diff options
author | Chris Lattner <sabre@nondot.org> | 2004-06-01 06:48:00 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2004-06-01 06:48:00 +0000 |
commit | ce52b7e45233d087b948e5443923aff58b7801b0 (patch) | |
tree | 39cf792639cfa5272c854f885ea7015e3771079b /docs/CodeGenerator.html | |
parent | f25237106805fc3af859c86fe9aacdc9dcb403b8 (diff) |
It's a small start, but it is certainly needed. Contributions are certainly
welcomed. :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13914 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'docs/CodeGenerator.html')
-rw-r--r-- | docs/CodeGenerator.html | 348 |
1 files changed, 348 insertions, 0 deletions
diff --git a/docs/CodeGenerator.html b/docs/CodeGenerator.html new file mode 100644 index 0000000000..4729cc089f --- /dev/null +++ b/docs/CodeGenerator.html @@ -0,0 +1,348 @@ +<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" + "http://www.w3.org/TR/html4/strict.dtd"> +<html> +<head> + <title>The LLVM Target-Independent Code Generator</title> + <link rel="stylesheet" href="llvm.css" type="text/css"> +</head> +<body> + +<div class="doc_title"> + The LLVM Target-Independent Code Generator +</div> + +<ol> + <li><a href="#introduction">Introduction</a> + <ul> + <li><a href="#required">Required components in the code generator</a></li> + <li><a href="#high-level-design">The high-level design of the code generator</a></li> + <li><a href="#tablegen">Using TableGen for target description</a></li> + </ul> + </li> + <li><a href="#targetdesc">Target description classes</a> + <ul> + <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li> + <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li> + <li><a href="#mregisterinfo">The <tt>MRegisterInfo</tt> class</a></li> + <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li> + <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li> + <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li> + </ul> + </li> + <li><a href="#codegendesc">Machine code description classes</a> + </li> + <li><a href="#codegenalgs">Target-independent code generation algorithms</a> + </li> + <li><a href="#targetimpls">Target description implementations</a> + <ul> + <li><a href="#x86">The X86 backend</a></li> + </li> + </li> + +</ol> + +<div class="doc_author"> + <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"> + <a name="introduction">Introduction</a> +</div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>The LLVM target-independent code generator is a framework that provides a +suite of reusable components for translating the LLVM internal representation to +the machine code for a specified target -- either in assembly form (suitable for +a static compiler) or in binary machine code format (usable for a JIT compiler). +The LLVM target-independent code generator consists of four main components:</p> + +<ol> +<li><a href="#targetdesc">Abstract target description</a> interfaces which +capture improtant properties about various aspects of the machine independently +of how they will be used. These interfaces are defined in +<tt>include/llvm/Target/</tt>.</li> + +<li>Classes used to represent the <a href="#codegendesc">machine code</a> being +generator for a target. These classes are intended to be abstract enough to +represent the machine code for <i>any</i> target machine. These classes are +defined in <tt>include/llvm/CodeGen/</tt>.</li> + +<li><a href="#codegenalgs">Target-independent algorithms</a> used to implement +various phases of native code generation (register allocation, scheduling, stack +frame representation, etc). This code lives in <tt>lib/CodeGen/</tt>.</li> + +<li><a href="#targetimpls">Implementations of the abstract target description +interfaces</a> for particular targets. These machine descriptions make use of +the components provided by LLVM, and can optionally provide custom +target-specific passes, to build complete code generators for a specific target. +Target descriptions live in <tt>lib/Target/</tt>.</li> + +</ol> + +<p> +Depending on which part of the code generator you are interested in working on, +different pieces of this will be useful to you. In any case, you should be +familiar with the <a href="#targetdesc">target description</a> and <a +href="#codegendesc">machine code representation</a> classes. If you want to add +a backend for a new target, you will need <a href="#targetimpls">implement the +targe description</a> classes for your new target and understand the <a +href="LangRef.html">LLVM code representation</a>. If you are interested in +implementing a new <a href="#codegenalgs">code generation algorithm</a>, it +should only depend on the target-description and machine code representation +classes, ensuring that it is portable. +</p> + +</div> + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="required">Required components in the code generator</a> +</div> + +<div class="doc_text"> + +<p>The two pieces of the LLVM code generator are the high-level interface to the +code generator and the set of reusable components that can be used to build +target-specific backends. The two most important interfaces (<a +href="#targetmachine"><tt>TargetMachine</tt></a> and <a +href="#targetdata"><tt>TargetData</tt></a> classes) are the only ones that are +required to be defined for a backend to fit into the LLVM system, but the others +must be defined if the reusable code generator components are going to be +used.