_" tutorial. This chapter shows you how to transform
+the `Abstract Syntax Tree <LangImpl2.html>`_, built in Chapter 2, into
+LLVM IR. This will teach you a little bit about how LLVM does things, as
+well as demonstrate how easy it is to use. It's much more work to build
+a lexer and parser than it is to generate LLVM IR code. :)
+
+**Please note**: the code in this chapter and later require LLVM 2.2 or
+later. LLVM 2.1 and before will not work with it. Also note that you
+need to use a version of this tutorial that matches your LLVM release:
+If you are using an official LLVM release, use the version of the
+documentation included with your release or on the `llvm.org releases
+page <http://llvm.org/releases/>`_.
+
+Code Generation Setup
+=====================
+
+In order to generate LLVM IR, we want some simple setup to get started.
+First we define virtual code generation (codegen) methods in each AST
+class:
+
+.. code-block:: c++
+
+ /// ExprAST - Base class for all expression nodes.
+ class ExprAST {
+ public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+ };
+
+ /// NumberExprAST - Expression class for numeric literals like "1.0".
+ class NumberExprAST : public ExprAST {
+ double Val;
+ public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+ };
+ ...
+
+The Codegen() method says to emit IR for that AST node along with all
+the things it depends on, and they all return an LLVM Value object.
+"Value" is the class used to represent a "`Static Single Assignment
+(SSA) <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+register" or "SSA value" in LLVM. The most distinct aspect of SSA values
+is that their value is computed as the related instruction executes, and
+it does not get a new value until (and if) the instruction re-executes.
+In other words, there is no way to "change" an SSA value. For more
+information, please read up on `Static Single
+Assignment <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_
+- the concepts are really quite natural once you grok them.
+
+Note that instead of adding virtual methods to the ExprAST class
+hierarchy, it could also make sense to use a `visitor
+pattern <http://en.wikipedia.org/wiki/Visitor_pattern>`_ or some other
+way to model this. Again, this tutorial won't dwell on good software
+engineering practices: for our purposes, adding a virtual method is
+simplest.
+
+The second thing we want is an "Error" method like we used for the
+parser, which will be used to report errors found during code generation
+(for example, use of an undeclared parameter):
+
+.. code-block:: c++
+
+ Value *ErrorV(const char *Str) { Error(Str); return 0; }
+
+ static Module *TheModule;
+ static IRBuilder<> Builder(getGlobalContext());
+ static std::map<std::string, Value*> NamedValues;
+
+The static variables will be used during code generation. ``TheModule``
+is the LLVM construct that contains all of the functions and global
+variables in a chunk of code. In many ways, it is the top-level
+structure that the LLVM IR uses to contain code.
+
+The ``Builder`` object is a helper object that makes it easy to generate
+LLVM instructions. Instances of the
+```IRBuilder`` <http://llvm.org/doxygen/IRBuilder_8h-source.html>`_
+class template keep track of the current place to insert instructions
+and has methods to create new instructions.
+
+The ``NamedValues`` map keeps track of which values are defined in the
+current scope and what their LLVM representation is. (In other words, it
+is a symbol table for the code). In this form of Kaleidoscope, the only
+things that can be referenced are function parameters. As such, function
+parameters will be in this map when generating code for their function
+body.
+
+With these basics in place, we can start talking about how to generate
+code for each expression. Note that this assumes that the ``Builder``
+has been set up to generate code *into* something. For now, we'll assume
+that this has already been done, and we'll just use it to emit code.
+
+Expression Code Generation
+==========================
+
+Generating LLVM code for expression nodes is very straightforward: less
+than 45 lines of commented code for all four of our expression nodes.
