aboutsummaryrefslogtreecommitdiff
path: root/docs/SourceLevelDebugging.rst
diff options
context:
space:
mode:
authorDmitri Gribenko <gribozavr@gmail.com>2012-11-22 11:56:02 +0000
committerDmitri Gribenko <gribozavr@gmail.com>2012-11-22 11:56:02 +0000
commitbbef5ead4cc90d7f7ca2f5dded41751ca3ff3dc9 (patch)
tree41991cf65a641c93b3de40a2f17b5fd0c6b5f9a9 /docs/SourceLevelDebugging.rst
parent7a3b7e5efc44c3852c5b34b245bd4eedeeac886f (diff)
Documentation: convert SourceLevelDebugging.html to reST
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168493 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs/SourceLevelDebugging.rst')
-rw-r--r--docs/SourceLevelDebugging.rst2285
1 files changed, 2285 insertions, 0 deletions
diff --git a/docs/SourceLevelDebugging.rst b/docs/SourceLevelDebugging.rst
new file mode 100644
index 0000000000..2bbf2e2c35
--- /dev/null
+++ b/docs/SourceLevelDebugging.rst
@@ -0,0 +1,2285 @@
+================================
+Source Level Debugging with LLVM
+================================
+
+.. sectionauthor:: Chris Lattner <sabre@nondot.org> and Jim Laskey <jlaskey@mac.com>
+
+.. contents::
+ :local:
+
+Introduction
+============
+
+This document is the central repository for all information pertaining to debug
+information in LLVM. It describes the :ref:`actual format that the LLVM debug
+information takes <format>`, which is useful for those interested in creating
+front-ends or dealing directly with the information. Further, this document
+provides specific examples of what debug information for C/C++ looks like.
+
+Philosophy behind LLVM debugging information
+--------------------------------------------
+
+The idea of the LLVM debugging information is to capture how the important
+pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
+Several design aspects have shaped the solution that appears here. The
+important ones are:
+
+* Debugging information should have very little impact on the rest of the
+ compiler. No transformations, analyses, or code generators should need to
+ be modified because of debugging information.
+
+* LLVM optimizations should interact in :ref:`well-defined and easily described
+ ways <intro_debugopt>` with the debugging information.
+
+* Because LLVM is designed to support arbitrary programming languages,
+ LLVM-to-LLVM tools should not need to know anything about the semantics of
+ the source-level-language.
+
+* Source-level languages are often **widely** different from one another.
+ LLVM should not put any restrictions of the flavor of the source-language,
+ and the debugging information should work with any language.
+
+* With code generator support, it should be possible to use an LLVM compiler
+ to compile a program to native machine code and standard debugging
+ formats. This allows compatibility with traditional machine-code level
+ debuggers, like GDB or DBX.
+
+The approach used by the LLVM implementation is to use a small set of
+:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
+between LLVM program objects and the source-level objects. The description of
+the source-level program is maintained in LLVM metadata in an
+:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
+currently uses working draft 7 of the `DWARF 3 standard
+<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
+
+When a program is being debugged, a debugger interacts with the user and turns
+the stored debug information into source-language specific information. As
+such, a debugger must be aware of the source-language, and is thus tied to a
+specific language or family of languages.
+
+Debug information consumers
+---------------------------
+
+The role of debug information is to provide meta information normally stripped
+away during the compilation process. This meta information provides an LLVM
+user a relationship between generated code and the original program source
+code.
+
+Currently, debug information is consumed by DwarfDebug to produce dwarf
+information used by the gdb debugger. Other targets could use the same
+information to produce stabs or other debug forms.
+
+It would also be reasonable to use debug information to feed profiling tools
+for analysis of generated code, or, tools for reconstructing the original
+source from generated code.
+
+TODO - expound a bit more.
+
+.. _intro_debugopt:
+
+Debugging optimized code
+------------------------
+
+An extremely high priority of LLVM debugging information is to make it interact
+well with optimizations and analysis. In particular, the LLVM debug
+information provides the following guarantees:
+
+* LLVM debug information **always provides information to accurately read
+ the source-level state of the program**, regardless of which LLVM
+ optimizations have been run, and without any modification to the
+ optimizations themselves. However, some optimizations may impact the
+ ability to modify the current state of the program with a debugger, such
+ as setting program variables, or calling functions that have been
+ deleted.
