aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJakob Stoklund Olesen <stoklund@2pi.dk>2011-06-28 18:32:28 +0000
committerJakob Stoklund Olesen <stoklund@2pi.dk>2011-06-28 18:32:28 +0000
commit9bbe4d6c004f25bc491e2583cce7bc91891f68c7 (patch)
treed2d48643254849cc073041c0057eba852f5dc619
parentbd35f27ce9ecf7a6e6e1028dfc8652023cab265b (diff)
Clean up the handling of the x87 fp stack to make it more robust.
Drop the FpMov instructions, use plain COPY instead. Drop the FpSET/GET instruction for accessing fixed stack positions. Instead use normal COPY to/from ST registers around inline assembly, and provide a single new FpPOP_RETVAL instruction that can access the return value(s) from a call. This is still necessary since you cannot tell from the CALL instruction alone if it returns anything on the FP stack. Teach fast isel to use this. This provides a much more robust way of handling fixed stack registers - we can tolerate arbitrary FP stack instructions inserted around calls and inline assembly. Live range splitting could sometimes break x87 code by inserting spill code in unfortunate places. As a bonus we handle floating point inline assembly correctly now. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134018 91177308-0d34-0410-b5e6-96231b3b80d8
-rw-r--r--lib/Target/X86/X86FastISel.cpp16
-rw-r--r--lib/Target/X86/X86FloatingPoint.cpp485
-rw-r--r--lib/Target/X86/X86ISelLowering.cpp11
-rw-r--r--lib/Target/X86/X86InstrFPStack.td40
-rw-r--r--lib/Target/X86/X86RegisterInfo.cpp12
-rw-r--r--lib/Target/X86/X86RegisterInfo.td25
-rw-r--r--test/CodeGen/X86/inline-asm-fpstack.ll169
7 files changed, 531 insertions, 227 deletions
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index 82f5d3a50d..a4d1c675ee 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -1848,16 +1848,18 @@ bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
// stack, but where we prefer to use the value in xmm registers, copy it
// out as F80 and use a truncate to move it from fp stack reg to xmm reg.
if ((RVLocs[i].getLocReg() == X86::ST0 ||
- RVLocs[i].getLocReg() == X86::ST1) &&
- isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
- CopyVT = MVT::f80;
+ RVLocs[i].getLocReg() == X86::ST1)) {
+ if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
+ CopyVT = MVT::f80;
CopyReg = createResultReg(X86::RFP80RegisterClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL),
+ CopyReg);
+ } else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ CopyReg).addReg(RVLocs[i].getLocReg());
+ UsedRegs.push_back(RVLocs[i].getLocReg());
}
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
- CopyReg).addReg(RVLocs[i].getLocReg());
- UsedRegs.push_back(RVLocs[i].getLocReg());
-
if (CopyVT != RVLocs[i].getValVT()) {
// Round the F80 the right size, which also moves to the appropriate xmm
// register. This is accomplished by storing the F80 value in memory and
diff --git a/lib/Target/X86/X86FloatingPoint.cpp b/lib/Target/X86/X86FloatingPoint.cpp
index e16f217812..3fb5493c24 100644
--- a/lib/Target/X86/X86FloatingPoint.cpp
+++ b/lib/Target/X86/X86FloatingPoint.cpp
@@ -37,6 +37,7 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
+#include "llvm/InlineAsm.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
@@ -134,11 +135,36 @@ namespace {
unsigned Stack[8]; // FP<n> Registers in each stack slot...
unsigned StackTop; // The current top of the FP stack.
+ enum {
+ NumFPRegs = 16 // Including scratch pseudo-registers.
+ };
+
// For each live FP<n> register, point to its Stack[] entry.
// The first entries correspond to FP0-FP6, the rest are scratch registers
// used when we need slightly different live registers than what the
// register allocator thinks.
- unsigned RegMap[16];
+ unsigned RegMap[NumFPRegs];
+
+ // Pending fixed registers - Inline assembly needs FP registers to appear
+ // in fixed stack slot positions. This is handled by copying FP registers
+ // to ST registers before the instruction, and copying back after the
+ // instruction.
+ //
+ // This is modeled with pending ST registers. NumPendingSTs is the number
+ // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
+ // register that holds the ST value. The ST registers are not moved into
+ // place until immediately before the instruction that needs them.
+ //
+ // It can happen that we need an ST register to be live when no FP register
+ // holds the value:
+ //
+ // %ST0 = COPY %FP4<kill>
+ //
+ // When that happens, we allocate a scratch FP register to hold the ST
+ // value. That means every register in PendingST must be live.