+First we'll do numeric literals:
+
+.. code-block:: c++
+
+ Value *NumberExprAST::Codegen() {
+ return ConstantFP::get(getGlobalContext(), APFloat(Val));
+ }
+
+In the LLVM IR, numeric constants are represented with the
+``ConstantFP`` class, which holds the numeric value in an ``APFloat``
+internally (``APFloat`` has the capability of holding floating point
+constants of Arbitrary Precision). This code basically just creates
+and returns a ``ConstantFP``. Note that in the LLVM IR that constants
+are all uniqued together and shared. For this reason, the API uses the
+"foo::get(...)" idiom instead of "new foo(..)" or "foo::Create(..)".
+
+.. code-block:: c++
+
+ Value *VariableExprAST::Codegen() {
+ // Look this variable up in the function.
+ Value *V = NamedValues[Name];
+ return V ? V : ErrorV("Unknown variable name");
+ }
+
+References to variables are also quite simple using LLVM. In the simple
+version of Kaleidoscope, we assume that the variable has already been
+emitted somewhere and its value is available. In practice, the only
+values that can be in the ``NamedValues`` map are function arguments.
+This code simply checks to see that the specified name is in the map (if
+not, an unknown variable is being referenced) and returns the value for
+it. In future chapters, we'll add support for `loop induction
+variables <LangImpl5.html#for>`_ in the symbol table, and for `local
+variables <LangImpl7.html#localvars>`_.
+
+.. code-block:: c++
+
+ Value *BinaryExprAST::Codegen() {
+ Value *L = LHS->Codegen();
+ Value *R = RHS->Codegen();
+ if (L == 0 || R == 0) return 0;
+
+ switch (Op) {
+ case '+': return Builder.CreateFAdd(L, R, "addtmp");
+ case '-': return Builder.CreateFSub(L, R, "subtmp");
+ case '*': return Builder.CreateFMul(L, R, "multmp");
+ case '<':
+ L = Builder.CreateFCmpULT(L, R, "cmptmp");
+ // Convert bool 0/1 to double 0.0 or 1.0
+ return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+ "booltmp");
+ default: return ErrorV("invalid binary operator");
+ }
+ }
+
+Binary operators start to get more interesting. The basic idea here is
+that we recursively emit code for the left-hand side of the expression,
+then the right-hand side, then we compute the result of the binary
+expression. In this code, we do a simple switch on the opcode to create
+the right LLVM instruction.
+
+In the example above, the LLVM builder class is starting to show its
+value. IRBuilder knows where to insert the newly created instruction,
+all you have to do is specify what instruction to create (e.g. with
+``CreateFAdd``), which operands to use (``L`` and ``R`` here) and
+optionally provide a name for the generated instruction.
+
+One nice thing about LLVM is that the name is just a hint. For instance,
+if the code above emits multiple "addtmp" variables, LLVM will
+automatically provide each one with an increasing, unique numeric
+suffix. Local value names for instructions are purely optional, but it
+makes it much easier to read the IR dumps.
+
+`LLVM instructions <../LangRef.html#instref>`_ are constrained by strict
+rules: for example, the Left and Right operators of an `add
+instruction <../LangRef.html#i_add>`_ must have the same type, and the
+result type of the add must match the operand types. Because all values
+in Kaleidoscope are doubles, this makes for very simple code for add,
+sub and mul.
+
+On the other hand, LLVM specifies that the `fcmp
+instruction <../LangRef.html#i_fcmp>`_ always returns an 'i1' value (a
+one bit integer). The problem with this is that Kaleidoscope wants the
+value to be a 0.0 or 1.0 value. In order to get these semantics, we
+combine the fcmp instruction with a `uitofp
+instruction <../LangRef.html#i_uitofp>`_. This instruction converts its
+input integer into a floating point value by treating the input as an
+unsigned value. In contrast, if we used the `sitofp
+instruction <../LangRef.html#i_sitofp>`_, the Kaleidoscope '<' operator
+would return 0.0 and -1.0, depending on the input value.
+
+.. code-block:: c++
+
+ Value *CallExprAST::Codegen() {
+ // Look up the name in the global module table.
+ Function *CalleeF = TheModule->getFunction(Callee);
+ if (CalleeF == 0)
+ return ErrorV("Unknown function referenced");
+
+ // If argument mismatch error.