</p> + +<p>This design has two important implications. The first is that LLVM can +support completely non-traditional code generation targets. For example, the C +backend does not require register allocation, instruction selection, or any of +the other standard components provided by the system. As such, it only +implements these two interfaces, and does its own thing. Another example of a +code generator like this is a (purely hypothetical) backend that converts LLVM +to the GCC RTL form and uses GCC to emit machine code for a target.</p> + +<p>The other implication of this design is that it is possible to design and +implement radically different code generators in the LLVM system that do not +make use of any of the built-in components. Doing so is not recommended at all, +but could be required for radically different targets that do not fit into the +LLVM machine description model: programmable FPGAs for example.</p> +</p> +</div> + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="high-level-design">The high-level design of the code generator</a></li> +</div> + +<div class="doc_text"> + +<p>The LLVM target-indendent code generator is designed to support efficient and +quality code generation for standard register-based microprocessors. Code +generation in this model is divided into the following stages:</p> + +<ol> +<li><b>Instruction Selection</b> - Determining a efficient implementation of the +input LLVM code in the target instruction set. This stage produces the initial +code for the program in the target instruction set the makes use of virtual +registers in SSA form and physical registers that represent any required +register assignments due to target constraints or calling conventions.</li> + +<li><b>SSA-based Machine Code Optimizations</b> - This (optional) stage consists +of a series of machine-code optimizations that operate on the SSA-form produced +by the instruction selector. Optimizations like modulo-scheduling, normal +scheduling, or peephole optimization work here.</li> + +<li><b>Register Allocation</b> - The target code is transformed from an infinite +virtual register file in SSA form to the concrete register file used by the +target. This phase introduces spill code and eliminates all virtual register +references from the program.</li> + +<li><b>Prolog/Epilog Code Insertion</b> - Once the machine code has been +generated for the function and the amount of stack space required is known (used +for LLVM alloca's and spill slots), the prolog and epilog code for the function +can be inserted and "abstract stack location references" can be eliminated. +This stage is responsible for implementing optimizations like frame-pointer +elimination and stack packing.</li> + +<li><b>Late Machine Code Optimizations</b> - Optimizations that operate on +"final" machine code can go here, such as spill code scheduling and peephole +optimizations.</li> + +<li><b>Code Emission</b> - The final stage actually outputs the machine code for +the current function, either in the target assembler format or in machine +code.</li> + +</ol> + +<p> +The code generator is based on the assumption that the instruction selector will +use an optimal pattern matching selector to create high-quality sequences of +native code. Alternative code generator designs based on pattern expansion and +aggressive iterative peephole optimization are much slower. This design is +designed to permit efficient compilation (important for JIT environments) and +aggressive optimization (used when generate code offline) by allowing components +of varying levels of sophisication to be used for any step of compilation.</p> + +<p> +In addition to these stages, target implementations can insert arbitrary +target-specific passes into the flow. For example, the X86 target uses a +special pass to handle the 80x87 floating point stack architecture. Other +targets with unusual requirements can be supported with custom passes as needed. +</p> + +</div> + + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="tablegen">Using TableGen for target description</a></li> +</div> + +<div class="doc_text"> + +<p>The target description classes require a detailed descriptions of the target +architecture. These target descriptions often have a large amount of common +information (e.g., an add instruction is almost identical to a sub instruction). +In order to allow the maximum amount of commonality to be factored out, the LLVM +code generator uses the <a href="TableGenFundamentals.html">TableGen</a> tool to +allow +</p> + +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"> + <a name="targetdesc">Target description classes</a> +</div> +<!