+
+ unsigned NumPendingSTs;
+ unsigned char PendingST[8];
// Set up our stack model to match the incoming registers to MBB.
void setupBlockStack();
@@ -152,13 +178,15 @@ namespace {
dbgs() << " FP" << Stack[i];
assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
}
+ for (unsigned i = 0; i != NumPendingSTs; ++i)
+ dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
dbgs() << "\n";
}
/// getSlot - Return the stack slot number a particular register number is
/// in.
unsigned getSlot(unsigned RegNo) const {
- assert(RegNo < array_lengthof(RegMap) && "Regno out of range!");
+ assert(RegNo < NumFPRegs && "Regno out of range!");
return RegMap[RegNo];
}
@@ -170,12 +198,17 @@ namespace {
/// getScratchReg - Return an FP register that is not currently in use.
unsigned getScratchReg() {
- for (int i = array_lengthof(RegMap) - 1; i >= 8; --i)
+ for (int i = NumFPRegs - 1; i >= 8; --i)
if (!isLive(i))
return i;
llvm_unreachable("Ran out of scratch FP registers");
}
+ /// isScratchReg - Returns trus if RegNo is a scratch FP register.
+ bool isScratchReg(unsigned RegNo) {
+ return RegNo > 8 && RegNo < NumFPRegs;
+ }
+
/// getStackEntry - Return the X86::FP<n> register in register ST(i).
unsigned getStackEntry(unsigned STi) const {
if (STi >= StackTop)
@@ -191,7 +224,7 @@ namespace {
// pushReg - Push the specified FP<n> register onto the stack.
void pushReg(unsigned Reg) {
- assert(Reg < array_lengthof(RegMap) && "Register number out of range!");
+ assert(Reg < NumFPRegs && "Register number out of range!");
if (StackTop >= 8)
report_fatal_error("Stack overflow!");
Stack[StackTop] = Reg;
@@ -261,7 +294,14 @@ namespace {
void handleCondMovFP(MachineBasicBlock::iterator &I);
void handleSpecialFP(MachineBasicBlock::iterator &I);
- bool translateCopy(MachineInstr*);
+ // Check if a COPY instruction is using FP registers.
+ bool isFPCopy(MachineInstr *MI) {
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+
+ return X86::RFP80RegClass.contains(DstReg) ||
+ X86::RFP80RegClass.contains(SrcReg);
+ }
};
char FPS::ID = 0;
}
@@ -351,6 +391,7 @@ void FPS::bundleCFG(MachineFunction &MF) {
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
bool Changed = false;
MBB = &BB;
+ NumPendingSTs = 0;
setupBlockStack();
@@ -362,7 +403,7 @@ bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
if (MI->isInlineAsm())
FPInstClass = X86II::SpecialFP;
- if (MI->isCopy() && translateCopy(MI))
+ if (MI->isCopy() && isFPCopy(MI))
FPInstClass = X86II::SpecialFP;
if (FPInstClass == X86II::NotFP)
@@ -891,7 +932,8 @@ void FPS::shuffleStackTop(const unsigned char *FixStack,
continue;
// (Reg st0) (OldReg st0) = (Reg OldReg st0)
moveToTop(Reg, I);
- moveToTop(OldReg, I);
+ if (FixCount > 0)
+ moveToTop(OldReg, I);
}
DEBUG(dumpStack());
}
@@ -1249,142 +1291,309 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
MachineInstr *MI = I;
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown SpecialFP instruction!");
- case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
- assert(StackTop == 0 && "Stack should be empty after a call!");
- pushReg(getFPReg(MI->getOperand(0)));
- break;
- case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
- case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
- // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
- // The pattern we expect is:
- // CALL
- // FP1 = FpGET_ST0
- // FP4 = FpGET_ST1
- //
- // At this point, we've pushed FP1 on the top of stack, so it should be
- // present if it isn't dead. If it was dead, we already emitted a pop to
- // remove it from the stack and StackTop = 0.
-
- // Push FP4 as top of stack next.
- pushReg(getFPReg(MI->getOperand(0)));
+ case TargetOpcode::COPY: {
+ // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
+ const MachineOperand &MO1 = MI->getOperand(1);
+ const MachineOperand &MO0 = MI->getOperand(0);
+ unsigned DstST = MO0.getReg() - X86::ST0;
+ unsigned SrcST = MO1.getReg() - X86::ST0;
+ bool KillsSrc = MI->killsRegister(MO1.getReg());
+
+ // ST = COPY FP. Set up a pending ST register.
+ if (DstST < 8) {
+ unsigned SrcFP = getFPReg(MO1);
+ assert(isLive(SrcFP) && "Cannot copy dead register");
+ assert(!MO0.isDead() && "Cannot copy to dead ST register");
+
+ // Unallocated STs are marked as the nonexistent FP255.
+ while (NumPendingSTs <= DstST)
+ PendingST[NumPendingSTs++] = NumFPRegs;
+
+ // STi could still be live from a previous inline asm.
+ if (isScratchReg(PendingST[DstST])) {
+ DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
+ << '\n');
+ freeStackSlotBefore(MI, PendingST[DstST]);
+ }
- // If StackTop was 0 before we pushed our operand, then ST(0) must have been
- // dead. In this case, the ST(1) value is the only thing that is live, so
- // it should be on the TOS (after the pop that was emitted) and is. Just
- // continue in this case.
- if (StackTop == 1)
+ // When the source is killed, allocate a scratch FP register.