+ if (CalleeF->arg_size() != Args.size())
+ return ErrorV("Incorrect # arguments passed");
+
+ std::vector<Value*> ArgsV;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ ArgsV.push_back(Args[i]->Codegen());
+ if (ArgsV.back() == 0) return 0;
+ }
+
+ return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
+ }
+
+Code generation for function calls is quite straightforward with LLVM.
+The code above initially does a function name lookup in the LLVM
+Module's symbol table. Recall that the LLVM Module is the container that
+holds all of the functions we are JIT'ing. By giving each function the
+same name as what the user specifies, we can use the LLVM symbol table
+to resolve function names for us.
+
+Once we have the function to call, we recursively codegen each argument
+that is to be passed in, and create an LLVM `call
+instruction <../LangRef.html#i_call>`_. Note that LLVM uses the native C
+calling conventions by default, allowing these calls to also call into
+standard library functions like "sin" and "cos", with no additional
+effort.
+
+This wraps up our handling of the four basic expressions that we have so
+far in Kaleidoscope. Feel free to go in and add some more. For example,
+by browsing the `LLVM language reference <../LangRef.html>`_ you'll find
+several other interesting instructions that are really easy to plug into
+our basic framework.
+
+Function Code Generation
+========================
+
+Code generation for prototypes and functions must handle a number of
+details, which make their code less beautiful than expression code
+generation, but allows us to illustrate some important points. First,
+lets talk about code generation for prototypes: they are used both for
+function bodies and external function declarations. The code starts
+with:
+
+.. code-block:: c++
+
+ Function *PrototypeAST::Codegen() {
+ // Make the function type: double(double,double) etc.
+ std::vector<Type*> Doubles(Args.size(),
+ Type::getDoubleTy(getGlobalContext()));
+ FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+ Doubles, false);
+
+ Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+
+This code packs a lot of power into a few lines. Note first that this
+function returns a "Function\*" instead of a "Value\*". Because a
+"prototype" really talks about the external interface for a function
+(not the value computed by an expression), it makes sense for it to
+return the LLVM Function it corresponds to when codegen'd.
+
+The call to ``FunctionType::get`` creates the ``FunctionType`` that
+should be used for a given Prototype. Since all function arguments in
+Kaleidoscope are of type double, the first line creates a vector of "N"
+LLVM double types. It then uses the ``Functiontype::get`` method to
+create a function type that takes "N" doubles as arguments, returns one
+double as a result, and that is not vararg (the false parameter
+indicates this). Note that Types in LLVM are uniqued just like Constants
+are, so you don't "new" a type, you "get" it.
+
+The final line above actually creates the function that the prototype
+will correspond to. This indicates the type, linkage and name to use, as
+well as which module to insert into. "`external
+linkage <../LangRef.html#linkage>`_" means that the function may be
+defined outside the current module and/or that it is callable by
+functions outside the module. The Name passed in is the name the user
+specified: since "``TheModule``" is specified, this name is registered
+in "``TheModule``"s symbol table, which is used by the function call
+code above.
+
+.. code-block:: c++
+
+ // If F conflicted, there was already something named 'Name'. If it has a
+ // body, don't allow redefinition or reextern.
+ if (F->getName() != Name) {
+ // Delete the one we just made and get the existing one.
+ F->eraseFromParent();
+ F = TheModule->getFunction(Name);
+
+The Module symbol table works just like the Function symbol table when
+it comes to name conflicts: if a new function is created with a name
+that was previously added to the symbol table, the new function will get
+implicitly renamed when added to the Module. The code above exploits
+this fact to determine if there was a previous definition of this
+function.
+
+In Kaleidoscope, I choose to allow redefinitions of functions in two
+cases: first, we want to allow 'extern'ing a function more than once, as
+long as the prototypes for the externs match (since all arguments have
+the same type, we just have to check that the number of arguments
+match). Second, we want to allow 'extern'ing a function and then
+defining a body for it. This is useful when defining mutually recursive
+functions.