+
+* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
+ debugging information, allowing them to update the debugging information
+ as they perform aggressive optimizations. This means that, with effort,
+ the LLVM optimizers could optimize debug code just as well as non-debug
+ code.
+
+* LLVM debug information does not prevent optimizations from
+ happening (for example inlining, basic block reordering/merging/cleanup,
+ tail duplication, etc).
+
+* LLVM debug information is automatically optimized along with the rest of
+ the program, using existing facilities. For example, duplicate
+ information is automatically merged by the linker, and unused information
+ is automatically removed.
+
+Basically, the debug information allows you to compile a program with
+"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
+the program as it executes from a debugger. Compiling a program with
+"``-O3 -g``" gives you full debug information that is always available and
+accurate for reading (e.g., you get accurate stack traces despite tail call
+elimination and inlining), but you might lose the ability to modify the program
+and call functions where were optimized out of the program, or inlined away
+completely.
+
+:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
+optimizer's handling of debugging information. It can be run like this:
+
+.. code-block:: bash
+
+ % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
+ % make TEST=dbgopt
+
+This will test impact of debugging information on optimization passes. If
+debugging information influences optimization passes then it will be reported
+as a failure. See :doc:`TestingGuide` for more information on LLVM test
+infrastructure and how to run various tests.
+
+.. _format:
+
+Debugging information format
+============================
+
+LLVM debugging information has been carefully designed to make it possible for
+the optimizer to optimize the program and debugging information without
+necessarily having to know anything about debugging information. In
+particular, the use of metadata avoids duplicated debugging information from
+the beginning, and the global dead code elimination pass automatically deletes
+debugging information for a function if it decides to delete the function.
+
+To do this, most of the debugging information (descriptors for types,
+variables, functions, source files, etc) is inserted by the language front-end
+in the form of LLVM metadata.
+
+Debug information is designed to be agnostic about the target debugger and
+debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
+pass to decode the information that represents variables, types, functions,
+namespaces, etc: this allows for arbitrary source-language semantics and
+type-systems to be used, as long as there is a module written for the target
+debugger to interpret the information.
+
+To provide basic functionality, the LLVM debugger does have to make some
+assumptions about the source-level language being debugged, though it keeps
+these to a minimum. The only common features that the LLVM debugger assumes
+exist are :ref:`source files <format_files>`, and :ref:`program objects
+<format_global_variables>`. These abstract objects are used by a debugger to
+form stack traces, show information about local variables, etc.
+
+This section of the documentation first describes the representation aspects
+common to any source-language. :ref:`ccxx_frontend` describes the data layout
+conventions used by the C and C++ front-ends.
+
+Debug information descriptors
+-----------------------------
+
+In consideration of the complexity and volume of debug information, LLVM
+provides a specification for well formed debug descriptors.
+
+Consumers of LLVM debug information expect the descriptors for program objects
+to start in a canonical format, but the descriptors can include additional
+information appended at the end that is source-language specific. All LLVM
+debugging information is versioned, allowing backwards compatibility in the
+case that the core structures need to change in some way. Also, all debugging
+information objects start with a tag to indicate what type of object it is.
+The source-language is allowed to define its own objects, by using unreserved
+tag numbers. We recommend using with tags in the range 0x1000 through 0x2000
+(there is a defined ``enum DW_TAG_user_base = 0x1000``.)
+
+The fields of debug descriptors used internally by LLVM are restricted to only
+the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and
+``mdnode``.
+
+.. code-block:: llvm
+
+ !1 = metadata !{
+ i32, ;; A tag
+ ...
+ }
+
+<a name="LLVMDebugVersion">The first field of a descriptor is always an
+``i32`` containing a tag value identifying the content of the descriptor.
+The remaining fields are specific to the descriptor. The values of tags are
+loosely bound to the tag values of DWARF information entries. However, that
+does not restrict the use of the information supplied to DWARF targets. To
+facilitate versioning of debug information, the tag is augmented with the
+current debug version (``LLVMDebugVersion = 8 << 16`` or 0x80000 or
+524288.)
+
+The details of the various descriptors follow.