+ if (KillsSrc) {
+ unsigned Slot = getSlot(SrcFP);
+ unsigned SR = getScratchReg();
+ PendingST[DstST] = SR;
+ Stack[Slot] = SR;
+ RegMap[SR] = Slot;
+ } else
+ PendingST[DstST] = SrcFP;
break;
-
- // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
- // elements so that our accounting is correct.
- unsigned RegOnTop = getStackEntry(0);
- unsigned RegNo = getStackEntry(1);
-
- // Swap the slots the regs are in.
- std::swap(RegMap[RegNo], RegMap[RegOnTop]);
-
- // Swap stack slot contents.
- if (RegMap[RegOnTop] >= StackTop)
- report_fatal_error("Access past stack top!");
- std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
- break;
- }
- case X86::FpSET_ST0_32:
- case X86::FpSET_ST0_64:
- case X86::FpSET_ST0_80: {
- // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
- // arguments that use an st constraint. We expect a sequence of
- // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
- unsigned Op0 = getFPReg(MI->getOperand(0));
-
- if (!MI->killsRegister(X86::FP0 + Op0)) {
- // Duplicate Op0 into a temporary on the stack top.
- duplicateToTop(Op0, getScratchReg(), I);
- } else {
- // Op0 is killed, so just swap it into position.
- moveToTop(Op0, I);
}
- --StackTop; // "Forget" we have something on the top of stack!
- break;
- }
- case X86::FpSET_ST1_32:
- case X86::FpSET_ST1_64:
- case X86::FpSET_ST1_80: {
- // Set up st(1) for inline asm. We are assuming that st(0) has already been
- // set up by FpSET_ST0, and our StackTop is off by one because of it.
- unsigned Op0 = getFPReg(MI->getOperand(0));
- // Restore the actual StackTop from before Fp_SET_ST0.
- // Note we can't handle Fp_SET_ST1 without a preceding Fp_SET_ST0, and we
- // are not enforcing the constraint.
- ++StackTop;
- unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
- if (!MI->killsRegister(X86::FP0 + Op0)) {
- duplicateToTop(Op0, getScratchReg(), I);
- moveToTop(RegOnTop, I);
- } else if (getSTReg(Op0) != X86::ST1) {
- // We have the wrong value at st(1). Shuffle! Untested!
- moveToTop(getStackEntry(1), I);
- moveToTop(Op0, I);
- moveToTop(RegOnTop, I);
+
+ // FP = COPY ST. Extract fixed stack value.
+ // Any instruction defining ST registers must have assigned them to a
+ // scratch register.
+ if (SrcST < 8) {
+ unsigned DstFP = getFPReg(MO0);
+ assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
+ assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
+ unsigned SrcFP = PendingST[SrcST];
+ assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
+ assert(isLive(SrcFP) && "Scratch holding ST is dead");
+
+ // DstFP steals the stack slot from SrcFP.
+ unsigned Slot = getSlot(SrcFP);
+ Stack[Slot] = DstFP;
+ RegMap[DstFP] = Slot;
+
+ // Always treat the ST as killed.
+ PendingST[SrcST] = NumFPRegs;
+ while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
+ --NumPendingSTs;
+ break;
}
- assert(StackTop >= 2 && "Too few live registers");
- StackTop -= 2; // "Forget" both st(0) and st(1).
- break;
- }
- case X86::MOV_Fp3232:
- case X86::MOV_Fp3264:
- case X86::MOV_Fp6432:
- case X86::MOV_Fp6464:
- case X86::MOV_Fp3280:
- case X86::MOV_Fp6480:
- case X86::MOV_Fp8032:
- case X86::MOV_Fp8064:
- case X86::MOV_Fp8080: {
- const MachineOperand &MO1 = MI->getOperand(1);
- unsigned SrcReg = getFPReg(MO1);
- const MachineOperand &MO0 = MI->getOperand(0);
- unsigned DestReg = getFPReg(MO0);
- if (MI->killsRegister(X86::FP0+SrcReg)) {
+ // FP <- FP copy.
+ unsigned DstFP = getFPReg(MO0);
+ unsigned SrcFP = getFPReg(MO1);
+ assert(isLive(SrcFP) && "Cannot copy dead register");
+ if (KillsSrc) {
// If the input operand is killed, we can just change the owner of the
// incoming stack slot into the result.
- unsigned Slot = getSlot(SrcReg);
- assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
- Stack[Slot] = DestReg;
- RegMap[DestReg] = Slot;
-
+ unsigned Slot = getSlot(SrcFP);
+ Stack[Slot] = DstFP;
+ RegMap[DstFP] = Slot;
} else {
- // For FMOV we just duplicate the specified value to a new stack slot.
+ // For COPY we just duplicate the specified value to a new stack slot.
// This could be made better, but would require substantial changes.
- duplicateToTop(SrcReg, DestReg, I);
+ duplicateToTop(SrcFP, DstFP, I);
}
+ break;
+ }
+
+ case X86::FpPOP_RETVAL: {
+ // The FpPOP_RETVAL instruction is used after calls that return a value on
+ // the floating point stack. We cannot model this with ST defs since CALL
+ // instructions have fixed clobber lists. This instruction is interpreted
+ // to mean that there is one more live register on the stack than we
+ // thought.
