diff options
author | Reid Spencer <rspencer@reidspencer.com> | 2004-07-25 18:07:36 +0000 |
---|---|---|
committer | Reid Spencer <rspencer@reidspencer.com> | 2004-07-25 18:07:36 +0000 |
commit | ad89bd6a1a74d3d3223d9eb23e16f10c02f836fa (patch) | |
tree | a8ec89130546e3cc17246b1c143eb9143d8a1b02 | |
parent | 0be13e7f1468ba101188a5e1b1f1a20a676b3569 (diff) |
bug 263:
- encode/decode target triple and dependent libraries
bug 401:
- fix encoding/decoding of FP values to be little-endian only
bug 402:
- initial (compatible) cut at 24-bit types instead of 32-bit
- reduce size of block headers by 50%
Other:
- cleanup Writer by consolidating to one compilation unit, rem. other files
- use a std::vector instead of std::deque so the buffer can be allocated
in multiples of 64KByte chunks rather than in multiples of some smaller
(default) number.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15210 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r-- | lib/Bytecode/Reader/Reader.cpp | 164 | ||||
-rw-r--r-- | lib/Bytecode/Reader/Reader.h | 35 | ||||
-rw-r--r-- | lib/Bytecode/Writer/ConstantWriter.cpp | 220 | ||||
-rw-r--r-- | lib/Bytecode/Writer/InstructionWriter.cpp | 348 | ||||
-rw-r--r-- | lib/Bytecode/Writer/Writer.cpp | 809 | ||||
-rw-r--r-- | lib/Bytecode/Writer/WriterInternals.h | 97 | ||||
-rw-r--r-- | lib/Bytecode/Writer/WriterPrimitives.h | 141 |
7 files changed, 1003 insertions, 811 deletions
diff --git a/lib/Bytecode/Reader/Reader.cpp b/lib/Bytecode/Reader/Reader.cpp index 4d1ee41242..d19651ffb4 100644 --- a/lib/Bytecode/Reader/Reader.cpp +++ b/lib/Bytecode/Reader/Reader.cpp @@ -156,24 +156,79 @@ inline void BytecodeReader::read_data(void *Ptr, void *End) { /// Read a float value in little-endian order inline void BytecodeReader::read_float(float& FloatVal) { - /// FIXME: This is a broken implementation! It reads - /// it in a platform-specific endianess. Need to make - /// it little endian always. - read_data(&FloatVal, &FloatVal+1); + if (hasPlatformSpecificFloatingPoint) { + read_data(&FloatVal, &FloatVal+1); + } else { + /// FIXME: This isn't optimal, it has size problems on some platforms + /// where FP is not IEEE. + union { + float f; + uint32_t i; + } FloatUnion; + FloatUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24); + At+=sizeof(uint32_t); + FloatVal = FloatUnion.f; + } } /// Read a double value in little-endian order inline void BytecodeReader::read_double(double& DoubleVal) { - /// FIXME: This is a broken implementation! It reads - /// it in a platform-specific endianess. Need to make - /// it little endian always. - read_data(&DoubleVal, &DoubleVal+1); + if (hasPlatformSpecificFloatingPoint) { + read_data(&DoubleVal, &DoubleVal+1); + } else { + /// FIXME: This isn't optimal, it has size problems on some platforms + /// where FP is not IEEE. + union { + double d; + uint64_t i; + } DoubleUnion; + DoubleUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24) | + (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) | + (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56); + At+=sizeof(uint64_t); + DoubleVal = DoubleUnion.d; + } } /// Read a block header and obtain its type and size inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) { - Type = read_uint(); - Size = read_uint(); + if ( hasLongBlockHeaders ) { + Type = read_uint(); + Size = read_uint(); + switch (Type) { + case BytecodeFormat::Reserved_DoNotUse : + error("Reserved_DoNotUse used as Module Type?"); + Type = BytecodeFormat::Module; break; + case BytecodeFormat::Module: + Type = BytecodeFormat::ModuleBlockID; break; + case BytecodeFormat::Function: + Type = BytecodeFormat::FunctionBlockID; break; + case BytecodeFormat::ConstantPool: + Type = BytecodeFormat::ConstantPoolBlockID; break; + case BytecodeFormat::SymbolTable: + Type = BytecodeFormat::SymbolTableBlockID; break; + case BytecodeFormat::ModuleGlobalInfo: + Type = BytecodeFormat::ModuleGlobalInfoBlockID; break; + case BytecodeFormat::GlobalTypePlane: + Type = BytecodeFormat::GlobalTypePlaneBlockID; break; + case BytecodeFormat::InstructionList: + Type = BytecodeFormat::InstructionListBlockID; break; + case BytecodeFormat::CompactionTable: + Type = BytecodeFormat::CompactionTableBlockID; break; + case BytecodeFormat::BasicBlock: + /// This block type isn't used after version 1.1. However, we have to + /// still allow the value in case this is an old bc format file. + /// We just let its value creep thru. + break; + default: + error("Invalid module type found: " + utostr(Type)); + break; + } + } else { + Size = read_uint(); + Type = Size & 0x1F; // mask low order five bits + Size >>= 5; // get rid of five low order bits, leaving high 27 + } BlockStart = At; if (At + Size > BlockEnd) error("Attempt to size a block past end of memory"); @@ -216,6 +271,9 @@ inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) { /// @see sanitizeTypeId inline bool BytecodeReader::read_typeid(unsigned &TypeId) { TypeId = read_vbr_uint(); + if ( !has32BitTypes ) + if ( TypeId == 0x00FFFFFF ) + TypeId = read_vbr_uint(); return sanitizeTypeId(TypeId); } @@ -1504,7 +1562,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) { read_block(Type, Size); switch (Type) { - case BytecodeFormat::ConstantPool: + case BytecodeFormat::ConstantPoolBlockID: if (!InsertedArguments) { // Insert arguments into the value table before we parse the first basic // block in the function, but after we potentially read in the @@ -1516,7 +1574,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) { ParseConstantPool(FunctionValues, FunctionTypes, true); break; - case BytecodeFormat::CompactionTable: + case BytecodeFormat::CompactionTableBlockID: ParseCompactionTable(); break; @@ -1534,7 +1592,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) { break; } - case BytecodeFormat::InstructionList: { + case BytecodeFormat::InstructionListBlockID: { // Insert arguments into the value table before we parse the instruction // list for the function, but after we potentially read in the compaction // table. @@ -1549,7 +1607,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) { break; } - case BytecodeFormat::SymbolTable: + case BytecodeFormat::SymbolTableBlockID: ParseSymbolTable(F, &F->getSymbolTable()); break; @@ -1784,13 +1842,28 @@ void BytecodeReader::ParseModuleGlobalInfo() { error("Invalid function type (type type) found"); } - if (hasInconsistentModuleGlobalInfo) - align32(); - // Now that the function signature list is set up, reverse it so that we can // remove elements efficiently from the back of the vector. std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end()); + // If this bytecode format has dependent library information in it .. + if (!hasNoDependentLibraries) { + // Read in the number of dependent library items that follow + unsigned num_dep_libs = read_vbr_uint(); + std::string dep_lib; + while( num_dep_libs-- ) { + dep_lib = read_str(); + TheModule->linsert(dep_lib); + } + + // Read target triple and place into the module + std::string triple = read_str(); + TheModule->setTargetTriple(triple); + } + + if (hasInconsistentModuleGlobalInfo) + align32(); + // This is for future proofing... in the future extra fields may be added that // we don't understand, so we transparently ignore them. // @@ -1820,6 +1893,10 @@ void BytecodeReader::ParseVersionInfo() { hasExplicitPrimitiveZeros = false; hasRestrictedGEPTypes = false; hasTypeDerivedFromValue = false; + hasLongBlockHeaders = false; + hasPlatformSpecificFloatingPoint = false; + has32BitTypes = false; + hasNoDependentLibraries = false; switch (RevisionNum) { case 0: // LLVM 1.0, 1.1 release version @@ -1827,6 +1904,7 @@ void BytecodeReader::ParseVersionInfo() { hasInconsistentModuleGlobalInfo = true; hasExplicitPrimitiveZeros = true; + // FALL THROUGH case 1: // LLVM 1.2 release version // LLVM 1.2 added explicit support for emitting strings efficiently. @@ -1846,7 +1924,35 @@ void BytecodeReader::ParseVersionInfo() { hasTypeDerivedFromValue = true; // FALL THROUGH - case 2: // LLVM 1.3 release version + + case 2: /// 1.2.5 (mid-release) version + + /// LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful, + /// especially for small files where the 8 bytes per block is a large fraction + /// of the total block size. In LLVM 1.3, the block type and length are + /// compressed into a single 32-bit unsigned integer. 