-- *********************************************************************** --> + +<div class="doc_text"> + +<p>The LLVM target description classes (which are located in the +<tt>include/llvm/Target</tt> directory) provide an abstract description of the +target machine, independent of any particular client. These classes are +designed to capture the <i>abstract</i> properties of the target (such as what +instruction and registers it has), and do not incorporate any particular pieces +of code generation algorithms (these interfaces do not take interference graphs +as inputs or other algorithm-specific data structures).</p> + +<p>All of the target description classes (except the <tt><a +href="#targetdata">TargetData</a></tt> class) are designed to be subclassed by +the concrete target implementation, and have virtual methods implemented. To +get to these implementations, <tt><a +href="#targetmachine">TargetMachine</a></tt> class provides accessors that +should be implemented by the target.</p> + +</div> + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="targetmachine">The <tt>TargetMachine</tt> class</a> +</div> + +<div class="doc_text"> + +<p>The <tt>TargetMachine</tt> class provides virtual methods that are used to +access the target-specific implementations of the various target description +classes (with the <tt>getInstrInfo</tt>, <tt>getRegisterInfo</tt>, +<tt>getFrameInfo</tt>, ... methods). This class is designed to be subclassed by +a concrete target implementation (e.g., <tt>X86TargetMachine</tt>) which +implements the various virtual methods. The only required target description +class is the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the +code generator components are to be used, the other interfaces should be +implemented as well.</p> + +</div> + + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="targetdata">The <tt>TargetData</tt> class</a> +</div> + +<div class="doc_text"> + +<p>The <tt>TargetData</tt> class is the only required target description class, +and it is the only class that is not extensible (it cannot be derived from). It +specifies information about how the target lays out memory for structures, the +alignment requirements for various data types, the size of pointers in the +target, and whether the target is little- or big-endian.</p> + +</div> + + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="mregisterinfo">The <tt>MRegisterInfo</tt> class</a></li> +</div> + +<div class="doc_text"> + +<p>The <tt>MRegisterInfo</tt> class (which will eventually be renamed to +<tt>TargetRegisterInfo</tt>) is used to describe the register file of the +target and any interactions between the registers.</p> + +<p>Registers in the code generator are represented in the code generator by +unsigned numbers. Physical registers (those that actually exist in the target +description) are unique small numbers, and virtual registers are generally +large.</p> + +<p>Each register in the processor description has an associated +<tt>MRegisterDesc</tt> entry, which provides a textual name for the register +(used for assembly output and debugging dumps), a set of aliases (used to +indicate that one register overlaps with another), and some flag bits. +</p> + +<p>In addition to the per-register description, the <tt>MRegisterInfo</tt> class +exposes a set of processor specific register classes (instances of the +<tt>TargetRegisterClass</tt> class). Each register class contains sets of +registers that have the same properties (for example, they are all 32-bit +integer registers). Each SSA virtual register created by the instruction +selector has an associated register class. When the register allocator runs, it +replaces virtual registers with a physical register in the set.</p> + +<p> +The target-specific implementations of these classes is auto-generated from a <a +href="TableGenFundamentals.html">TableGen</a> description of the register file. +</p> + +</div> + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li> +</div> + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li> +</div> + +<!-- ======================================================================= --> +<div class="doc_subsection"> + <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li> +</div> + +<!-- *********************************************************************** --> +<div class="doc_section"> + <a name="codegendesc">Machine code description classes</a> +</div> +<!-- *********************************************************************** --> + + + +<!-- *********************************************************************** --> +<hr> +<address> + <a href="http://jigsaw.w3.org/css-validator/check/referer"><img + src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> + <a href="http://validator.w3.org/check/referer"><img + src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a> + + <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> + <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br> + Last modified: $Date$ +</address> + +</body> +</html> |