+ //
+ // This means that StackTop does not match the hardware stack between a
+ // call and the FpPOP_RETVAL instructions. We do tolerate FP instructions
+ // between CALL and FpPOP_RETVAL as long as they don't overflow the
+ // hardware stack.
+ unsigned DstFP = getFPReg(MI->getOperand(0));
+
+ // Move existing stack elements up to reflect reality.
+ assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
+ if (StackTop) {
+ std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
+ for (unsigned i = 0; i != NumFPRegs; ++i)
+ ++RegMap[i];
}
+ ++StackTop;
+
+ // DstFP is the new bottom of the stack.
+ Stack[0] = DstFP;
+ RegMap[DstFP] = 0;
+
+ // DstFP will be killed by processBasicBlock if this was a dead def.
break;
+ }
+
case TargetOpcode::INLINEASM: {
// The inline asm MachineInstr currently only *uses* FP registers for the
// 'f' constraint. These should be turned into the current ST(x) register
- // in the machine instr. Also, any kills should be explicitly popped after
- // the inline asm.
- unsigned Kills = 0;
+ // in the machine instr.
+ //
+ // There are special rules for x87 inline assembly. The compiler must know
+ // exactly how many registers are popped and pushed implicitly by the asm.
+ // Otherwise it is not possible to restore the stack state after the inline
+ // asm.
+ //
+ // There are 3 kinds of input operands:
+ //
+ // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
+ // popped input operand must be in a fixed stack slot, and it is either
+ // tied to an output operand, or in the clobber list. The MI has ST use
+ // and def operands for these inputs.
+ //
+ // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
+ // preserved by the inline asm. The fixed stack slots must be STn-STm
+ // following the popped inputs. A fixed input operand cannot be tied to
+ // an output or appear in the clobber list. The MI has ST use operands
+ // and no defs for these inputs.
+ //
+ // 3. Preserved inputs. These inputs use the "f" constraint which is
+ // represented as an FP register. The inline asm won't change these
+ // stack slots.
+ //
+ // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
+ // registers do not count as output operands. The inline asm changes the
+ // stack as if it popped all the popped inputs and then pushed all the
+ // output operands.
+
+ // Scan the assembly for ST registers used, defined and clobbered. We can
+ // only tell clobbers from defs by looking at the asm descriptor.
+ unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
+ unsigned NumOps = 0;
+ for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
+ i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
+ unsigned Flags = MI->getOperand(i).getImm();
+ NumOps = InlineAsm::getNumOperandRegisters(Flags);
+ if (NumOps != 1)
+ continue;
+ const MachineOperand &MO = MI->getOperand(i + 1);
+ if (!MO.isReg())
+ continue;
+ unsigned STReg = MO.getReg() - X86::ST0;
+ if (STReg >= 8)
+ continue;
+
+ switch (InlineAsm::getKind(Flags)) {
+ case InlineAsm::Kind_RegUse:
+ STUses |= (1u << STReg);
+ break;
+ case InlineAsm::Kind_RegDef:
+ case InlineAsm::Kind_RegDefEarlyClobber:
+ STDefs |= (1u << STReg);
+ if (MO.isDead())
+ STDeadDefs |= (1u << STReg);
+ break;
+ case InlineAsm::Kind_Clobber:
+ STClobbers |= (1u << STReg);
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (STUses && !isMask_32(STUses))
+ report_fatal_error("Inline asm fixed inputs"
+ " must be last on the x87 stack");
+ unsigned NumSTUses = CountTrailingOnes_32(STUses);
+
+ // Defs must be contiguous from the stack top. ST0-STn.
+ if (STDefs && !isMask_32(STDefs))
+ report_fatal_error("Inline asm fixed outputs"
+ " must be last on the x87 stack");
+ unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
+
+ // So must the clobbered stack slots. ST0-STm, m >= n.
+ if (STClobbers && !isMask_32(STDefs | STClobbers))
+ report_fatal_error("Inline asm clobbers must be last on the x87 stack");
+
+ // Popped inputs are the ones that are also clobbered or defined.
+ unsigned STPopped = STUses & (STDefs | STClobbers);
+ if (STPopped && !isMask_32(STPopped))
+ report_fatal_error("Inline asm popped inputs"
+ " must be last on the x87 stack");
+ unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
+
+ DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
+ << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
+
+ // Scan the instruction for FP uses corresponding to "f" constraints.
+ // Collect FP registers to kill afer the instruction.
+ // Always kill all the scratch regs.
+ unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
+ unsigned FPUsed = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
continue;
- assert(Op.isUse() && "Only handle inline asm uses right now");
-
+ if (!Op.isUse())
+ report_fatal_error("Illegal \"f\" output constraint in inline asm");
unsigned FPReg = getFPReg(Op);
- Op.setReg(getSTReg(FPReg));
-
+ FPUsed |= 1U << FPReg;
+
// If we kill this operand, make sure to pop it from the stack after the
// asm. We just remember it for now, and pop them all off at the end in
// a batch.
if (Op.isKill())
- Kills |= 1U << FPReg;
+ FPKills |= 1U << FPReg;
+ }
+
+ // The popped inputs will be killed by the instruction, so duplicate them
+ // if the FP register needs to be live after the instruction, or if it is
+ // used in the instruction itself. We effectively treat the popped inputs
+ // as early clobbers.
