/*
* Apple Onboard Audio driver for tas codec
*
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
*
* GPL v2, can be found in COPYING.
*
* Open questions:
* - How to distinguish between 3004 and versions?
*
* FIXMEs:
* - This codec driver doesn't honour the 'connected'
* property of the aoa_codec struct, hence if
* it is used in machines where not everything is
* connected it will display wrong mixer elements.
* - Driver assumes that the microphone is always
* monaureal and connected to the right channel of
* the input. This should also be a codec-dependent
* flag, maybe the codec should have 3 different
* bits for the three different possibilities how
* it can be hooked up...
* But as long as I don't see any hardware hooked
* up that way...
* - As Apple notes in their code, the tas3004 seems
* to delay the right channel by one sample. You can
* see this when for example recording stereo in
* audacity, or recording the tas output via cable
* on another machine (use a sinus generator or so).
* I tried programming the BiQuads but couldn't
* make the delay work, maybe someone can read the
* datasheet and fix it. The relevant Apple comment
* is in AppleTAS3004Audio.cpp lines 1637 ff. Note
* that their comment describing how they program
* the filters sucks...
*
* Other things:
* - this should actually register *two* aoa_codec
* structs since it has two inputs. Then it must
* use the prepare callback to forbid running the
* secondary output on a different clock.
* Also, whatever bus knows how to do this must
* provide two soundbus_dev devices and the fabric
* must be able to link them correctly.
*
* I don't even know if Apple ever uses the second
* port on the tas3004 though, I don't think their
* i2s controllers can even do it. OTOH, they all
* derive the clocks from common clocks, so it
* might just be possible. The framework allows the
* codec to refine the transfer_info items in the
* usable callback, so we can simply remove the
* rates the second instance is not using when it
* actually is in use.
* Maybe we'll need to make the sound busses have
* a 'clock group id' value so the codec can
* determine if the two outputs can be driven at
* the same time. But that is likely overkill, up
* to the fabric to not link them up incorrectly,
* and up to the hardware designer to not wire
* them up in some weird unusable way.
*/
#include <stddef.h>
#include <linux/i2c.h>
#include <asm/pmac_low_i2c.h>
#include <asm/prom.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mutex.h>
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("tas codec driver for snd-aoa");
#include "tas.h"
#include "tas-gain-table.h"
#include "tas-basstreble.h"
#include "../aoa.h"
#include "../soundbus/soundbus.h"
#define PFX "snd-aoa-codec-tas: "
struct tas {
struct aoa_codec codec;
struct i2c_client *i2c;
u32 mute_l:1, mute_r:1 ,
controls_created:1 ,
drc_enabled:1,
hw_enabled:1;
u8 cached_volume_l, cached_volume_r;
u8 mixer_l[3], mixer_r[3];
u8 bass, treble;
u8 acr;
int drc_range;
/* protects hardware access against concurrency from
* userspace when hitting controls and during
* codec init/suspend/resume */
struct mutex mtx;
};
static int tas_reset_init(struct tas *tas);
static struct tas *codec_to_tas(struct aoa_codec *codec)
{
return container_of(codec, struct tas, codec);
}
static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
{
if (len == 1)
return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
else
return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
}
static void tas3004_set_drc(struct tas *tas)
{
unsigned char val[6];
if (tas->drc_enabled)
val[0] = 0x50; /* 3:1 above threshold */
else
val[0] = 0x51; /* disabled */
val[1] = 0x02; /* 1:1 below threshold */
if (tas->drc_range > 0xef)
val[2] = 0xef;
else if (tas->drc_range < 0)
val[2] = 0x00;
else
val[2] = tas->drc_range;
val[3] = 0xb0;
val[4] = 0x60;
val[5] = 0xa0;
tas_write_reg(tas, TAS_REG_DRC, 6, val);
}
static void tas_set_treble(struct tas *tas)
{
u8 tmp;
tmp = tas3004_treble(tas->treble);
tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
}
static void tas_set_bass(struct tas *tas)
{
u8 tmp;
tmp = tas3004_bass(tas->bass);
tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
}
static void tas_set_volume(struct tas *tas)
{
u8 block[6];
int tmp;
u8 left, right;
left = tas->cached_volume_l;
right = tas->cached_volume_r;
if (left > 177) left = 177;
if (right > 177) right = 177;
if (tas->mute_l) left = 0;
if (tas->mute_r) right = 0;