aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorReid Spencer <rspencer@reidspencer.com>2004-07-25 18:07:36 +0000
committerReid Spencer <rspencer@reidspencer.com>2004-07-25 18:07:36 +0000
commitad89bd6a1a74d3d3223d9eb23e16f10c02f836fa (patch)
treea8ec89130546e3cc17246b1c143eb9143d8a1b02
parent0be13e7f1468ba101188a5e1b1f1a20a676b3569 (diff)
bug 263:
- encode/decode target triple and dependent libraries bug 401: - fix encoding/decoding of FP values to be little-endian only bug 402: - initial (compatible) cut at 24-bit types instead of 32-bit - reduce size of block headers by 50% Other: - cleanup Writer by consolidating to one compilation unit, rem. other files - use a std::vector instead of std::deque so the buffer can be allocated in multiples of 64KByte chunks rather than in multiples of some smaller (default) number. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15210 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Bytecode/Reader/Reader.cpp164
-rw-r--r--lib/Bytecode/Reader/Reader.h35
-rw-r--r--lib/Bytecode/Writer/ConstantWriter.cpp220
-rw-r--r--lib/Bytecode/Writer/InstructionWriter.cpp348
-rw-r--r--lib/Bytecode/Writer/Writer.cpp809
-rw-r--r--lib/Bytecode/Writer/WriterInternals.h97
-rw-r--r--lib/Bytecode/Writer/WriterPrimitives.h141
7 files changed, 1003 insertions, 811 deletions
diff --git a/lib/Bytecode/Reader/Reader.cpp b/lib/Bytecode/Reader/Reader.cpp
index 4d1ee41242..d19651ffb4 100644
--- a/lib/Bytecode/Reader/Reader.cpp
+++ b/lib/Bytecode/Reader/Reader.cpp
@@ -156,24 +156,79 @@ inline void BytecodeReader::read_data(void *Ptr, void *End) {
/// Read a float value in little-endian order
inline void BytecodeReader::read_float(float& FloatVal) {
- /// FIXME: This is a broken implementation! It reads
- /// it in a platform-specific endianess. Need to make
- /// it little endian always.
- read_data(&FloatVal, &FloatVal+1);
+ if (hasPlatformSpecificFloatingPoint) {
+ read_data(&FloatVal, &FloatVal+1);
+ } else {
+ /// FIXME: This isn't optimal, it has size problems on some platforms
+ /// where FP is not IEEE.
+ union {
+ float f;
+ uint32_t i;
+ } FloatUnion;
+ FloatUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24);
+ At+=sizeof(uint32_t);
+ FloatVal = FloatUnion.f;
+ }
}
/// Read a double value in little-endian order
inline void BytecodeReader::read_double(double& DoubleVal) {
- /// FIXME: This is a broken implementation! It reads
- /// it in a platform-specific endianess. Need to make
- /// it little endian always.
- read_data(&DoubleVal, &DoubleVal+1);
+ if (hasPlatformSpecificFloatingPoint) {
+ read_data(&DoubleVal, &DoubleVal+1);
+ } else {
+ /// FIXME: This isn't optimal, it has size problems on some platforms
+ /// where FP is not IEEE.