+
+In order to implement this, the code above first checks to see if there
+is a collision on the name of the function. If so, it deletes the
+function we just created (by calling ``eraseFromParent``) and then
+calling ``getFunction`` to get the existing function with the specified
+name. Note that many APIs in LLVM have "erase" forms and "remove" forms.
+The "remove" form unlinks the object from its parent (e.g. a Function
+from a Module) and returns it. The "erase" form unlinks the object and
+then deletes it.
+
+.. code-block:: c++
+
+ // If F already has a body, reject this.
+ if (!F->empty()) {
+ ErrorF("redefinition of function");
+ return 0;
+ }
+
+ // If F took a different number of args, reject.
+ if (F->arg_size() != Args.size()) {
+ ErrorF("redefinition of function with different # args");
+ return 0;
+ }
+ }
+
+In order to verify the logic above, we first check to see if the
+pre-existing function is "empty". In this case, empty means that it has
+no basic blocks in it, which means it has no body. If it has no body, it
+is a forward declaration. Since we don't allow anything after a full
+definition of the function, the code rejects this case. If the previous
+reference to a function was an 'extern', we simply verify that the
+number of arguments for that definition and this one match up. If not,
+we emit an error.
+
+.. code-block:: c++
+
+ // Set names for all arguments.
+ unsigned Idx = 0;
+ for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
+ ++AI, ++Idx) {
+ AI->setName(Args[Idx]);
+
+ // Add arguments to variable symbol table.
+ NamedValues[Args[Idx]] = AI;
+ }
+ return F;
+ }
+
+The last bit of code for prototypes loops over all of the arguments in
+the function, setting the name of the LLVM Argument objects to match,
+and registering the arguments in the ``NamedValues`` map for future use
+by the ``VariableExprAST`` AST node. Once this is set up, it returns the
+Function object to the caller. Note that we don't check for conflicting
+argument names here (e.g. "extern foo(a b a)"). Doing so would be very
+straight-forward with the mechanics we have already used above.
+
+.. code-block:: c++
+
+ Function *FunctionAST::Codegen() {
+ NamedValues.clear();
+
+ Function *TheFunction = Proto->Codegen();
+ if (TheFunction == 0)
+ return 0;
+
+Code generation for function definitions starts out simply enough: we
+just codegen the prototype (Proto) and verify that it is ok. We then
+clear out the ``NamedValues`` map to make sure that there isn't anything
+in it from the last function we compiled. Code generation of the
+prototype ensures that there is an LLVM Function object that is ready to
+go for us.
+
+.. code-block:: c++
+
+ // Create a new basic block to start insertion into.
+ BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+ Builder.SetInsertPoint(BB);
+
+ if (Value *RetVal = Body->Codegen()) {
+
+Now we get to the point where the ``Builder`` is set up. The first line
+creates a new `basic block <http://en.wikipedia.org/wiki/Basic_block>`_
+(named "entry"), which is inserted into ``TheFunction``. The second line
+then tells the builder that new instructions should be inserted into the
+end of the new basic block. Basic blocks in LLVM are an important part
+of functions that define the `Control Flow
+Graph <http://en.wikipedia.org/wiki/Control_flow_graph>`_. Since we
+don't have any control flow, our functions will only contain one block
+at this point. We'll fix this in `Chapter 5 <LangImpl5.html>`_ :).
+
+.. code-block:: c++
+
+ if (Value *RetVal = Body->Codegen()) {
+ // Finish off the function.
+ Builder.CreateRet(RetVal);
+
+ // Validate the generated code, checking for consistency.
+ verifyFunction(*TheFunction);
+
+ return TheFunction;
+ }
+
+Once the insertion point is set up, we call the ``CodeGen()`` method for
+the root expression of the function. If no error happens, this emits
+code to compute the expression into the entry block and returns the
+value that was computed. Assuming no error, we then create an LLVM `ret
+instruction <../LangRef.html#i_ret>`_, which completes the function.