+ for (unsigned i = 0; i < NumSTPopped; ++i) {
+ if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
+ continue;
+ unsigned SR = getScratchReg();
+ duplicateToTop(PendingST[i], SR, I);
+ DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
+ << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
+ PendingST[i] = SR;
+ }
+
+ // Make sure we have a unique live register for every fixed use. Some of
+ // them could be undef uses, and we need to emit LD_F0 instructions.
+ for (unsigned i = 0; i < NumSTUses; ++i) {
+ if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
+ // Check for shared assignments.
+ for (unsigned j = 0; j < i; ++j) {
+ if (PendingST[j] != PendingST[i])
+ continue;
+ // STi and STj are inn the same register, create a copy.
+ unsigned SR = getScratchReg();
+ duplicateToTop(PendingST[i], SR, I);
+ DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
+ << unsigned(PendingST[i])
+ << " to avoid collision with ST" << j << '\n');
+ PendingST[i] = SR;
+ }
+ continue;
+ }
+ unsigned SR = getScratchReg();
+ DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
+ BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
+ pushReg(SR);
+ PendingST[i] = SR;
+ if (NumPendingSTs == i)
+ ++NumPendingSTs;
+ }
+ assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
+
+ // Now we can rearrange the live registers to match what was requested.
+ shuffleStackTop(PendingST, NumPendingSTs, I);
+ DEBUG({dbgs() << "Before asm: "; dumpStack();});
+
+ // With the stack layout fixed, rewrite the FP registers.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
+ continue;
+ unsigned FPReg = getFPReg(Op);
+ Op.setReg(getSTReg(FPReg));
}
+ // Simulate the inline asm popping its inputs and pushing its outputs.
+ StackTop -= NumSTPopped;
+
+ // Hold the fixed output registers in scratch FP registers. They will be
+ // transferred to real FP registers by copies.
+ NumPendingSTs = 0;
+ for (unsigned i = 0; i < NumSTDefs; ++i) {
+ unsigned SR = getScratchReg();
+ pushReg(SR);
+ FPKills &= ~(1u << SR);
+ }
+ for (unsigned i = 0; i < NumSTDefs; ++i)
+ PendingST[NumPendingSTs++] = getStackEntry(i);
+ DEBUG({dbgs() << "After asm: "; dumpStack();});
+
+ // If any of the ST defs were dead, pop them immediately. Our caller only
+ // handles dead FP defs.
+ MachineBasicBlock::iterator InsertPt = MI;
+ for (unsigned i = 0; STDefs & (1u << i); ++i) {
+ if (!(STDeadDefs & (1u << i)))
+ continue;
+ freeStackSlotAfter(InsertPt, PendingST[i]);
+ PendingST[i] = NumFPRegs;
+ }
+ while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
+ --NumPendingSTs;
+
// If this asm kills any FP registers (is the last use of them) we must
// explicitly emit pop instructions for them. Do this now after the asm has
// executed so that the ST(x) numbers are not off (which would happen if we
@@ -1392,16 +1601,16 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
//
// Note: this might be a non-optimal pop sequence. We might be able to do
// better by trying to pop in stack order or something.
- MachineBasicBlock::iterator InsertPt = MI;
- while (Kills) {
- unsigned FPReg = CountTrailingZeros_32(Kills);
- freeStackSlotAfter(InsertPt, FPReg);
- Kills &= ~(1U << FPReg);
+ while (FPKills) {
+ unsigned FPReg = CountTrailingZeros_32(FPKills);
+ if (isLive(FPReg))
+ freeStackSlotAfter(InsertPt, FPReg);
+ FPKills &= ~(1U << FPReg);
}
// Don't delete the inline asm!
return;
}
-
+
case X86::RET:
case X86::RETI:
// If RET has an FP register use operand, pass the first one in ST(0) and
@@ -1499,33 +1708,3 @@ void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
} else
--I;
}
-
-// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
-bool FPS::translateCopy(MachineInstr *MI) {
- unsigned DstReg = MI->getOperand(0).getReg();
- unsigned SrcReg = MI->getOperand(1).getReg();
-
- if (DstReg == X86::ST0) {
- MI->setDesc(TII->get(X86::FpSET_ST0_80));
- MI->RemoveOperand(0);
- return true;
- }
- if (DstReg == X86::ST1) {
- MI->setDesc(TII->get(X86::FpSET_ST1_80));
- MI->RemoveOperand(0);
- return true;
- }
- if (SrcReg == X86::ST0) {
- MI->setDesc(TII->get(X86::FpGET_ST0_80));
- return true;
- }
- if (SrcReg == X86::ST1) {
- MI->setDesc(TII->get(X86::FpGET_ST1_80));
- return true;
- }
- if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
- MI->setDesc(TII->get(X86::MOV_Fp8080));
- return true;
- }
- return false;
-}
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 0810267fef..b327f1b6f7 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -1511,20 +1511,15 @@ X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
// If this is a call to a function that returns an fp value on the floating
// point stack, we must guarantee the the value is popped from the stack, so
// a CopyFromReg is not good enough - the copy instruction may be eliminated
- // if the return value is not used. We use the FpGET_ST0 instructions
+ // if the return value is not used. We use the FpPOP_RETVAL instruction
// instead.