+ union {
+ double d;
+ uint64_t i;
+ } DoubleUnion;
+ DoubleUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24) |
+ (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
+ (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56);
+ At+=sizeof(uint64_t);
+ DoubleVal = DoubleUnion.d;
+ }
}
/// Read a block header and obtain its type and size
inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
- Type = read_uint();
- Size = read_uint();
+ if ( hasLongBlockHeaders ) {
+ Type = read_uint();
+ Size = read_uint();
+ switch (Type) {
+ case BytecodeFormat::Reserved_DoNotUse :
+ error("Reserved_DoNotUse used as Module Type?");
+ Type = BytecodeFormat::Module; break;
+ case BytecodeFormat::Module:
+ Type = BytecodeFormat::ModuleBlockID; break;
+ case BytecodeFormat::Function:
+ Type = BytecodeFormat::FunctionBlockID; break;
+ case BytecodeFormat::ConstantPool:
+ Type = BytecodeFormat::ConstantPoolBlockID; break;
+ case BytecodeFormat::SymbolTable:
+ Type = BytecodeFormat::SymbolTableBlockID; break;
+ case BytecodeFormat::ModuleGlobalInfo:
+ Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
+ case BytecodeFormat::GlobalTypePlane:
+ Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
+ case BytecodeFormat::InstructionList:
+ Type = BytecodeFormat::InstructionListBlockID; break;
+ case BytecodeFormat::CompactionTable:
+ Type = BytecodeFormat::CompactionTableBlockID; break;
+ case BytecodeFormat::BasicBlock:
+ /// This block type isn't used after version 1.1. However, we have to
+ /// still allow the value in case this is an old bc format file.
+ /// We just let its value creep thru.
+ break;
+ default:
+ error("Invalid module type found: " + utostr(Type));
+ break;
+ }
+ } else {
+ Size = read_uint();
+ Type = Size & 0x1F; // mask low order five bits
+ Size >>= 5; // get rid of five low order bits, leaving high 27
+ }
BlockStart = At;
if (At + Size > BlockEnd)
error("Attempt to size a block past end of memory");
@@ -216,6 +271,9 @@ inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
/// @see sanitizeTypeId
inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
TypeId = read_vbr_uint();
+ if ( !has32BitTypes )
+ if ( TypeId == 0x00FFFFFF )
+ TypeId = read_vbr_uint();
return sanitizeTypeId(TypeId);
}
@@ -1504,7 +1562,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
read_block(Type, Size);
switch (Type) {
- case BytecodeFormat::ConstantPool:
+ case BytecodeFormat::ConstantPoolBlockID:
if (!InsertedArguments) {
// Insert arguments into the value table before we parse the first basic
// block in the function, but after we potentially read in the
@@ -1516,7 +1574,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
ParseConstantPool(FunctionValues, FunctionTypes, true);
break;
- case BytecodeFormat::CompactionTable:
+ case BytecodeFormat::CompactionTableBlockID:
ParseCompactionTable();
break;
@@ -1534,7 +1592,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
break;
}
- case BytecodeFormat::InstructionList: {
+ case BytecodeFormat::InstructionListBlockID: {
// Insert arguments into the value table before we parse the instruction
// list for the function, but after we potentially read in the compaction
// table.
@@ -1549,7 +1607,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
break;
}
- case BytecodeFormat::SymbolTable:
+ case BytecodeFormat::SymbolTableBlockID:
ParseSymbolTable(F, &F->getSymbolTable());
break;
@@ -1784,13 +1842,28 @@ void BytecodeReader::ParseModuleGlobalInfo() {
error("Invalid function type (type type) found");
}
- if (hasInconsistentModuleGlobalInfo)
- align32();
-
// Now that the function signature list is set up, reverse it so that we can
// remove elements efficiently from the back of the vector.
std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
+ // If this bytecode format has dependent library information in it ..
+ if (!hasNoDependentLibraries) {
+ // Read in the number of dependent library items that follow
+ unsigned num_dep_libs = read_vbr_uint();
+ std::string dep_lib;
+ while( num_dep_libs-- ) {
+ dep_lib = read_str();
+ TheModule->linsert(dep_lib);
+ }
+
+ // Read target triple and place into the module
+ std::string triple = read_str();
+ TheModule->setTargetTriple(triple);
+ }
+
+ if (hasInconsistentModuleGlobalInfo)
+ align32();
+
// This is for future proofing... in the future extra fields may be added that
// we don't understand, so we transparently ignore them.