27 bits for length, 5 + /// bits for block type. + hasLongBlockHeaders = true; + + /// LLVM 1.2 and earlier wrote floating point values in a platform specific + /// bit ordering. This was fixed in LLVM 1.3, but we still need to be backwards + /// compatible. + hasPlatformSpecificFloatingPoint = true; + + /// LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3 + /// this has been reduced to vbr_uint24. It shouldn't make much difference + /// since we haven't run into a module with > 24 million types, but for safety + /// the 24-bit restriction has been enforced in 1.3 to free some bits in + /// various places and to ensure consistency. + has32BitTypes = true; + + /// LLVM 1.2 and earlier did not provide a target triple nor a list of + /// libraries on which the bytecode is dependent. LLVM 1.3 provides these + /// features, for use in future versions of LLVM. + hasNoDependentLibraries = true; + + // FALL THROUGH + case 3: // LLVM 1.3 release version break; default: @@ -1870,7 +1976,7 @@ void BytecodeReader::ParseModule() { // Read into instance variables... ParseVersionInfo(); - align32(); /// FIXME: Is this redundant? VI is first and 4 bytes! + align32(); bool SeenModuleGlobalInfo = false; bool SeenGlobalTypePlane = false; @@ -1881,7 +1987,7 @@ void BytecodeReader::ParseModule() { switch (Type) { - case BytecodeFormat::GlobalTypePlane: + case BytecodeFormat::GlobalTypePlaneBlockID: if (SeenGlobalTypePlane) error("Two GlobalTypePlane Blocks Encountered!"); @@ -1889,22 +1995,22 @@ void BytecodeReader::ParseModule() { SeenGlobalTypePlane = true; break; - case BytecodeFormat::ModuleGlobalInfo: + case BytecodeFormat::ModuleGlobalInfoBlockID: if (SeenModuleGlobalInfo) error("Two ModuleGlobalInfo Blocks Encountered!"); ParseModuleGlobalInfo(); SeenModuleGlobalInfo = true; break; - case BytecodeFormat::ConstantPool: + case BytecodeFormat::ConstantPoolBlockID: ParseConstantPool(ModuleValues, ModuleTypes,false); break; - case BytecodeFormat::Function: + case BytecodeFormat::FunctionBlockID: ParseFunctionLazily(); break; - case BytecodeFormat::SymbolTable: + case BytecodeFormat::SymbolTableBlockID: ParseSymbolTable(0, &TheModule->getSymbolTable()); break; @@ -1967,14 +2073,16 @@ void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length, error("Invalid bytecode signature: " + utostr(Sig)); } - // Tell the handler we're starting a module if (Handler) Handler->handleModuleBegin(ModuleID); - // Get the module block and size and verify + // Get the module block and size and verify. This is handled specially + // because the module block/size is always written in long format. Other + // blocks are written in short format so the read_block method is used. unsigned Type, Size; - read_block(Type, Size); - if (Type != BytecodeFormat::Module) { + Type = read_uint(); + Size = read_uint(); + if (Type != BytecodeFormat::ModuleBlockID) { error("Expected Module Block! Type:" + utostr(Type) + ", Size:" + utostr(Size)); } diff --git a/lib/Bytecode/Reader/Reader.h b/lib/Bytecode/Reader/Reader.h index 9120377130..c93958419c 100644 --- a/lib/Bytecode/Reader/Reader.h +++ b/lib/Bytecode/Reader/Reader.h @@ -56,6 +56,7 @@ public: /// @name Types /// @{ public: + /// @brief A convenience type for the buffer pointer typedef const unsigned char* BufPtr; @@ -268,6 +269,36 @@ private: /// from Value style of bytecode file is being read. bool hasTypeDerivedFromValue; + /// LLVM 1.2 and earlier encoded block headers as two uint (8 bytes), one for + /// the size and one for the type. This is a bit wasteful, especially for small + /// files where the 8 bytes per block is a large fraction of the total block + /// size. In LLVM 1.3, the block type and length are encoded into a single + /// uint32 by restricting the number of block types (limit 31) and the maximum + /// size of a block (limit 2^27-1=134,217,727). Note that the module block + /// still uses the 8-byte format so the maximum size of a file can be + /// 2^32-1 bytes long. + bool hasLongBlockHeaders; + + /// LLVM 1.2 and earlier wrote floating point values in a platform specific + /// bit ordering. This was fixed in LLVM 1.3 + bool hasPlatformSpecificFloatingPoint; + + /// LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3 + /// this has been reduced to vbr_uint24. It shouldn't make much difference + /// since we haven't run into a module with > 24 million types, but for safety + /// the 24-bit restriction has been enforced in 1.3 to free some bits in + /// various places and to ensure consistency. In particular, global vars are + /// restricted to 24-bits. + bool has32BitTypes; + + /// LLVM 1.2 and earlier did not provide a target triple nor a list of + /// libraries on which the bytecode is dependent. LLVM 1.3 provides these + /// features, for use in future versions of LLVM. + bool hasNoDependentLibraries; + + /// LLVM 1.2 and earlier encoded the file version as part of the module block + /// but this information may be needed to + /// CompactionTable - If a compaction table