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
// If we prefer to use the value in xmm registers, copy it out as f80 and
// use a truncate to move it from fp stack reg to xmm reg.
if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
- bool isST0 = VA.getLocReg() == X86::ST0;
- unsigned Opc = 0;
- if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
- if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
- if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
SDValue Ops[] = { Chain, InFlag };
- Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
- Ops, 2), 1);
+ Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
+ MVT::Other, MVT::Glue, Ops, 2), 1);
Val = Chain.getValue(0);
// Round the f80 to the right size, which also moves it to the appropriate
diff --git a/lib/Target/X86/X86InstrFPStack.td b/lib/Target/X86/X86InstrFPStack.td
index b506f5e0b8..7cb870fabd 100644
--- a/lib/Target/X86/X86InstrFPStack.td
+++ b/lib/Target/X86/X86InstrFPStack.td
@@ -112,31 +112,8 @@ let usesCustomInserter = 1 in { // Expanded after instruction selection.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).
-// Pseudo Instructions for FP stack return values.
-def FpGET_ST0_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
-def FpGET_ST0_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
-def FpGET_ST0_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(0)
-
-// FpGET_ST1* should only be issued *after* an FpGET_ST0* has been issued when
-// there are two values live out on the stack from a call or inlineasm. This
-// magic is handled by the stackifier. It is not valid to emit FpGET_ST1* and
-// then FpGET_ST0*. In addition, it is invalid for any FP-using operations to
-// occur between them.
-def FpGET_ST1_32 : FpI_<(outs RFP32:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
-def FpGET_ST1_64 : FpI_<(outs RFP64:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
-def FpGET_ST1_80 : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>; // FPR = ST(1)
-
-let Defs = [ST0] in {
-def FpSET_ST0_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(0) = FPR
-def FpSET_ST0_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(0) = FPR
-def FpSET_ST0_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(0) = FPR
-}
-
-let Defs = [ST1] in {
-def FpSET_ST1_32 : FpI_<(outs), (ins RFP32:$src), SpecialFP, []>; // ST(1) = FPR
-def FpSET_ST1_64 : FpI_<(outs), (ins RFP64:$src), SpecialFP, []>; // ST(1) = FPR
-def FpSET_ST1_80 : FpI_<(outs), (ins RFP80:$src), SpecialFP, []>; // ST(1) = FPR
-}
+// Pseudo Instruction for FP stack return values.
+def FpPOP_RETVAL : FpI_<(outs RFP80:$dst), (ins), SpecialFP, []>;
// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
@@ -147,19 +124,6 @@ class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
-// Register copies. Just copies, the shortening ones do not truncate.
-let neverHasSideEffects = 1 in {
- def MOV_Fp3232 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), SpecialFP, []>;
- def MOV_Fp3264 : FpIf32<(outs RFP64:$dst), (ins RFP32:$src), SpecialFP, []>;
- def MOV_Fp6432 : FpIf32<(outs RFP32:$dst), (ins RFP64:$src), SpecialFP, []>;
- def MOV_Fp6464 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), SpecialFP, []>;
- def MOV_Fp8032 : FpIf32<(outs RFP32:$dst), (ins RFP80:$src), SpecialFP, []>;
- def MOV_Fp3280 : FpIf32<(outs RFP80:$dst), (ins RFP32:$src), SpecialFP, []>;
- def MOV_Fp8064 : FpIf64<(outs RFP64:$dst), (ins RFP80:$src), SpecialFP, []>;
- def MOV_Fp6480 : FpIf64<(outs RFP80:$dst), (ins RFP64:$src), SpecialFP, []>;
- def MOV_Fp8080 : FpI_ <(outs RFP80:$dst), (ins RFP80:$src), SpecialFP, []>;
-}
-
// Factoring for arithmetic.
multiclass FPBinary_rr<SDNode OpNode> {
// Register op register -> register
diff --git a/lib/Target/X86/X86RegisterInfo.cpp b/lib/Target/X86/X86RegisterInfo.cpp
index 48f60f8934..9e4fdad6ce 100644
--- a/lib/Target/X86/X86RegisterInfo.cpp
+++ b/lib/Target/X86/X86RegisterInfo.cpp
@@ -500,18 +500,6 @@ BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
Reserved.set(X86::BPL);
}
- // Mark the x87 stack registers as reserved, since they don't behave normally
- // with respect to liveness. We don't fully model the effects of x87 stack
- // pushes and pops after stackification.
- Reserved.set(X86::ST0);
- Reserved.set(X86::ST1);
- Reserved.set(X86::ST2);
- Reserved.set(X86::ST3);
- Reserved.set(X86::ST4);
- Reserved.set(X86::ST5);
- Reserved.set(X86::ST6);
- Reserved.set(X86::ST7);
-
// Mark the segment registers as reserved.