//
@@ -1820,6 +1893,10 @@ void BytecodeReader::ParseVersionInfo() {
hasExplicitPrimitiveZeros = false;
hasRestrictedGEPTypes = false;
hasTypeDerivedFromValue = false;
+ hasLongBlockHeaders = false;
+ hasPlatformSpecificFloatingPoint = false;
+ has32BitTypes = false;
+ hasNoDependentLibraries = false;
switch (RevisionNum) {
case 0: // LLVM 1.0, 1.1 release version
@@ -1827,6 +1904,7 @@ void BytecodeReader::ParseVersionInfo() {
hasInconsistentModuleGlobalInfo = true;
hasExplicitPrimitiveZeros = true;
+
// FALL THROUGH
case 1: // LLVM 1.2 release version
// LLVM 1.2 added explicit support for emitting strings efficiently.
@@ -1846,7 +1924,35 @@ void BytecodeReader::ParseVersionInfo() {
hasTypeDerivedFromValue = true;
// FALL THROUGH
- case 2: // LLVM 1.3 release version
+
+ case 2: /// 1.2.5 (mid-release) version
+
+ /// LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
+ /// especially for small files where the 8 bytes per block is a large fraction
+ /// of the total block size. In LLVM 1.3, the block type and length are
+ /// compressed into a single 32-bit unsigned integer. 27 bits for length, 5
+ /// bits for block type.
+ hasLongBlockHeaders = true;
+
+ /// LLVM 1.2 and earlier wrote floating point values in a platform specific
+ /// bit ordering. This was fixed in LLVM 1.3, but we still need to be backwards
+ /// compatible.
+ hasPlatformSpecificFloatingPoint = true;
+
+ /// LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
+ /// this has been reduced to vbr_uint24. It shouldn't make much difference
+ /// since we haven't run into a module with > 24 million types, but for safety
+ /// the 24-bit restriction has been enforced in 1.3 to free some bits in
+ /// various places and to ensure consistency.
+ has32BitTypes = true;
+
+ /// LLVM 1.2 and earlier did not provide a target triple nor a list of
+ /// libraries on which the bytecode is dependent. LLVM 1.3 provides these
+ /// features, for use in future versions of LLVM.
+ hasNoDependentLibraries = true;
+
+ // FALL THROUGH
+ case 3: // LLVM 1.3 release version
break;
default:
@@ -1870,7 +1976,7 @@ void BytecodeReader::ParseModule() {
// Read into instance variables...
ParseVersionInfo();
- align32(); /// FIXME: Is this redundant? VI is first and 4 bytes!
+ align32();
bool SeenModuleGlobalInfo = false;
bool SeenGlobalTypePlane = false;
@@ -1881,7 +1987,7 @@ void BytecodeReader::ParseModule() {
switch (Type) {
- case BytecodeFormat::GlobalTypePlane:
+ case BytecodeFormat::GlobalTypePlaneBlockID:
if (SeenGlobalTypePlane)
error("Two GlobalTypePlane Blocks Encountered!");
@@ -1889,22 +1995,22 @@ void BytecodeReader::ParseModule() {
SeenGlobalTypePlane = true;
break;
- case BytecodeFormat::ModuleGlobalInfo:
+ case BytecodeFormat::ModuleGlobalInfoBlockID:
if (SeenModuleGlobalInfo)
error("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo();
SeenModuleGlobalInfo = true;
break;
- case BytecodeFormat::ConstantPool:
+ case BytecodeFormat::ConstantPoolBlockID:
ParseConstantPool(ModuleValues, ModuleTypes,false);
break;
- case BytecodeFormat::Function:
+ case BytecodeFormat::FunctionBlockID:
ParseFunctionLazily();
break;
- case BytecodeFormat::SymbolTable:
+ case BytecodeFormat::SymbolTableBlockID:
ParseSymbolTable(0, &TheModule->getSymbolTable());
break;
@@ -1967,14 +2073,16 @@ void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
error("Invalid bytecode signature: " + utostr(Sig));
}
-
// Tell the handler we're starting a module
if (Handler) Handler->handleModuleBegin(ModuleID);
- // Get the module block and size and verify
+ // Get the module block and size and verify. This is handled specially
+ // because the module block/size is always written in long format. Other
+ // blocks are written in short format so the read_block method is used.