is active in the current function, /// this is the mapping that it contains. std::vector<const Type*> CompactionTypes; @@ -430,6 +461,10 @@ private: /// @brief Read an unsigned integer with variable bit rate encoding inline unsigned read_vbr_uint(); + /// @brief Read an unsigned integer of no more than 24-bits with variable + /// bit rate encoding. + inline unsigned read_vbr_uint24(); + /// @brief Read an unsigned 64-bit integer with variable bit rate encoding. inline uint64_t read_vbr_uint64(); diff --git a/lib/Bytecode/Writer/ConstantWriter.cpp b/lib/Bytecode/Writer/ConstantWriter.cpp deleted file mode 100644 index 7aa8febda3..0000000000 --- a/lib/Bytecode/Writer/ConstantWriter.cpp +++ /dev/null @@ -1,220 +0,0 @@ -//===-- ConstantWriter.cpp - Functions for writing constants --------------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the routines for encoding constants to a bytecode -// stream. -// -//===----------------------------------------------------------------------===// - -#include "WriterInternals.h" -#include "llvm/Constants.h" -#include "llvm/SymbolTable.h" -#include "llvm/DerivedTypes.h" -#include "Support/Statistic.h" -using namespace llvm; - -void BytecodeWriter::outputType(const Type *T) { - output_vbr((unsigned)T->getTypeID(), Out); - - // That's all there is to handling primitive types... - if (T->isPrimitiveType()) { - return; // We might do this if we alias a prim type: %x = type int - } - - switch (T->getTypeID()) { // Handle derived types now. - case Type::FunctionTyID: { - const FunctionType *MT = cast<FunctionType>(T); - int Slot = Table.getSlot(MT->getReturnType()); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - - // Output the number of arguments to function (+1 if varargs): - output_vbr((unsigned)MT->getNumParams()+MT->isVarArg(), Out); - - // Output all of the arguments... - FunctionType::param_iterator I = MT->param_begin(); - for (; I != MT->param_end(); ++I) { - Slot = Table.getSlot(*I); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - } - - // Terminate list with VoidTy if we are a varargs function... - if (MT->isVarArg()) - output_vbr((unsigned)Type::VoidTyID, Out); - break; - } - - case Type::ArrayTyID: { - const ArrayType *AT = cast<ArrayType>(T); - int Slot = Table.getSlot(AT->getElementType()); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - //std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl; - - output_vbr(AT->getNumElements(), Out); - break; - } - - case Type::StructTyID: { - const StructType *ST = cast<StructType>(T); - - // Output all of the element types... - for (StructType::element_iterator I = ST->element_begin(), - E = ST->element_end(); I != E; ++I) { - int Slot = Table.getSlot(*I); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - } - - // Terminate list with VoidTy - output_vbr((unsigned)Type::VoidTyID, Out); - break; - } - - case Type::PointerTyID: { - const PointerType *PT = cast<PointerType>(T); - int Slot = Table.getSlot(PT->getElementType()); - assert(Slot != -1 && "Type used but not available!!"); - output_vbr((unsigned)Slot, Out); - break; - } - - case Type::OpaqueTyID: { - // No need to emit anything, just the count of opaque types is enough. - break; - } - - //case Type::PackedTyID: - default: - std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" - << " Type '" << T->getDescription() << "'\n"; - break; - } -} - -void BytecodeWriter::outputConstant(const Constant *CPV) { - assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) && - "Shouldn't output null constants!"); - - // We must check for a ConstantExpr before switching by type because - // a ConstantExpr can be of any type, and has no explicit value. - // - if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { - // FIXME: Encoding of constant exprs could be much more compact! - assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands"); - output_vbr(CE->getNumOperands(), Out); // flags as an expr - output_vbr(CE->getOpcode(), Out); // flags as an expr - - for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){ - int Slot = Table.getSlot(*OI); - assert(Slot != -1 && "Unknown constant used in ConstantExpr!!"); - output_vbr((unsigned)Slot, Out); - Slot = Table.getSlot((*OI)->getType()); - output_vbr((unsigned)Slot, Out); - } - return; - } else { - output_vbr(0U, Out); // flag as not a ConstantExpr - } - - switch (CPV->getType()->getTypeID()) { - case Type::BoolTyID: // Boolean Types - if (cast<ConstantBool>(CPV)->getValue()) - output_vbr(1U, Out); - else - output_vbr(0U, Out); - break; - - case Type::UByteTyID: // Unsigned integer types... - case Type::UShortTyID: - case Type::UIntTyID: - case Type::ULongTyID: - output_vbr(cast<ConstantUInt>(CPV)->getValue(), Out); - break; - - case Type::SByteTyID: // Signed integer types... - case Type::ShortTyID: - case Type::IntTyID: - case Type::LongTyID: - output_vbr(cast<ConstantSInt>(CPV)->getValue(), Out); - break; - - case Type::ArrayTyID: { - const ConstantArray *CPA = cast<ConstantArray>(CPV); - assert(!CPA->isString() && "Constant strings should be handled specially!"); - - for (unsigned i = 0; i != CPA->getNumOperands(); ++i) { - int Slot = Table.getSlot(CPA->getOperand(i)); - assert(Slot != -1 && "Constant used but not available!!"); - output_vbr((unsigned)Slot, Out); - } - break; - } - - case Type::StructTyID: { - const ConstantStruct *CPS = cast<ConstantStruct>(CPV); - const std::vector<Use> &Vals = CPS->getValues(); - - for (unsigned i = 0; i < Vals.size(); ++i) { - int Slot = Table.getSlot(Vals[i]); - assert(Slot != -1 && "Constant used but not available!!"); - output_vbr((unsigned)Slot, Out); - } - break; - } - - case Type::PointerTyID: - assert(0 && "No non-null, non-constant-expr constants allowed!"); - abort(); - - case Type::FloatTyID: { // Floating point types... - float Tmp = (float)cast<ConstantFP>(CPV)->getValue(); - output_float(Tmp, Out); - break; - } - case Type::DoubleTyID: { - double Tmp = cast<ConstantFP>(CPV)->getValue(); - output_double(Tmp, Out); - break; - } - - case Type::VoidTyID: - case Type::LabelTyID: - default: - std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" - << " type '" << *CPV->getType() << "'\n"; - break; - } - return; -} - -void BytecodeWriter::outputConstantStrings() { - SlotCalculator::string_iterator I = Table.string_begin(); - SlotCalculator::string_iterator E = Table.string_end(); - if (I == E) return; // No strings to emit - - // If we have != 0 strings to emit, output them now. Strings are emitted into - // the 'void' type plane. - output_vbr(unsigned(E-I), Out); - output_vbr(Type::VoidTyID, Out); - - // Emit all of the strings. - for (I = Table.string_begin(); I != E; ++I) { - const ConstantArray *Str = *I; - int Slot = Table.getSlot(Str->getType()); - assert(Slot != -1 && "Constant string of unknown type?"); - output_vbr((unsigned)Slot, Out); - - // Now that we emitted the type (which indicates the size of the string), - // emit all of the characters. - std::string Val = Str->getAsString(); - output_data(Val.c_str(), Val.c_str()+Val.size(), Out); - } -} diff --git a/lib/Bytecode/Writer/InstructionWriter.cpp b/lib/Bytecode/Writer/InstructionWriter.cpp deleted file mode 100644 index 188136718d..0000000000 --- a/lib/Bytecode/Writer/InstructionWriter.cpp +++ /dev/null @@ -1,348 +0,0 @@ -//===-- InstructionWriter.cpp - Functions for writing instructions --------===// -// -// The LLVM Compiler Infrastructure -// -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the routines for encoding instruction opcodes to a -// bytecode stream. -// -//===----------------------------------------------------------------------===// - -#include "WriterInternals.h" -#include "llvm/Module.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Instructions.h" -#include "llvm/Support/GetElementPtrTypeIterator.h" -#include "Support/Statistic.h" -#include <algorithm> -using namespace llvm; - -typedef unsigned char uchar; - -// outputInstructionFormat0 - Output those wierd instructions that have a large -// number of operands or have large operands themselves... -// -// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] -// -static void outputInstructionFormat0(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, - unsigned Type, std::deque<uchar> &Out) { - // Opcode must have top two bits clear... - output_vbr(Opcode << 2, Out); // Instruction Opcode ID - output_vbr(Type, Out); // Result type - - unsigned NumArgs = I->getNumOperands(); - output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) || - isa<VAArgInst>(I)), Out); - - if (!isa<GetElementPtrInst>(&I)) { - for (unsigned i = 0; i < NumArgs; ++i) { - int Slot = Table.getSlot(I->getOperand(i)); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr((unsigned)Slot, Out); - } - - if (isa<CastInst>(I) || isa<VAArgInst>(I)) { - int Slot = Table.getSlot(I->getType()); - assert(Slot != -1 && "Cast return type