+
+Compile unit descriptors
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !0 = metadata !{
+ i32, ;; Tag = 17 + LLVMDebugVersion (DW_TAG_compile_unit)
+ i32, ;; Unused field.
+ i32, ;; DWARF language identifier (ex. DW_LANG_C89)
+ metadata, ;; Source file name
+ metadata, ;; Source file directory (includes trailing slash)
+ metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)")
+ i1, ;; True if this is a main compile unit.
+ i1, ;; True if this is optimized.
+ metadata, ;; Flags
+ i32 ;; Runtime version
+ metadata ;; List of enums types
+ metadata ;; List of retained types
+ metadata ;; List of subprograms
+ metadata ;; List of global variables
+ }
+
+These descriptors contain a source language ID for the file (we use the DWARF
+3.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``,
+``DW_LANG_Cobol74``, etc), three strings describing the filename, working
+directory of the compiler, and an identifier string for the compiler that
+produced it.
+
+Compile unit descriptors provide the root context for objects declared in a
+specific compilation unit. File descriptors are defined using this context.
+These descriptors are collected by a named metadata ``!llvm.dbg.cu``. Compile
+unit descriptor keeps track of subprograms, global variables and type
+information.
+
+.. _format_files:
+
+File descriptors
+^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !0 = metadata !{
+ i32, ;; Tag = 41 + LLVMDebugVersion (DW_TAG_file_type)
+ metadata, ;; Source file name
+ metadata, ;; Source file directory (includes trailing slash)
+ metadata ;; Unused
+ }
+
+These descriptors contain information for a file. Global variables and top
+level functions would be defined using this context. File descriptors also
+provide context for source line correspondence.
+
+Each input file is encoded as a separate file descriptor in LLVM debugging
+information output.
+
+.. _format_global_variables:
+
+Global variable descriptors
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !1 = metadata !{
+ i32, ;; Tag = 52 + LLVMDebugVersion (DW_TAG_variable)
+ i32, ;; Unused field.
+ metadata, ;; Reference to context descriptor
+ metadata, ;; Name
+ metadata, ;; Display name (fully qualified C++ name)
+ metadata, ;; MIPS linkage name (for C++)
+ metadata, ;; Reference to file where defined
+ i32, ;; Line number where defined
+ metadata, ;; Reference to type descriptor
+ i1, ;; True if the global is local to compile unit (static)
+ i1, ;; True if the global is defined in the compile unit (not extern)
+ {}* ;; Reference to the global variable
+ }
+
+These descriptors provide debug information about globals variables. The
+provide details such as name, type and where the variable is defined. All
+global variables are collected inside the named metadata ``!llvm.dbg.cu``.
+
+.. _format_subprograms:
+
+Subprogram descriptors
+^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !2 = metadata !{
+ i32, ;; Tag = 46 + LLVMDebugVersion (DW_TAG_subprogram)
+ i32, ;; Unused field.
+ metadata, ;; Reference to context descriptor
+ metadata, ;; Name
+ metadata, ;; Display name (fully qualified C++ name)
+ metadata, ;; MIPS linkage name (for C++)
+ metadata, ;; Reference to file where defined
+ i32, ;; Line number where defined
+ metadata, ;; Reference to type descriptor
+ i1, ;; True if the global is local to compile unit (static)
+ i1, ;; True if the global is defined in the compile unit (not extern)
+ i32, ;; Line number where the scope of the subprogram begins
+ i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
+ i32, ;; Index into a virtual function
+ metadata, ;; indicates which base type contains the vtable pointer for the
+ ;; derived class
+ i32, ;; Flags - Artifical, Private, Protected, Explicit, Prototyped.
+ i1, ;; isOptimized
+ Function * , ;; Pointer to LLVM function
+ metadata, ;; Lists function template parameters
+ metadata, ;; Function declaration descriptor
+ metadata ;; List of function variables
+ }
+
+These descriptors provide debug information about functions, methods and
+subprograms. They provide details such as name, return types and the source
+location where the subprogram is defined.
+
+Block descriptors
+^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !3 = metadata !{
+ i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
+ metadata,;; Reference to context descriptor
+ i32, ;; Line number
+ i32, ;; Column number
+ metadata,;; Reference to source file
+ i32 ;; Unique ID to identify blocks from a template function
+ }
+
+This descriptor provides debug information about nested blocks within a
+subprogram. The line number and column numbers are used to dinstinguish two
+lexical blocks at same depth.