unsigned Type, Size;
- read_block(Type, Size);
- if (Type != BytecodeFormat::Module) {
+ Type = read_uint();
+ Size = read_uint();
+ if (Type != BytecodeFormat::ModuleBlockID) {
error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
+ utostr(Size));
}
diff --git a/lib/Bytecode/Reader/Reader.h b/lib/Bytecode/Reader/Reader.h
index 9120377130..c93958419c 100644
--- a/lib/Bytecode/Reader/Reader.h
+++ b/lib/Bytecode/Reader/Reader.h
@@ -56,6 +56,7 @@ public:
/// @name Types
/// @{
public:
+
/// @brief A convenience type for the buffer pointer
typedef const unsigned char* BufPtr;
@@ -268,6 +269,36 @@ private:
/// from Value style of bytecode file is being read.
bool hasTypeDerivedFromValue;
+ /// LLVM 1.2 and earlier encoded block headers as two uint (8 bytes), one for
+ /// the size and one for the type. This is a bit wasteful, especially for small
+ /// files where the 8 bytes per block is a large fraction of the total block
+ /// size. In LLVM 1.3, the block type and length are encoded into a single
+ /// uint32 by restricting the number of block types (limit 31) and the maximum
+ /// size of a block (limit 2^27-1=134,217,727). Note that the module block
+ /// still uses the 8-byte format so the maximum size of a file can be
+ /// 2^32-1 bytes long.
+ bool hasLongBlockHeaders;
+
+ /// LLVM 1.2 and earlier wrote floating point values in a platform specific
+ /// bit ordering. This was fixed in LLVM 1.3
+ bool hasPlatformSpecificFloatingPoint;
+
+ /// LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
+ /// this has been reduced to vbr_uint24. It shouldn't make much difference
+ /// since we haven't run into a module with > 24 million types, but for safety
+ /// the 24-bit restriction has been enforced in 1.3 to free some bits in
+ /// various places and to ensure consistency. In particular, global vars are
+ /// restricted to 24-bits.
+ bool has32BitTypes;
+
+ /// LLVM 1.2 and earlier did not provide a target triple nor a list of
+ /// libraries on which the bytecode is dependent. LLVM 1.3 provides these
+ /// features, for use in future versions of LLVM.
+ bool hasNoDependentLibraries;
+
+ /// LLVM 1.2 and earlier encoded the file version as part of the module block
+ /// but this information may be needed to
+
/// CompactionTable - If a compaction table is active in the current function,
/// this is the mapping that it contains.
std::vector<const Type*> CompactionTypes;
@@ -430,6 +461,10 @@ private:
/// @brief Read an unsigned integer with variable bit rate encoding
inline unsigned read_vbr_uint();
+ /// @brief Read an unsigned integer of no more than 24-bits with variable
+ /// bit rate encoding.
+ inline unsigned read_vbr_uint24();
+
/// @brief Read an unsigned 64-bit integer with variable bit rate encoding.
inline uint64_t read_vbr_uint64();
diff --git a/lib/Bytecode/Writer/ConstantWriter.cpp b/lib/Bytecode/Writer/ConstantWriter.cpp
deleted file mode 100644
index 7aa8febda3..0000000000
--- a/lib/Bytecode/Writer/ConstantWriter.cpp
+++ /dev/null
@@ -1,220 +0,0 @@
-//===-- ConstantWriter.cpp - Functions for writing constants --------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the routines for encoding constants to a bytecode
-// stream.
-//
-//===----------------------------------------------------------------------===//
-
-#include "WriterInternals.h"
-#include "llvm/Constants.h"
-#include "llvm/SymbolTable.h"
-#include "llvm/DerivedTypes.h"
-#include "Support/Statistic.h"
-using namespace llvm;
-
-void BytecodeWriter::outputType(const Type *T) {
- output_vbr((unsigned)T->getTypeID(), Out);
-
- // That's all there is to handling primitive types...