unknown?"); - output_vbr((unsigned)Slot, Out); - } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) { - int Slot = Table.getSlot(VAI->getArgType()); - assert(Slot != -1 && "VarArg argument type unknown?"); - output_vbr((unsigned)Slot, Out); - } - - } else { - int Slot = Table.getSlot(I->getOperand(0)); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr(unsigned(Slot), Out); - - // We need to encode the type of sequential type indices into their slot # - unsigned Idx = 1; - for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I); - Idx != NumArgs; ++TI, ++Idx) { - Slot = Table.getSlot(I->getOperand(Idx)); - assert(Slot >= 0 && "No slot number for value!?!?"); - - if (isa<SequentialType>(*TI)) { - unsigned IdxId; - switch (I->getOperand(Idx)->getType()->getTypeID()) { - default: assert(0 && "Unknown index type!"); - case Type::UIntTyID: IdxId = 0; break; - case Type::IntTyID: IdxId = 1; break; - case Type::ULongTyID: IdxId = 2; break; - case Type::LongTyID: IdxId = 3; break; - } - Slot = (Slot << 2) | IdxId; - } - output_vbr(unsigned(Slot), Out); - } - } - - align32(Out); // We must maintain correct alignment! -} - - -// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls. -// This are more annoying than most because the signature of the call does not -// tell us anything about the types of the arguments in the varargs portion. -// Because of this, we encode (as type 0) all of the argument types explicitly -// before the argument value. This really sucks, but you shouldn't be using -// varargs functions in your code! *death to printf*! -// -// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] -// -static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, unsigned Type, - std::deque<uchar> &Out) { - assert(isa<CallInst>(I) || isa<InvokeInst>(I)); - // Opcode must have top two bits clear... - output_vbr(Opcode << 2, Out); // Instruction Opcode ID - output_vbr(Type, Out); // Result type (varargs type) - - const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType()); - const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); - unsigned NumParams = FTy->getNumParams(); - - unsigned NumFixedOperands; - if (isa<CallInst>(I)) { - // Output an operand for the callee and each fixed argument, then two for - // each variable argument. - NumFixedOperands = 1+NumParams; - } else { - assert(isa<InvokeInst>(I) && "Not call or invoke??"); - // Output an operand for the callee and destinations, then two for each - // variable argument. - NumFixedOperands = 3+NumParams; - } - output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out); - - // The type for the function has already been emitted in the type field of the - // instruction. Just emit the slot # now. - for (unsigned i = 0; i != NumFixedOperands; ++i) { - int Slot = Table.getSlot(I->getOperand(i)); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr((unsigned)Slot, Out); - } - - for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) { - // Output Arg Type ID - int Slot = Table.getSlot(I->getOperand(i)->getType()); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr((unsigned)Slot, Out); - - // Output arg ID itself - Slot = Table.getSlot(I->getOperand(i)); - assert(Slot >= 0 && "No slot number for value!?!?"); - output_vbr((unsigned)Slot, Out); - } - align32(Out); // We must maintain correct alignment! -} - - -// outputInstructionFormat1 - Output one operand instructions, knowing that no -// operand index is >= 2^12. -// -static void outputInstructionFormat1(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, - unsigned *Slots, unsigned Type, - std::deque<uchar> &Out) { - // bits Instruction format: - // -------------------------- - // 01-00: Opcode type, fixed to 1. - // 07-02: Opcode - // 19-08: Resulting type plane - // 31-20: Operand #1 (if set to (2^12-1), then zero operands) - // - unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20); - // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; - output(Bits, Out); -} - - -// outputInstructionFormat2 - Output two operand instructions, knowing that no -// operand index is >= 2^8. -// -static void outputInstructionFormat2(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, - unsigned *Slots, unsigned Type, - std::deque<uchar> &Out) { - // bits Instruction format: - // -------------------------- - // 01-00: Opcode type, fixed to 2. - // 07-02: Opcode - // 15-08: Resulting type plane - // 23-16: Operand #1 - // 31-24: Operand #2 - // - unsigned Bits = 2 | (Opcode << 2) | (Type << 8) | - (Slots[0] << 16) | (Slots[1] << 24); - // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " - // << Slots[1] << endl; - output(Bits, Out); -} - - -// outputInstructionFormat3 - Output three operand instructions, knowing that no -// operand index is >= 2^6. -// -static void outputInstructionFormat3(const Instruction *I, unsigned Opcode, - const SlotCalculator &Table, - unsigned *Slots, unsigned Type, - std::deque<uchar> &Out) { - // bits Instruction format: - // -------------------------- - // 01-00: Opcode type, fixed to 3. - // 07-02: Opcode - // 13-08: Resulting type plane - // 19-14: Operand #1 - // 25-20: Operand #2 - // 31-26: Operand #3 - // - unsigned Bits = 3 | (Opcode << 2) | (Type << 8) | - (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26); - //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " - // << Slots[1] << " " << Slots[2] << endl; - output(Bits, Out); -} - -void BytecodeWriter::outputInstruction(const Instruction &I) { - assert(I.getOpcode() < 62 && "Opcode too big???"); - unsigned Opcode = I.getOpcode(); - unsigned NumOperands = I.getNumOperands(); - - // Encode 'volatile load' as 62 and 'volatile store' as 63. - if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) - Opcode = 62; - if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) - Opcode = 63; - - // Figure out which type to encode with the instruction. Typically we want - // the type of the first parameter, as opposed to the type of the instruction - // (for example, with setcc, we always know it returns bool, but the type of - // the first param is actually interesting). But if we have no arguments - // we take the type of the instruction itself. - // - const Type *Ty; - switch (I.getOpcode()) { - case Instruction::Select: - case Instruction::Malloc: - case Instruction::Alloca: - Ty = I.getType(); // These ALWAYS want to encode the return type - break; - case Instruction::Store: - Ty = I.getOperand(1)->getType(); // Encode the pointer type... - assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?"); - break; - default: // Otherwise use the default behavior... - Ty = NumOperands ? I.getOperand(0)->getType() : I.getType(); - break; - } - - unsigned Type; - int Slot = Table.getSlot(Ty); - assert(Slot != -1 && "Type not available!!?!"); - Type = (unsigned)Slot; - - // Varargs calls and invokes are encoded entirely different from any other - // instructions. - if (const CallInst *CI = dyn_cast<CallInst>(&I)){ - const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType()); - if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { - outputInstrVarArgsCall(CI, Opcode, Table, Type, Out); - return; - } - } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { - const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType()); - if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { - outputInstrVarArgsCall(II, Opcode, Table, Type, Out); - return; - } - } - - if (NumOperands <= 3) { - // Make sure that we take the type number into consideration. We don't want - // to overflow the field size for the instruction format we select. - // - unsigned MaxOpSlot = Type; - unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands - - for (unsigned i = 0; i != NumOperands; ++i) { - int slot = Table.getSlot(I.getOperand(i)); - assert(slot != -1 && "Broken bytecode!"); - if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot); - Slots[i] = unsigned(slot); - } - - // Handle the special cases for various instructions... - if (isa<CastInst>(I) || isa<VAArgInst>(I)) { - // Cast has to encode the destination type as the second argument in the - // packet, or else we won't know what type to cast to! - Slots[1] = Table.getSlot(I.getType()); - assert(Slots[1] != ~0U && "Cast return type unknown?"); - if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; - NumOperands++; - } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) { - Slots[1] = Table.getSlot(VANI->getArgType()); - assert(Slots[1] != ~0U && "va_next return type unknown?"); - if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; - NumOperands++; - } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { - // We need to encode the type of sequential type indices into their slot # - unsigned Idx = 1; - for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); - I != E; ++I, ++Idx) - if (isa<SequentialType>(*I)) { - unsigned IdxId; - switch (GEP->getOperand(Idx)->getType()->getTypeID()) { |