+Once the function is built, we call ``verifyFunction``, which is
+provided by LLVM. This function does a variety of consistency checks on
+the generated code, to determine if our compiler is doing everything
+right. Using this is important: it can catch a lot of bugs. Once the
+function is finished and validated, we return it.
+
+.. code-block:: c++
+
+ // Error reading body, remove function.
+ TheFunction->eraseFromParent();
+ return 0;
+ }
+
+The only piece left here is handling of the error case. For simplicity,
+we handle this by merely deleting the function we produced with the
+``eraseFromParent`` method. This allows the user to redefine a function
+that they incorrectly typed in before: if we didn't delete it, it would
+live in the symbol table, with a body, preventing future redefinition.
+
+This code does have a bug, though. Since the ``PrototypeAST::Codegen``
+can return a previously defined forward declaration, our code can
+actually delete a forward declaration. There are a number of ways to fix
+this bug, see what you can come up with! Here is a testcase:
+
+::
+
+ extern foo(a b); # ok, defines foo.
+ def foo(a b) c; # error, 'c' is invalid.
+ def bar() foo(1, 2); # error, unknown function "foo"
+
+Driver Changes and Closing Thoughts
+===================================
+
+For now, code generation to LLVM doesn't really get us much, except that
+we can look at the pretty IR calls. The sample code inserts calls to
+Codegen into the "``HandleDefinition``", "``HandleExtern``" etc
+functions, and then dumps out the LLVM IR. This gives a nice way to look
+at the LLVM IR for simple functions. For example:
+
+::
+
+ ready> 4+5;
+ Read top-level expression:
+ define double @0() {
+ entry:
+ ret double 9.000000e+00
+ }
+
+Note how the parser turns the top-level expression into anonymous
+functions for us. This will be handy when we add `JIT
+support <LangImpl4.html#jit>`_ in the next chapter. Also note that the
+code is very literally transcribed, no optimizations are being performed
+except simple constant folding done by IRBuilder. We will `add
+optimizations <LangImpl4.html#trivialconstfold>`_ explicitly in the next
+chapter.
+
+::
+
+ ready> def foo(a b) a*a + 2*a*b + b*b;
+ Read function definition:
+ define double @foo(double %a, double %b) {
+ entry:
+ %multmp = fmul double %a, %a
+ %multmp1 = fmul double 2.000000e+00, %a
+ %multmp2 = fmul double %multmp1, %b
+ %addtmp = fadd double %multmp, %multmp2
+ %multmp3 = fmul double %b, %b
+ %addtmp4 = fadd double %addtmp, %multmp3
+ ret double %addtmp4
+ }
+
+This shows some simple arithmetic. Notice the striking similarity to the
+LLVM builder calls that we use to create the instructions.
+
+::
+
+ ready> def bar(a) foo(a, 4.0) + bar(31337);
+ Read function definition:
+ define double @bar(double %a) {
+ entry:
+ %calltmp = call double @foo(double %a, double 4.000000e+00)
+ %calltmp1 = call double @bar(double 3.133700e+04)
+ %addtmp = fadd double %calltmp, %calltmp1
+ ret double %addtmp
+ }
+
+This shows some function calls. Note that this function will take a long
+time to execute if you call it. In the future we'll add conditional
+control flow to actually make recursion useful :).
+
+::
+
+ ready> extern cos(x);
+ Read extern:
+ declare double @cos(double)
+
+ ready> cos(1.234);
+ Read top-level expression:
+ define double @1() {
+ entry:
+ %calltmp = call double @cos(double 1.234000e+00)
+ ret double %calltmp
+ }
+
+This shows an extern for the libm "cos" function, and a call to it.
+
+.. TODO:: Abandon Pygments' horrible `llvm` lexer. It just totally gives up
+ on highlighting this due to the first line.