- if (T->isPrimitiveType()) {
- return; // We might do this if we alias a prim type: %x = type int
- }
-
- switch (T->getTypeID()) { // Handle derived types now.
- case Type::FunctionTyID: {
- const FunctionType *MT = cast<FunctionType>(T);
- int Slot = Table.getSlot(MT->getReturnType());
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
-
- // Output the number of arguments to function (+1 if varargs):
- output_vbr((unsigned)MT->getNumParams()+MT->isVarArg(), Out);
-
- // Output all of the arguments...
- FunctionType::param_iterator I = MT->param_begin();
- for (; I != MT->param_end(); ++I) {
- Slot = Table.getSlot(*I);
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
- }
-
- // Terminate list with VoidTy if we are a varargs function...
- if (MT->isVarArg())
- output_vbr((unsigned)Type::VoidTyID, Out);
- break;
- }
-
- case Type::ArrayTyID: {
- const ArrayType *AT = cast<ArrayType>(T);
- int Slot = Table.getSlot(AT->getElementType());
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
- //std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl;
-
- output_vbr(AT->getNumElements(), Out);
- break;
- }
-
- case Type::StructTyID: {
- const StructType *ST = cast<StructType>(T);
-
- // Output all of the element types...
- for (StructType::element_iterator I = ST->element_begin(),
- E = ST->element_end(); I != E; ++I) {
- int Slot = Table.getSlot(*I);
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
- }
-
- // Terminate list with VoidTy
- output_vbr((unsigned)Type::VoidTyID, Out);
- break;
- }
-
- case Type::PointerTyID: {
- const PointerType *PT = cast<PointerType>(T);
- int Slot = Table.getSlot(PT->getElementType());
- assert(Slot != -1 && "Type used but not available!!");
- output_vbr((unsigned)Slot, Out);
- break;
- }
-
- case Type::OpaqueTyID: {
- // No need to emit anything, just the count of opaque types is enough.
- break;
- }
-
- //case Type::PackedTyID:
- default:
- std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
- << " Type '" << T->getDescription() << "'\n";
- break;
- }
-}
-
-void BytecodeWriter::outputConstant(const Constant *CPV) {
- assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) &&
- "Shouldn't output null constants!");
-
- // We must check for a ConstantExpr before switching by type because
- // a ConstantExpr can be of any type, and has no explicit value.
- //
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
- // FIXME: Encoding of constant exprs could be much more compact!
- assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
- output_vbr(CE->getNumOperands(), Out); // flags as an expr
- output_vbr(CE->getOpcode(), Out); // flags as an expr
-
- for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
- int Slot = Table.getSlot(*OI);
- assert(Slot != -1 && "Unknown constant used in ConstantExpr!!");
- output_vbr((unsigned)Slot, Out);
- Slot = Table.getSlot((*OI)->getType());
- output_vbr((unsigned)Slot, Out);
- }
- return;
- } else {
- output_vbr(0U, Out); // flag as not a ConstantExpr
- }
-
- switch (CPV->getType()->getTypeID()) {
- case Type::BoolTyID: // Boolean Types
- if (cast<ConstantBool>(CPV)->getValue())
- output_vbr(1U, Out);
- else
- output_vbr(0U, Out);
- break;
-
- case Type::UByteTyID: // Unsigned integer types...
- case Type::UShortTyID:
- case Type::UIntTyID:
- case Type::ULongTyID:
- output_vbr(cast<ConstantUInt>(CPV)->getValue(), Out);
- break;
-
- case Type::SByteTyID: // Signed integer types...