+
+.. code-block:: llvm
+
+ !3 = metadata !{
+ i32, ;; Tag = 11 + LLVMDebugVersion (DW_TAG_lexical_block)
+ metadata ;; Reference to the scope we're annotating with a file change
+ metadata,;; Reference to the file the scope is enclosed in.
+ }
+
+This descriptor provides a wrapper around a lexical scope to handle file
+changes in the middle of a lexical block.
+
+.. _format_basic_type:
+
+Basic type descriptors
+^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !4 = metadata !{
+ i32, ;; Tag = 36 + LLVMDebugVersion (DW_TAG_base_type)
+ metadata, ;; Reference to context
+ metadata, ;; Name (may be "" for anonymous types)
+ metadata, ;; Reference to file where defined (may be NULL)
+ i32, ;; Line number where defined (may be 0)
+ i64, ;; Size in bits
+ i64, ;; Alignment in bits
+ i64, ;; Offset in bits
+ i32, ;; Flags
+ i32 ;; DWARF type encoding
+ }
+
+These descriptors define primitive types used in the code. Example ``int``,
+``bool`` and ``float``. The context provides the scope of the type, which is
+usually the top level. Since basic types are not usually user defined the
+context and line number can be left as NULL and 0. The size, alignment and
+offset are expressed in bits and can be 64 bit values. The alignment is used
+to round the offset when embedded in a :ref:`composite type
+<format_composite_type>` (example to keep float doubles on 64 bit boundaries).
+The offset is the bit offset if embedded in a :ref:`composite type
+<format_composite_type>`.
+
+The type encoding provides the details of the type. The values are typically
+one of the following:
+
+.. code-block:: llvm
+
+ DW_ATE_address = 1
+ DW_ATE_boolean = 2
+ DW_ATE_float = 4
+ DW_ATE_signed = 5
+ DW_ATE_signed_char = 6
+ DW_ATE_unsigned = 7
+ DW_ATE_unsigned_char = 8
+
+.. _format_derived_type:
+
+Derived type descriptors
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !5 = metadata !{
+ i32, ;; Tag (see below)
+ metadata, ;; Reference to context
+ metadata, ;; Name (may be "" for anonymous types)
+ metadata, ;; Reference to file where defined (may be NULL)
+ i32, ;; Line number where defined (may be 0)
+ i64, ;; Size in bits
+ i64, ;; Alignment in bits
+ i64, ;; Offset in bits
+ i32, ;; Flags to encode attributes, e.g. private
+ metadata, ;; Reference to type derived from
+ metadata, ;; (optional) Name of the Objective C property associated with
+ ;; Objective-C an ivar
+ metadata, ;; (optional) Name of the Objective C property getter selector.
+ metadata, ;; (optional) Name of the Objective C property setter selector.
+ i32 ;; (optional) Objective C property attributes.
+ }
+
+These descriptors are used to define types derived from other types. The value
+of the tag varies depending on the meaning. The following are possible tag
+values:
+
+.. code-block:: llvm
+
+ DW_TAG_formal_parameter = 5
+ DW_TAG_member = 13
+ DW_TAG_pointer_type = 15
+ DW_TAG_reference_type = 16
+ DW_TAG_typedef = 22
+ DW_TAG_const_type = 38
+ DW_TAG_volatile_type = 53
+ DW_TAG_restrict_type = 55
+
+``DW_TAG_member`` is used to define a member of a :ref:`composite type
+<format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type
+of the member is the :ref:`derived type <format_derived_type>`.
+``DW_TAG_formal_parameter`` is used to define a member which is a formal
+argument of a subprogram.
+
+``DW_TAG_typedef`` is used to provide a name for the derived type.
+
+``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
+``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
+:ref:`derived type <format_derived_type>`.
+
+:ref:`Derived type <format_derived_type>` location can be determined from the
+context and line number. The size, alignment and offset are expressed in bits
+and can be 64 bit values. The alignment is used to round the offset when
+embedded in a :ref:`composite type <format_composite_type>` (example to keep
+float doubles on 64 bit boundaries.) The offset is the bit offset if embedded
+in a :ref:`composite type <format_composite_type>`.