+
+::
+
+ ready> ^D
+ ; ModuleID = 'my cool jit'
+
+ define double @0() {
+ entry:
+ %addtmp = fadd double 4.000000e+00, 5.000000e+00
+ ret double %addtmp
+ }
+
+ define double @foo(double %a, double %b) {
+ entry:
+ %multmp = fmul double %a, %a
+ %multmp1 = fmul double 2.000000e+00, %a
+ %multmp2 = fmul double %multmp1, %b
+ %addtmp = fadd double %multmp, %multmp2
+ %multmp3 = fmul double %b, %b
+ %addtmp4 = fadd double %addtmp, %multmp3
+ ret double %addtmp4
+ }
+
+ define double @bar(double %a) {
+ entry:
+ %calltmp = call double @foo(double %a, double 4.000000e+00)
+ %calltmp1 = call double @bar(double 3.133700e+04)
+ %addtmp = fadd double %calltmp, %calltmp1
+ ret double %addtmp
+ }
+
+ declare double @cos(double)
+
+ define double @1() {
+ entry:
+ %calltmp = call double @cos(double 1.234000e+00)
+ ret double %calltmp
+ }
+
+When you quit the current demo, it dumps out the IR for the entire
+module generated. Here you can see the big picture with all the
+functions referencing each other.
+
+This wraps up the third chapter of the Kaleidoscope tutorial. Up next,
+we'll describe how to `add JIT codegen and optimizer
+support <LangImpl4.html>`_ to this so we can actually start running
+code!
+
+Full Code Listing
+=================
+
+Here is the complete code listing for our running example, enhanced with
+the LLVM code generator. Because this uses the LLVM libraries, we need
+to link them in. To do this, we use the
+`llvm-config <http://llvm.org/cmds/llvm-config.html>`_ tool to inform
+our makefile/command line about which options to use:
+
+.. code-block:: bash
+
+ # Compile
+ clang++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
+ # Run
+ ./toy
+
+Here is the code:
+
+.. code-block:: c++
+
+ // To build this:
+ // See example below.
+
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/IRBuilder.h"
+ #include "llvm/LLVMContext.h"
+ #include "llvm/Module.h"
+ #include "llvm/Analysis/Verifier.h"
+ #include <cstdio>
+ #include <string>
+ #include <map>
+ #include <vector>
+ using namespace llvm;
+
+ //===----------------------------------------------------------------------===//
+ // Lexer
+ //===----------------------------------------------------------------------===//
+
+ // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+ // of these for known things.
+ enum Token {
+ tok_eof = -1,
+
+ // commands
+ tok_def = -2, tok_extern = -3,
+
+ // primary
+ tok_identifier = -4, tok_number = -5
+ };
+
+ static std::string IdentifierStr; // Filled in if tok_identifier
+ static double NumVal; // Filled in if tok_number
+
+ /// gettok - Return the next token from standard input.
+ static int gettok() {
+ static int LastChar = ' ';
+
+ // Skip any whitespace.
+ while (isspace(LastChar))
+ LastChar = getchar();
+
+ if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+ IdentifierStr = LastChar;
+ while (isalnum((LastChar = getchar())))
+ IdentifierStr += LastChar;
+
+ if (IdentifierStr == "def") return tok_def;
+ if (IdentifierStr == "extern") return tok_extern;
+ return tok_identifier;
+ }
+
+ if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
+ std::string NumStr;
+ do {
+ NumStr += LastChar;
+ LastChar = getchar();
+ } while (isdigit(LastChar) || LastChar == '.');
+
+ NumVal = strtod(NumStr.c_str(), 0);
+ return tok_number;
+ }
+
+ if (LastChar == '#') {
+ // Comment until end of line.
+ do LastChar = getchar();
+ while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
+
+ if (LastChar != EOF)
+ return gettok();
+ }
+
+ // Check for end of file. Don't eat the EOF.
+ if (LastChar == EOF)
+ return tok_eof;
+
+ // Otherwise, just return the character as its ascii value.