- case Type::ShortTyID:
- case Type::IntTyID:
- case Type::LongTyID:
- output_vbr(cast<ConstantSInt>(CPV)->getValue(), Out);
- break;
-
- case Type::ArrayTyID: {
- const ConstantArray *CPA = cast<ConstantArray>(CPV);
- assert(!CPA->isString() && "Constant strings should be handled specially!");
-
- for (unsigned i = 0; i != CPA->getNumOperands(); ++i) {
- int Slot = Table.getSlot(CPA->getOperand(i));
- assert(Slot != -1 && "Constant used but not available!!");
- output_vbr((unsigned)Slot, Out);
- }
- break;
- }
-
- case Type::StructTyID: {
- const ConstantStruct *CPS = cast<ConstantStruct>(CPV);
- const std::vector<Use> &Vals = CPS->getValues();
-
- for (unsigned i = 0; i < Vals.size(); ++i) {
- int Slot = Table.getSlot(Vals[i]);
- assert(Slot != -1 && "Constant used but not available!!");
- output_vbr((unsigned)Slot, Out);
- }
- break;
- }
-
- case Type::PointerTyID:
- assert(0 && "No non-null, non-constant-expr constants allowed!");
- abort();
-
- case Type::FloatTyID: { // Floating point types...
- float Tmp = (float)cast<ConstantFP>(CPV)->getValue();
- output_float(Tmp, Out);
- break;
- }
- case Type::DoubleTyID: {
- double Tmp = cast<ConstantFP>(CPV)->getValue();
- output_double(Tmp, Out);
- break;
- }
-
- case Type::VoidTyID:
- case Type::LabelTyID:
- default:
- std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
- << " type '" << *CPV->getType() << "'\n";
- break;
- }
- return;
-}
-
-void BytecodeWriter::outputConstantStrings() {
- SlotCalculator::string_iterator I = Table.string_begin();
- SlotCalculator::string_iterator E = Table.string_end();
- if (I == E) return; // No strings to emit
-
- // If we have != 0 strings to emit, output them now. Strings are emitted into
- // the 'void' type plane.
- output_vbr(unsigned(E-I), Out);
- output_vbr(Type::VoidTyID, Out);
-
- // Emit all of the strings.
- for (I = Table.string_begin(); I != E; ++I) {
- const ConstantArray *Str = *I;
- int Slot = Table.getSlot(Str->getType());
- assert(Slot != -1 && "Constant string of unknown type?");
- output_vbr((unsigned)Slot, Out);
-
- // Now that we emitted the type (which indicates the size of the string),
- // emit all of the characters.
- std::string Val = Str->getAsString();
- output_data(Val.c_str(), Val.c_str()+Val.size(), Out);
- }
-}
diff --git a/lib/Bytecode/Writer/InstructionWriter.cpp b/lib/Bytecode/Writer/InstructionWriter.cpp
deleted file mode 100644
index 188136718d..0000000000
--- a/lib/Bytecode/Writer/InstructionWriter.cpp
+++ /dev/null
@@ -1,348 +0,0 @@
-//===-- InstructionWriter.cpp - Functions for writing instructions --------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the routines for encoding instruction opcodes to a
-// bytecode stream.
-//
-//===----------------------------------------------------------------------===//
-
-#include "WriterInternals.h"
-#include "llvm/Module.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "Support/Statistic.h"
-#include <algorithm>
-using namespace llvm;
-
-typedef unsigned char uchar;
-
-// outputInstructionFormat0 - Output those wierd instructions that have a large
-// number of operands or have large operands themselves...
-//
-// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
-//
-static void outputInstructionFormat0(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table,
- unsigned Type, std::deque<uchar> &Out) {
- // Opcode must have top two bits clear...