Reserved.set(X86::CS);
Reserved.set(X86::SS);
diff --git a/lib/Target/X86/X86RegisterInfo.td b/lib/Target/X86/X86RegisterInfo.td
index 14d6d64d8c..203722a661 100644
--- a/lib/Target/X86/X86RegisterInfo.td
+++ b/lib/Target/X86/X86RegisterInfo.td
@@ -206,15 +206,22 @@ let Namespace = "X86" in {
def YMM15: RegisterWithSubRegs<"ymm15", [XMM15]>, DwarfRegAlias<XMM15>;
}
- // Floating point stack registers
- def ST0 : Register<"st(0)">, DwarfRegNum<[33, 12, 11]>;
- def ST1 : Register<"st(1)">, DwarfRegNum<[34, 13, 12]>;
- def ST2 : Register<"st(2)">, DwarfRegNum<[35, 14, 13]>;
- def ST3 : Register<"st(3)">, DwarfRegNum<[36, 15, 14]>;
- def ST4 : Register<"st(4)">, DwarfRegNum<[37, 16, 15]>;
- def ST5 : Register<"st(5)">, DwarfRegNum<[38, 17, 16]>;
- def ST6 : Register<"st(6)">, DwarfRegNum<[39, 18, 17]>;
- def ST7 : Register<"st(7)">, DwarfRegNum<[40, 19, 18]>;
+ class STRegister<string Name, list<Register> A> : Register<Name> {
+ let Aliases = A;
+ }
+
+ // Floating point stack registers. These don't map one-to-one to the FP
+ // pseudo registers, but we still mark them as aliasing FP registers. That
+ // way both kinds can be live without exceeding the stack depth. ST registers
+ // are only live around inline assembly.
+ def ST0 : STRegister<"st(0)", []>, DwarfRegNum<[33, 12, 11]>;
+ def ST1 : STRegister<"st(1)", [FP6]>, DwarfRegNum<[34, 13, 12]>;
+ def ST2 : STRegister<"st(2)", [FP5]>, DwarfRegNum<[35, 14, 13]>;
+ def ST3 : STRegister<"st(3)", [FP4]>, DwarfRegNum<[36, 15, 14]>;
+ def ST4 : STRegister<"st(4)", [FP3]>, DwarfRegNum<[37, 16, 15]>;
+ def ST5 : STRegister<"st(5)", [FP2]>, DwarfRegNum<[38, 17, 16]>;
+ def ST6 : STRegister<"st(6)", [FP1]>, DwarfRegNum<[39, 18, 17]>;
+ def ST7 : STRegister<"st(7)", [FP0]>, DwarfRegNum<[40, 19, 18]>;
// Status flags register
def EFLAGS : Register<"flags">;
diff --git a/test/CodeGen/X86/inline-asm-fpstack.ll b/test/CodeGen/X86/inline-asm-fpstack.ll
index d15f7ff1cc..8e48bbec8e 100644
--- a/test/CodeGen/X86/inline-asm-fpstack.ll
+++ b/test/CodeGen/X86/inline-asm-fpstack.ll
@@ -106,6 +106,25 @@ return:
ret void
}
+; Passing a non-killed value through asm in {st}.
+; Make sure it is not duped before.
+; Second asm kills st(0), so we shouldn't pop anything
+; CHECK: testPR4185b
+; CHECK-NOT: fld %st(0)
+; CHECK: fistl
+; CHECK-NOT: fstp
+; CHECK: fistpl
+; CHECK-NOT: fstp
+; CHECK: ret
+; A valid alternative would be to remat the constant pool load before each
+; inline asm.
+define void @testPR4185b() {
+return:
+ call void asm sideeffect "fistl $0", "{st}"(double 1.000000e+06)
+ call void asm sideeffect "fistpl $0", "{st},~{st}"(double 1.000000e+06)
+ ret void
+}
+
; PR4459
; The return value from ceil must be duped before being consumed by asm.
; CHECK: testPR4459
@@ -160,3 +179,153 @@ entry:
tail call void asm sideeffect "fistpl $0", "{st},~{st}"(x86_fp80 %5)
ret void
}
+
+; An input argument in a fixed position is implicitly popped by the asm only if
+; the input argument is tied to an output register, or it is in the clobber list.
+; The clobber list case is tested above.
+;
+; This doesn't implicitly pop the stack:
+;
+; void fist1(long double x, int *p) {
+; asm volatile ("fistl %1" : : "t"(x), "m"(*p));
+; }
+;
+; CHECK: fist1
+; CHECK: fldt
+; CHECK: fistl (%e
+; CHECK: fstp
+; CHECK: ret
+define void @fist1(x86_fp80 %x, i32* %p) nounwind ssp {
+entry:
+ tail call void asm sideeffect "fistl $1", "{st},*m,~{memory},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, i32* %p) nounwind
+ ret void
+}
+
+; Here, the input operand is tied to an output which means that is is
+; implicitly popped (and then the output is implicitly pushed).