+ int ThisChar = LastChar;
+ LastChar = getchar();
+ return ThisChar;
+ }
+
+ //===----------------------------------------------------------------------===//
+ // Abstract Syntax Tree (aka Parse Tree)
+ //===----------------------------------------------------------------------===//
+
+ /// ExprAST - Base class for all expression nodes.
+ class ExprAST {
+ public:
+ virtual ~ExprAST() {}
+ virtual Value *Codegen() = 0;
+ };
+
+ /// NumberExprAST - Expression class for numeric literals like "1.0".
+ class NumberExprAST : public ExprAST {
+ double Val;
+ public:
+ NumberExprAST(double val) : Val(val) {}
+ virtual Value *Codegen();
+ };
+
+ /// VariableExprAST - Expression class for referencing a variable, like "a".
+ class VariableExprAST : public ExprAST {
+ std::string Name;
+ public:
+ VariableExprAST(const std::string &name) : Name(name) {}
+ virtual Value *Codegen();
+ };
+
+ /// BinaryExprAST - Expression class for a binary operator.
+ class BinaryExprAST : public ExprAST {
+ char Op;
+ ExprAST *LHS, *RHS;
+ public:
+ BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
+ : Op(op), LHS(lhs), RHS(rhs) {}
+ virtual Value *Codegen();
+ };
+
+ /// CallExprAST - Expression class for function calls.
+ class CallExprAST : public ExprAST {
+ std::string Callee;
+ std::vector<ExprAST*> Args;
+ public:
+ CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+ : Callee(callee), Args(args) {}
+ virtual Value *Codegen();
+ };
+
+ /// PrototypeAST - This class represents the "prototype" for a function,
+ /// which captures its name, and its argument names (thus implicitly the number
+ /// of arguments the function takes).
+ class PrototypeAST {
+ std::string Name;
+ std::vector<std::string> Args;
+ public:
+ PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+ : Name(name), Args(args) {}
+
+ Function *Codegen();
+ };
+
+ /// FunctionAST - This class represents a function definition itself.
+ class FunctionAST {
+ PrototypeAST *Proto;
+ ExprAST *Body;
+ public:
+ FunctionAST(PrototypeAST *proto, ExprAST *body)
+ : Proto(proto), Body(body) {}
+
+ Function *Codegen();
+ };
+
+ //===----------------------------------------------------------------------===//
+ // Parser
+ //===----------------------------------------------------------------------===//
+
+ /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
+ /// token the parser is looking at. getNextToken reads another token from the
+ /// lexer and updates CurTok with its results.
+ static int CurTok;
+ static int getNextToken() {
+ return CurTok = gettok();
+ }
+
+ /// BinopPrecedence - This holds the precedence for each binary operator that is
+ /// defined.
+ static std::map<char, int> BinopPrecedence;
+
+ /// GetTokPrecedence - Get the precedence of the pending binary operator token.
+ static int GetTokPrecedence() {
+ if (!isascii(CurTok))
+ return -1;
+
+ // Make sure it's a declared binop.
+ int TokPrec = BinopPrecedence[CurTok];
+ if (TokPrec <= 0) return -1;
+ return TokPrec;
+ }
+
+ /// Error* - These are little helper functions for error handling.
+ ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+ PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+ FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+ static ExprAST *ParseExpression();
+
+ /// identifierexpr
+ /// ::= identifier
+ /// ::= identifier '(' expression* ')'
+ static ExprAST *ParseIdentifierExpr() {
+ std::string IdName = IdentifierStr;
+
+ getNextToken(); // eat identifier.
+
+ if (CurTok != '(') // Simple variable ref.
+ return new VariableExprAST(IdName);
+
+ // Call.
+ getNextToken(); // eat (
+ std::vector<ExprAST*> Args;
+ if (CurTok != ')') {
+ while (1) {
+ ExprAST *Arg = ParseExpression();
+ if (!Arg) return 0;
+ Args.push_back(Arg);
+
+ if (CurTok == ')') break;
+
+ if (CurTok != ',')
+ return Error("Expected ')' or ',' in argument list");
+ getNextToken();
+ }
+ }
+
+ // Eat the ')'.