- output_vbr(Opcode << 2, Out); // Instruction Opcode ID
- output_vbr(Type, Out); // Result type
-
- unsigned NumArgs = I->getNumOperands();
- output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
- isa<VAArgInst>(I)), Out);
-
- if (!isa<GetElementPtrInst>(&I)) {
- for (unsigned i = 0; i < NumArgs; ++i) {
- int Slot = Table.getSlot(I->getOperand(i));
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr((unsigned)Slot, Out);
- }
-
- if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
- int Slot = Table.getSlot(I->getType());
- assert(Slot != -1 && "Cast return type unknown?");
- output_vbr((unsigned)Slot, Out);
- } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
- int Slot = Table.getSlot(VAI->getArgType());
- assert(Slot != -1 && "VarArg argument type unknown?");
- output_vbr((unsigned)Slot, Out);
- }
-
- } else {
- int Slot = Table.getSlot(I->getOperand(0));
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr(unsigned(Slot), Out);
-
- // We need to encode the type of sequential type indices into their slot #
- unsigned Idx = 1;
- for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
- Idx != NumArgs; ++TI, ++Idx) {
- Slot = Table.getSlot(I->getOperand(Idx));
- assert(Slot >= 0 && "No slot number for value!?!?");
-
- if (isa<SequentialType>(*TI)) {
- unsigned IdxId;
- switch (I->getOperand(Idx)->getType()->getTypeID()) {
- default: assert(0 && "Unknown index type!");
- case Type::UIntTyID: IdxId = 0; break;
- case Type::IntTyID: IdxId = 1; break;
- case Type::ULongTyID: IdxId = 2; break;
- case Type::LongTyID: IdxId = 3; break;
- }
- Slot = (Slot << 2) | IdxId;
- }
- output_vbr(unsigned(Slot), Out);
- }
- }
-
- align32(Out); // We must maintain correct alignment!
-}
-
-
-// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
-// This are more annoying than most because the signature of the call does not
-// tell us anything about the types of the arguments in the varargs portion.
-// Because of this, we encode (as type 0) all of the argument types explicitly
-// before the argument value. This really sucks, but you shouldn't be using
-// varargs functions in your code! *death to printf*!
-//
-// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
-//
-static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table, unsigned Type,
- std::deque<uchar> &Out) {
- assert(isa<CallInst>(I) || isa<InvokeInst>(I));
- // Opcode must have top two bits clear...
- output_vbr(Opcode << 2, Out); // Instruction Opcode ID
- output_vbr(Type, Out); // Result type (varargs type)
-
- const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
- const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
- unsigned NumParams = FTy->getNumParams();
-
- unsigned NumFixedOperands;
- if (isa<CallInst>(I)) {
- // Output an operand for the callee and each fixed argument, then two for
- // each variable argument.
- NumFixedOperands = 1+NumParams;
- } else {
- assert(isa<InvokeInst>(I) && "Not call or invoke??");
- // Output an operand for the callee and destinations, then two for each
- // variable argument.
- NumFixedOperands = 3+NumParams;
- }
- output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out);
-
- // The type for the function has already been emitted in the type field of the
- // instruction. Just emit the slot # now.
- for (unsigned i = 0; i != NumFixedOperands; ++i) {
- int Slot = Table.getSlot(I->getOperand(i));
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr((unsigned)Slot, Out);
- }
-
- for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
- // Output Arg Type ID
- int Slot = Table.getSlot(I->getOperand(i)->getType());
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr((unsigned)Slot, Out);
-
- // Output arg ID itself
- Slot = Table.getSlot(I->getOperand(i));
- assert(Slot >= 0 && "No slot number for value!?!?");
- output_vbr((unsigned)Slot, Out);
- }
- align32(Out); // We must maintain correct alignment!
-}
-
-
-// outputInstructionFormat1 - Output one operand instructions, knowing that no
-// operand index is >= 2^12.
-//
-static void outputInstructionFormat1(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table,
- unsigned *Slots, unsigned Type,
- std::deque<uchar> &Out) {
- // bits Instruction format:
- // --------------------------
- // 01-00: Opcode type, fixed to 1.
- // 07-02: Opcode
- // 19-08: Resulting type plane
- // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
- //
- unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20);
- // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl;
- output(Bits, Out);
-}
-
-
-// outputInstructionFormat2 - Output two operand instructions, knowing that no
-// operand index is >= 2^8.
-//
-static void outputInstructionFormat2(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table,
- unsigned *Slots, unsigned Type,
- std::deque<uchar> &Out) {
- // bits Instruction format:
- // --------------------------
- // 01-00: Opcode type, fixed to 2.