+
+Note that the ``void *`` type is expressed as a type derived from NULL.
+
+.. _format_composite_type:
+
+Composite type descriptors
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !6 = metadata !{
+ i32, ;; Tag (see below)
+ metadata, ;; Reference to context
+ metadata, ;; Name (may be "" for anonymous types)
+ metadata, ;; Reference to file where defined (may be NULL)
+ i32, ;; Line number where defined (may be 0)
+ i64, ;; Size in bits
+ i64, ;; Alignment in bits
+ i64, ;; Offset in bits
+ i32, ;; Flags
+ metadata, ;; Reference to type derived from
+ metadata, ;; Reference to array of member descriptors
+ i32 ;; Runtime languages
+ }
+
+These descriptors are used to define types that are composed of 0 or more
+elements. The value of the tag varies depending on the meaning. The following
+are possible tag values:
+
+.. code-block:: llvm
+
+ DW_TAG_array_type = 1
+ DW_TAG_enumeration_type = 4
+ DW_TAG_structure_type = 19
+ DW_TAG_union_type = 23
+ DW_TAG_vector_type = 259
+ DW_TAG_subroutine_type = 21
+ DW_TAG_inheritance = 28
+
+The vector flag indicates that an array type is a native packed vector.
+
+The members of array types (tag = ``DW_TAG_array_type``) or vector types (tag =
+``DW_TAG_vector_type``) are :ref:`subrange descriptors <format_subrange>`, each
+representing the range of subscripts at that level of indexing.
+
+The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are
+:ref:`enumerator descriptors <format_enumerator>`, each representing the
+definition of enumeration value for the set. All enumeration type descriptors
+are collected inside the named metadata ``!llvm.dbg.cu``.
+
+The members of structure (tag = ``DW_TAG_structure_type``) or union (tag =
+``DW_TAG_union_type``) types are any one of the :ref:`basic
+<format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite
+<format_composite_type>` type descriptors, each representing a field member of
+the structure or union.
+
+For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide
+information about base classes, static members and member functions. If a
+member is a :ref:`derived type descriptor <format_derived_type>` and has a tag
+of ``DW_TAG_inheritance``, then the type represents a base class. If the member
+of is a :ref:`global variable descriptor <format_global_variables>` then it
+represents a static member. And, if the member is a :ref:`subprogram
+descriptor <format_subprograms>` then it represents a member function. For
+static members and member functions, ``getName()`` returns the members link or
+the C++ mangled name. ``getDisplayName()`` the simplied version of the name.
+
+The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements
+is the return type for the subroutine. The remaining elements are the formal
+arguments to the subroutine.
+
+:ref:`Composite type <format_composite_type>` location can be determined from
+the context and line number. The size, alignment and offset are expressed in
+bits and can be 64 bit values. The alignment is used to round the offset when
+embedded in a :ref:`composite type <format_composite_type>` (as an example, to
+keep float doubles on 64 bit boundaries). The offset is the bit offset if
+embedded in a :ref:`composite type <format_composite_type>`.
+
+.. _format_subrange:
+
+Subrange descriptors
+^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !42 = metadata !{
+ i32, ;; Tag = 33 + LLVMDebugVersion (DW_TAG_subrange_type)
+ i64, ;; Low value
+ i64 ;; High value
+ }
+
+These descriptors are used to define ranges of array subscripts for an array
+:ref:`composite type <format_composite_type>`. The low value defines the lower
+bounds typically zero for C/C++. The high value is the upper bounds. Values
+are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High``
+the array bounds are not included in generated debugging information.
+
+.. _format_enumerator:
+
+Enumerator descriptors
+^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !6 = metadata !{
+ i32, ;; Tag = 40 + LLVMDebugVersion (DW_TAG_enumerator)
+ metadata, ;; Name
+ i64 ;; Value
+ }
+
+These descriptors are used to define members of an enumeration :ref:`composite
+type <format_composite_type>`, it associates the name to the value.
+
+Local variables
+^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ !7 = metadata !{
+ i32, ;; Tag (see below)
+ metadata, ;; Context
+ metadata, ;; Name
+ metadata, ;; Reference to file where defined
+ i32, ;; 24 bit - Line number where defined
+ ;; 8 bit - Argument number. 1 indicates 1st argument.