+;
+; long double fist2(long double x, int *p) {
+; long double y;
+; asm ("fistl %1" : "=&t"(y) : "0"(x), "m"(*p) : "memory");
+; return y;
+; }
+;
+; CHECK: fist2
+; CHECK: fldt
+; CHECK: fistl (%e
+; CHECK-NOT: fstp
+; CHECK: ret
+define x86_fp80 @fist2(x86_fp80 %x, i32* %p) nounwind ssp {
+entry:
+ %0 = tail call x86_fp80 asm "fistl $2", "=&{st},0,*m,~{memory},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, i32* %p) nounwind
+ ret x86_fp80 %0
+}
+
+; An 'f' constraint is never implicitly popped:
+;
+; void fucomp1(long double x, long double y) {
+; asm volatile ("fucomp %1" : : "t"(x), "f"(y) : "st");
+; }
+; CHECK: fucomp1
+; CHECK: fldt
+; CHECK: fldt
+; CHECK: fucomp %st
+; CHECK: fstp
+; CHECK-NOT: fstp
+; CHECK: ret
+define void @fucomp1(x86_fp80 %x, x86_fp80 %y) nounwind ssp {
+entry:
+ tail call void asm sideeffect "fucomp $1", "{st},f,~{st},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, x86_fp80 %y) nounwind
+ ret void
+}
+
+; The 'u' constraint is only popped implicitly when clobbered:
+;
+; void fucomp2(long double x, long double y) {
+; asm volatile ("fucomp %1" : : "t"(x), "u"(y) : "st");
+; }
+;
+; void fucomp3(long double x, long double y) {
+; asm volatile ("fucompp %1" : : "t"(x), "u"(y) : "st", "st(1)");
+; }
+;
+; CHECK: fucomp2
+; CHECK: fldt
+; CHECK: fldt
+; CHECK: fucomp %st(1)
+; CHECK: fstp
+; CHECK-NOT: fstp
+; CHECK: ret
+;
+; CHECK: fucomp3
+; CHECK: fldt
+; CHECK: fldt
+; CHECK: fucompp %st(1)
+; CHECK-NOT: fstp
+; CHECK: ret
+define void @fucomp2(x86_fp80 %x, x86_fp80 %y) nounwind ssp {
+entry:
+ tail call void asm sideeffect "fucomp $1", "{st},{st(1)},~{st},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, x86_fp80 %y) nounwind
+ ret void
+}
+define void @fucomp3(x86_fp80 %x, x86_fp80 %y) nounwind ssp {
+entry:
+ tail call void asm sideeffect "fucompp $1", "{st},{st(1)},~{st},~{st(1)},~{dirflag},~{fpsr},~{flags}"(x86_fp80 %x, x86_fp80 %y) nounwind
+ ret void
+}
+
+; One input, two outputs, one dead output.
+%complex = type { float, float }
+; CHECK: sincos1
+; CHECK: flds
+; CHECK-NOT: fxch
+; CHECK: sincos
+; CHECK-NOT: fstp
+; CHECK: fstp %st(1)
+; CHECK-NOT: fstp
+; CHECK: ret
+define float @sincos1(float %x) nounwind ssp {
+entry:
+ %0 = tail call %complex asm "sincos", "={st},={st(1)},0,~{dirflag},~{fpsr},~{flags}"(float %x) nounwind
+ %asmresult = extractvalue %complex %0, 0
+ ret float %asmresult
+}
+
+; Same thing, swapped output operands.
+; CHECK: sincos2
+; CHECK: flds
+; CHECK-NOT: fxch
+; CHECK: sincos
+; CHECK-NOT: fstp
+; CHECK: fstp %st(1)
+; CHECK-NOT: fstp
+; CHECK: ret
+define float @sincos2(float %x) nounwind ssp {
+entry:
+ %0 = tail call %complex asm "sincos", "={st(1)},={st},1,~{dirflag},~{fpsr},~{flags}"(float %x) nounwind
+ %asmresult = extractvalue %complex %0, 1
+ ret float %asmresult
+}
+
+; Clobber st(0) after it was live-out/dead from the previous asm.
+; CHECK: sincos3
+; Load x, make a copy for the second asm.
+; CHECK: flds
+; CHECK: fld %st(0)
+; CHECK: sincos
+; Discard dead result in st(0), bring x to the top.
+; CHECK: fstp %st(0)
+; CHECK: fxch
+; x is now in st(0) for the second asm
+; CHECK: sincos
+; Discard both results.
+; CHECK: fstp
+; CHECK: fstp
+; CHECK: ret
+define float @sincos3(float %x) nounwind ssp {
+entry:
+ %0 = tail call %complex asm sideeffect "sincos", "={st(1)},={st},1,~{dirflag},~{fpsr},~{flags}"(float %x) nounwind
+ %1 = tail call %complex asm sideeffect "sincos", "={st(1)},={st},1,~{dirflag},~{fpsr},~{flags}"(float %x) nounwind
+ %asmresult = extractvalue %complex %0, 0
+ ret float %asmresult
+}