- // 07-02: Opcode
- // 15-08: Resulting type plane
- // 23-16: Operand #1
- // 31-24: Operand #2
- //
- unsigned Bits = 2 | (Opcode << 2) | (Type << 8) |
- (Slots[0] << 16) | (Slots[1] << 24);
- // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " "
- // << Slots[1] << endl;
- output(Bits, Out);
-}
-
-
-// outputInstructionFormat3 - Output three operand instructions, knowing that no
-// operand index is >= 2^6.
-//
-static void outputInstructionFormat3(const Instruction *I, unsigned Opcode,
- const SlotCalculator &Table,
- unsigned *Slots, unsigned Type,
- std::deque<uchar> &Out) {
- // bits Instruction format:
- // --------------------------
- // 01-00: Opcode type, fixed to 3.
- // 07-02: Opcode
- // 13-08: Resulting type plane
- // 19-14: Operand #1
- // 25-20: Operand #2
- // 31-26: Operand #3
- //
- unsigned Bits = 3 | (Opcode << 2) | (Type << 8) |
- (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26);
- //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " "
- // << Slots[1] << " " << Slots[2] << endl;
- output(Bits, Out);
-}
-
-void BytecodeWriter::outputInstruction(const Instruction &I) {
- assert(I.getOpcode() < 62 && "Opcode too big???");
- unsigned Opcode = I.getOpcode();
- unsigned NumOperands = I.getNumOperands();
-
- // Encode 'volatile load' as 62 and 'volatile store' as 63.
- if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
- Opcode = 62;
- if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
- Opcode = 63;
-
- // Figure out which type to encode with the instruction. Typically we want
- // the type of the first parameter, as opposed to the type of the instruction
- // (for example, with setcc, we always know it returns bool, but the type of
- // the first param is actually interesting). But if we have no arguments
- // we take the type of the instruction itself.
- //
- const Type *Ty;
- switch (I.getOpcode()) {
- case Instruction::Select:
- case Instruction::Malloc:
- case Instruction::Alloca:
- Ty = I.getType(); // These ALWAYS want to encode the return type
- break;
- case Instruction::Store:
- Ty = I.getOperand(1)->getType(); // Encode the pointer type...
- assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
- break;
- default: // Otherwise use the default behavior...
- Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
- break;
- }
-
- unsigned Type;
- int Slot = Table.getSlot(Ty);
- assert(Slot != -1 && "Type not available!!?!");
- Type = (unsigned)Slot;
-
- // Varargs calls and invokes are encoded entirely different from any other
- // instructions.
- if (const CallInst *CI = dyn_cast<CallInst>(&I)){
- const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
- if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
- outputInstrVarArgsCall(CI, Opcode, Table, Type, Out);
- return;
- }
- } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
- const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
- if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
- outputInstrVarArgsCall(II, Opcode, Table, Type, Out);
- return;
- }
- }
-
- if (NumOperands <= 3) {
- // Make sure that we take the type number into consideration. We don't want
- // to overflow the field size for the instruction format we select.
- //
- unsigned MaxOpSlot = Type;
- unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands
-
- for (unsigned i = 0; i != NumOperands; ++i) {
- int slot = Table.getSlot(I.getOperand(i));
- assert(slot != -1 && "Broken bytecode!");
- if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
- Slots[i] = unsigned(slot);
- }
-
- // Handle the special cases for various instructions...
- if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
- // Cast has to encode the destination type as the second argument in the
- // packet, or else we won't know what type to cast to!
- Slots[1] = Table.getSlot(I.getType());
- assert(Slots[1] != ~0U && "Cast return type unknown?");
- if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
- NumOperands++;
- } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
- Slots[1] = Table.getSlot(VANI->getArgType());
- assert(Slots[1] != ~0U && "va_next return type unknown?");
- if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
- NumOperands++;
- } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- // We need to encode the type of sequential type indices into their slot #
- unsigned Idx = 1;
- for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
- I != E; ++I, ++Idx)
- if (isa<SequentialType>(*I)) {
- unsigned IdxId;
- switch (GEP->getOperand(Idx)->getType()->getTypeID()) {