+ metadata, ;; Type descriptor
+ i32, ;; flags
+ metadata ;; (optional) Reference to inline location
+ }
+
+These descriptors are used to define variables local to a sub program. The
+value of the tag depends on the usage of the variable:
+
+.. code-block:: llvm
+
+ DW_TAG_auto_variable = 256
+ DW_TAG_arg_variable = 257
+ DW_TAG_return_variable = 258
+
+An auto variable is any variable declared in the body of the function. An
+argument variable is any variable that appears as a formal argument to the
+function. A return variable is used to track the result of a function and has
+no source correspondent.
+
+The context is either the subprogram or block where the variable is defined.
+Name the source variable name. Context and line indicate where the variable
+was defined. Type descriptor defines the declared type of the variable.
+
+.. _format_common_intrinsics:
+
+Debugger intrinsic functions
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
+provide debug information at various points in generated code.
+
+``llvm.dbg.declare``
+^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ void %llvm.dbg.declare(metadata, metadata)
+
+This intrinsic provides information about a local element (e.g., variable).
+The first argument is metadata holding the alloca for the variable. The second
+argument is metadata containing a description of the variable.
+
+``llvm.dbg.value``
+^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+ void %llvm.dbg.value(metadata, i64, metadata)
+
+This intrinsic provides information when a user source variable is set to a new
+value. The first argument is the new value (wrapped as metadata). The second
+argument is the offset in the user source variable where the new value is
+written. The third argument is metadata containing a description of the user
+source variable.
+
+Object lifetimes and scoping
+============================
+
+In many languages, the local variables in functions can have their lifetimes or
+scopes limited to a subset of a function. In the C family of languages, for
+example, variables are only live (readable and writable) within the source
+block that they are defined in. In functional languages, values are only
+readable after they have been defined. Though this is a very obvious concept,
+it is non-trivial to model in LLVM, because it has no notion of scoping in this
+sense, and does not want to be tied to a language's scoping rules.
+
+In order to handle this, the LLVM debug format uses the metadata attached to
+llvm instructions to encode line number and scoping information. Consider the
+following C fragment, for example:
+
+.. code-block:: c
+
+ 1. void foo() {
+ 2. int X = 21;
+ 3. int Y = 22;
+ 4. {
+ 5. int Z = 23;
+ 6. Z = X;
+ 7. }
+ 8. X = Y;
+ 9. }
+
+Compiled to LLVM, this function would be represented like this:
+
+.. code-block:: llvm
+
+ define void @foo() nounwind ssp {
+ entry:
+ %X = alloca i32, align 4 ; <i32*> [#uses=4]
+ %Y = alloca i32, align 4 ; <i32*> [#uses=4]
+ %Z = alloca i32, align 4 ; <i32*> [#uses=3]
+ %0 = bitcast i32* %X to {}* ; <{}*> [#uses=1]
+ call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !0), !dbg !7
+ store i32 21, i32* %X, !dbg !8
+ %1 = bitcast i32* %Y to {}* ; <{}*> [#uses=1]
+ call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !9), !dbg !10
+ store i32 22, i32* %Y, !dbg !11
+ %2 = bitcast i32* %Z to {}* ; <{}*> [#uses=1]
+ call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !12), !dbg !14
+ store i32 23, i32* %Z, !dbg !15
+ %tmp = load i32* %X, !dbg !16 ; <i32> [#uses=1]
+ %tmp1 = load i32* %Y, !dbg !16 ; <i32> [#uses=1]
+ %add = add nsw i32 %tmp, %tmp1, !dbg !16 ; <i32> [#uses=1]
+ store i32 %add, i32* %Z, !dbg !16
+ %tmp2 = load i32* %Y, !dbg !17 ; <i32> [#uses=1]
+ store i32 %tmp2, i32* %X, !dbg !17
+ ret void, !dbg !18
+ }
+
+ declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone
+
+ !0 = metadata !{i32 459008, metadata !1, metadata !"X",
+ metadata !3, i32 2, metadata !6}; [ DW_TAG_auto_variable ]
+ !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
+ !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo", metadata !"foo",
+ metadata !"foo", metadata !3, i32 1, metadata !4,
+ i1 false, i1 true}; [DW_TAG_subprogram ]
+ !3 = metadata !{i32 458769, i32 0, i32 12, metadata !"foo.c",
+ metadata !"/private/tmp", metadata !"clang 1.1", i1 true,
+ i1 false, metadata !"", i32 0}; [DW_TAG_compile_unit ]
+ !4 = metadata !{i32 458773, metadata !3, metadata !"", null, i32 0, i64 0, i64 0,
+ i64 0, i32 0, null, metadata !5, i32 0}; [DW_TAG_subroutine_type ]
+ !5 = metadata !{null}
+ !6 = metadata !{i32 458788, metadata !3, metadata !"int", metadata !3, i32 0,
+ i64 32, i64 32, i64 0, i32 0, i32 5}; [DW_TAG_base_type ]
+ !7 = metadata !{i32 2, i32 7, metadata !1, null}
+ !8 = metadata !{i32 2, i32 3, metadata !1, null}
+ !9 = metadata !{i32 459008, metadata !1, metadata !"Y", metadata !3, i32 3,
+ metadata !6}; [ DW_TAG_auto_variable ]
+ !10 = metadata !{i32 3, i32 7, metadata !1, null}
+ !11 = metadata !{i32 3, i32 3, metadata !1, null}
+ !12 = metadata !{i32 459008, metadata !13, metadata !"Z", metadata !3, i32 5,
+ metadata !6}; [ DW_TAG_auto_variable ]
+ !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
+ !14 = metadata !{i32 5, i32 9, metadata !13, null}
+ !15 = metadata !{i32 5, i32 5, metadata !13, null}
+ !16 = metadata !{i32 6, i32 5, metadata !13, null}
+ !17 = metadata !{i32 8, i32 3, metadata !1, null}
+ !18 = metadata !{i32 9, i32 1, metadata !2, null}
+
+This example illustrates a few important details about LLVM debugging
+information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
+location information, which are attached to an instruction, are applied
+together to allow a debugger to analyze the relationship between statements,
+variable definitions, and the code used to implement the function.
+
+.. code-block:: llvm
+
+ call void @llvm.dbg.declare(metadata, metadata !0), !dbg !7
+
+The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
+variable ``X``. The metadata ``!dbg !7`` attached to the intrinsic provides
+scope information for the variable ``X``.
+
+.. code-block:: llvm
+
+ !7 = metadata !{i32 2, i32 7, metadata !1, null}
+ !1 = metadata !{i32 458763, metadata !2}; [DW_TAG_lexical_block ]
+ !2 = metadata !{i32 458798, i32 0, metadata !3, metadata !"foo",
+ metadata !"foo", metadata !"foo", metadata !3, i32 1,
+ metadata !4, i1 false, i1 true}; [DW_TAG_subprogram ]
+
+Here ``!7`` is metadata providing location information. It has four fields:
+line number, column number, scope, and original scope. The original scope
+represents inline location if this instruction is inlined inside a caller, and
+is null otherwise. In this example, scope is encoded by ``!1``. ``!1``
+represents a lexical block inside the scope ``!2``, where ``!2`` is a
+:ref:`subprogram descriptor <format_subprograms>`. This way the location
+information attached to the intrinsics indicates that the variable ``X`` is
+declared at line number 2 at a function level scope in function ``foo``.
+
+Now lets take another example.
+
+.. code-block:: llvm
+
+ call void @llvm.dbg.declare(metadata, metadata !12), !dbg !14
+
+The second intrinsic ``%llvm.dbg.declare`` encodes debugging information for
+variable ``Z``. The metadata ``!dbg !14`` attached to the intrinsic provides
+scope information for the variable ``Z``.
+
+.. code-block:: llvm
+
+ !13 = metadata !{i32 458763, metadata !1}; [DW_TAG_lexical_block ]
+ !14 = metadata !{i32 5, i32 9, metadata !13, null}
+
+Here ``!14`` indicates that ``Z`` is declared at line number 5 and
+column number 9 inside of lexical scope ``!13``. The lexical scope itself
+resides inside of lexical scope ``!1`` described above.