+ getNextToken();
+
+ return new CallExprAST(IdName, Args);
+ }
+
+ /// numberexpr ::= number
+ static ExprAST *ParseNumberExpr() {
+ ExprAST *Result = new NumberExprAST(NumVal);
+ getNextToken(); // consume the number
+ return Result;
+ }
+
+ /// parenexpr ::= '(' expression ')'
+ static ExprAST *ParseParenExpr() {
+ getNextToken(); // eat (.
+ ExprAST *V = ParseExpression();
+ if (!V) return 0;
+
+ if (CurTok != ')')
+ return Error("expected ')'");
+ getNextToken(); // eat ).
+ return V;
+ }
+
+ /// primary
+ /// ::= identifierexpr
+ /// ::= numberexpr
+ /// ::= parenexpr
+ static ExprAST *ParsePrimary() {
+ switch (CurTok) {
+ default: return Error("unknown token when expecting an expression");
+ case tok_identifier: return ParseIdentifierExpr();
+ case tok_number: return ParseNumberExpr();
+ case '(': return ParseParenExpr();
+ }
+ }
+
+ /// binoprhs
+ /// ::= ('+' primary)*
+ static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ // If this is a binop, find its precedence.
+ while (1) {
+ int TokPrec = GetTokPrecedence();
+
+ // If this is a binop that binds at least as tightly as the current binop,
+ // consume it, otherwise we are done.
+ if (TokPrec < ExprPrec)
+ return LHS;
+
+ // Okay, we know this is a binop.
+ int BinOp = CurTok;
+ getNextToken(); // eat binop
+
+ // Parse the primary expression after the binary operator.
+ ExprAST *RHS = ParsePrimary();
+ if (!RHS) return 0;
+
+ // If BinOp binds less tightly with RHS than the operator after RHS, let
+ // the pending operator take RHS as its LHS.
+ int NextPrec = GetTokPrecedence();
+ if (TokPrec < NextPrec) {
+ RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ if (RHS == 0) return 0;
+ }
+
+ // Merge LHS/RHS.
+ LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ }
+ }
+
+ /// expression
+ /// ::= primary binoprhs
+ ///
+ static ExprAST *ParseExpression() {
+ ExprAST *LHS = ParsePrimary();
+ if (!LHS) return 0;
+
+ return ParseBinOpRHS(0, LHS);
+ }
+
+ /// prototype
+ /// ::= id '(' id* ')'
+ static PrototypeAST *ParsePrototype() {
+ if (CurTok != tok_identifier)
+ return ErrorP("Expected function name in prototype");
+
+ std::string FnName = IdentifierStr;
+ getNextToken();
+
+ if (CurTok != '(')
+ return ErrorP("Expected '(' in prototype");
+
+ std::vector<std::string> ArgNames;
+ while (getNextToken() == tok_identifier)
+ ArgNames.push_back(IdentifierStr);
+ if (CurTok != ')')
+ return ErrorP("Expected ')' in prototype");
+
+ // success.
+ getNextToken(); // eat ')'.
+
+ return new PrototypeAST(FnName, ArgNames);
+ }
+
+ /// definition ::= 'def' prototype expression
+ static FunctionAST *ParseDefinition() {
+ getNextToken(); // eat def.
+ PrototypeAST *Proto = ParsePrototype();
+ if (Proto == 0) return 0;
+
+ if (ExprAST *E = ParseExpression())
+ return new FunctionAST(Proto, E);
+ return 0;
+ }
+
+ /// toplevelexpr ::= expression
+ static FunctionAST *ParseTopLevelExpr() {
+ if (ExprAST *E = ParseExpression()) {
+ // Make an anonymous proto.
+ PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+ return new FunctionAST(Proto, E);
+ }
+ return 0;
+ }
+
+ /// external ::= 'extern' prototype
+ static PrototypeAST *ParseExtern() {
+ getNextToken(); // eat extern.
+