+
+The scope information attached with each instruction provides a straightforward
+way to find instructions covered by a scope.
+
+.. _ccxx_frontend:
+
+C/C++ front-end specific debug information
+==========================================
+
+The C and C++ front-ends represent information about the program in a format
+that is effectively identical to `DWARF 3.0
+<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
+content. This allows code generators to trivially support native debuggers by
+generating standard dwarf information, and contains enough information for
+non-dwarf targets to translate it as needed.
+
+This section describes the forms used to represent C and C++ programs. Other
+languages could pattern themselves after this (which itself is tuned to
+representing programs in the same way that DWARF 3 does), or they could choose
+to provide completely different forms if they don't fit into the DWARF model.
+As support for debugging information gets added to the various LLVM
+source-language front-ends, the information used should be documented here.
+
+The following sections provide examples of various C/C++ constructs and the
+debug information that would best describe those constructs.
+
+C/C++ source file information
+-----------------------------
+
+Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the
+directory ``/Users/mine/sources``, the following code:
+
+.. code-block:: c
+
+ #include "MyHeader.h"
+
+ int main(int argc, char *argv[]) {
+ return 0;
+ }
+
+a C/C++ front-end would generate the following descriptors:
+
+.. code-block:: llvm
+
+ ...
+ ;;
+ ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp".
+ ;;
+ !2 = metadata !{
+ i32 524305, ;; Tag
+ i32 0, ;; Unused
+ i32 4, ;; Language Id
+ metadata !"MySource.cpp",
+ metadata !"/Users/mine/sources",
+ metadata !"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
+ i1 true, ;; Main Compile Unit
+ i1 false, ;; Optimized compile unit
+ metadata !"", ;; Compiler flags
+ i32 0} ;; Runtime version
+
+ ;;
+ ;; Define the file for the file "/Users/mine/sources/MySource.cpp".
+ ;;
+ !1 = metadata !{
+ i32 524329, ;; Tag
+ metadata !"MySource.cpp",
+ metadata !"/Users/mine/sources",
+ metadata !2 ;; Compile unit
+ }
+
+ ;;
+ ;; Define the file for the file "/Users/mine/sources/Myheader.h"
+ ;;
+ !3 = metadata !{
+ i32 524329, ;; Tag
+ metadata !"Myheader.h"
+ metadata !"/Users/mine/sources",
+ metadata !2 ;; Compile unit
+ }
+
+ ...
+
+``llvm::Instruction`` provides easy access to metadata attached with an
+instruction. One can extract line number information encoded in LLVM IR using
+``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``.
+
+.. code-block:: c++
+
+ if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction
+ DILocation Loc(N); // DILocation is in DebugInfo.h
+ unsigned Line = Loc.getLineNumber();
+ StringRef File = Loc.getFilename();
+ StringRef Dir = Loc.getDirectory();
+ }
+
+C/C++ global variable information
+---------------------------------
+
+Given an integer global variable declared as follows:
+
+.. code-block:: c
+
+ int MyGlobal = 100;
+
+a C/C++ front-end would generate the following descriptors:
+
+.. code-block:: llvm
+
+ ;;
+ ;; Define the global itself.
+ ;;
+ %MyGlobal = global int 100
+ ...
+ ;;
+ ;; List of debug info of globals
+ ;;
+ !llvm.dbg.cu = !{!0}
+
+ ;; Define the compile unit.
+ !0 = metadata !{
+ i32 786449, ;; Tag
+ i32 0, ;; Context
+ i32 4, ;; Language
+ metadata !"foo.cpp", ;; File
+ metadata !"/Volumes/Data/tmp", ;; Directory
+ metadata !"clang version 3.1 ", ;; Producer
+ i1 true, ;; Deprecated field
+ i1 false, ;; "isOptimized"?
+ metadata !"", ;; Flags
+ i32 0, ;; Runtime Version
+ metadata !1, ;; Enum Types
+ metadata !1, ;; Retained Types
+ metadata !1, ;; Subprograms
+ metadata !3 ;; Global Variables
+ } ; [ DW_TAG_compile_unit ]
+
+ ;; The Array of Global Variables
+ !3 = metadata !{
+ metadata !4
+ }
+
+ !4 = metadata !{
+ metadata !5
+ }