aboutsummaryrefslogtreecommitdiff
path: root/mm/page-writeback.c
blob: 3fc261705b1e068c28c72a329f31ee431ae3fdc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
/*
 * mm/page-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
 * 10Apr2002	Andrew Morton
 *		Initial version
 */

#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/blkdev.h>
#include <linux/mpage.h>
#include <linux/rmap.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
#include <linux/pagevec.h>
#include <trace/events/writeback.h>

/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

#define RATELIMIT_CALC_SHIFT	10

/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
 * Start background writeback (via writeback threads) at this percentage
 */
int dirty_background_ratio = 10;

/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

/*
 * The generator of dirty data starts writeback at this percentage
 */
int vm_dirty_ratio = 20;

/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

/*
 * The interval between `kupdate'-style writebacks
 */
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */

/*
 * The longest time for which data is allowed to remain dirty
 */
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

unsigned long global_dirty_limit;

/*
 * Scale the writeback cache size proportional to the relative writeout speeds.
 *
 * We do this by keeping a floating proportion between BDIs, based on page
 * writeback completions [end_page_writeback()]. Those devices that write out
 * pages fastest will get the larger share, while the slower will get a smaller
 * share.
 *
 * We use page writeout completions because we are interested in getting rid of
 * dirty pages. Having them written out is the primary goal.
 *
 * We introduce a concept of time, a period over which we measure these events,
 * because demand can/will vary over time. The length of this period itself is
 * measured in page writeback completions.
 *
 */
static struct prop_descriptor vm_completions;

/*
 * Work out the current dirty-memory clamping and background writeout
 * thresholds.
 *
 * The main aim here is to lower them aggressively if there is a lot of mapped
 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 * pages.  It is better to clamp down on writers than to start swapping, and
 * performing lots of scanning.
 *
 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 *
 * We don't permit the clamping level to fall below 5% - that is getting rather
 * excessive.
 *
 * We make sure that the background writeout level is below the adjusted
 * clamping level.
 */

/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
		struct zone *z =
			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];

		x += zone_page_state(z, NR_FREE_PAGES) +
		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
	}
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
 * global_dirtyable_memory - number of globally dirtyable pages
 *
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
 */
unsigned long global_dirtyable_memory(void)
{
	unsigned long x;

	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
	    dirty_balance_reserve;

	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

/*
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 *
 * Calculate the dirty thresholds based on sysctl parameters
 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 * - vm.dirty_ratio             or  vm.dirty_bytes
 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 * real-time tasks.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	unsigned long background;
	unsigned long dirty;
	unsigned long uninitialized_var(available_memory);
	struct task_struct *tsk;

	if (!vm_dirty_bytes || !dirty_background_bytes)
		available_memory = global_dirtyable_memory();

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
	else
		dirty = (vm_dirty_ratio * available_memory) / 100;

	if (dirty_background_bytes)
		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
	else
		background = (dirty_background_ratio * available_memory) / 100;

	if (background >= dirty)
		background = dirty / 2;
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
		background += background / 4;
		dirty += dirty / 4;
	}
	*pbackground = background;
	*pdirty = dirty;
	trace_global_dirty_state(background, dirty);
}

/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	/*
	 * The effective global number of dirtyable pages may exclude
	 * highmem as a big-picture measure to keep the ratio between
	 * dirty memory and lowmem reasonable.
	 *
	 * But this function is purely about the individual zone and a
	 * highmem zone can hold its share of dirty pages, so we don't
	 * care about vm_highmem_is_dirtyable here.
	 */
	return zone_page_state(zone, NR_FREE_PAGES) +
	       zone_reclaimable_pages(zone) -
	       zone->dirty_balance_reserve;
}

/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

/*
 * couple the period to the dirty_ratio:
 *
 *   period/2 ~ roundup_pow_of_two(dirty limit)
 */
static int calc_period_shift(void)
{
	unsigned long dirty_total;

	if (vm_dirty_bytes)
		dirty_total = vm_dirty_bytes / PAGE_SIZE;
	else
		dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
				100;
	return 2 + ilog2(dirty_total - 1);
}

/*
 * update the period when the dirty threshold changes.
 */
static void update_completion_period(void)
{
	int shift = calc_period_shift();
	prop_change_shift(&vm_completions, shift);

	writeback_set_ratelimit();
}

int dirty_background_ratio_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;

	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

int dirty_ratio_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
		update_completion_period();
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	unsigned long old_bytes = vm_dirty_bytes;
	int ret;

	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
		update_completion_period();
		vm_dirty_ratio = 0;
	}
	return ret;
}

/*
 * Increment the BDI's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
{
	__inc_bdi_stat(bdi, BDI_WRITTEN);
	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
			      bdi->max_prop_frac);
}

void bdi_writeout_inc(struct backing_dev_info *bdi)
{
	unsigned long flags;

	local_irq_save(flags);
	__bdi_writeout_inc(bdi);
	local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(bdi_writeout_inc);

/*
 * Obtain an accurate fraction of the BDI's portion.
 */
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
		long *numerator, long *denominator)
{
	prop_fraction_percpu(&vm_completions, &bdi->completions,
				numerator, denominator);
}

/*
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

	spin_lock_bh(&bdi_lock);
	if (min_ratio > bdi->max_ratio) {
		ret = -EINVAL;
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
	spin_unlock_bh(&bdi_lock);

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

	spin_lock_bh(&bdi_lock);
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
	}
	spin_unlock_bh(&bdi_lock);

	return ret;
}
EXPORT_SYMBOL(bdi_set_max_ratio);

static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

static unsigned long hard_dirty_limit(unsigned long thresh)
{
	return max(thresh, global_dirty_limit);
}

/**
 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 * @bdi: the backing_dev_info to query
 * @dirty: global dirty limit in pages
 *
 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
 * more (rather than completely block them) when the bdi dirty pages go high.
 *
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
 * The bdi's share of dirty limit will be adapting to its throughput and
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
{
	u64 bdi_dirty;
	long numerator, denominator;

	/*
	 * Calculate this BDI's share of the dirty ratio.
	 */
	bdi_writeout_fraction(bdi, &numerator, &denominator);

	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
	bdi_dirty *= numerator;
	do_div(bdi_dirty, denominator);

	bdi_dirty += (dirty * bdi->min_ratio) / 100;
	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
		bdi_dirty = dirty * bdi->max_ratio / 100;

	return bdi_dirty;
}

/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
 * We want the dirty pages be balanced around the global/bdi setpoints.
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
 * (o) bdi control line
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
 *                bdi_setpoint^                    x_intercept^
 *
 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 */
static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
					unsigned long thresh,
					unsigned long bg_thresh,
					unsigned long dirty,
					unsigned long bdi_thresh,
					unsigned long bdi_dirty)
{
	unsigned long write_bw = bdi->avg_write_bandwidth;
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
	unsigned long bdi_setpoint;
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

	if (unlikely(dirty >= limit))
		return 0;

	/*
	 * global setpoint
	 *
	 *                           setpoint - dirty 3
	 *        f(dirty) := 1.0 + (----------------)
	 *                           limit - setpoint
	 *
	 * it's a 3rd order polynomial that subjects to
	 *
	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
	 * (2) f(setpoint) = 1.0 => the balance point
	 * (3) f(limit)    = 0   => the hard limit
	 * (4) df/dx      <= 0	 => negative feedback control
	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
	 *     => fast response on large errors; small oscillation near setpoint
	 */
	setpoint = (freerun + limit) / 2;
	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
		    limit - setpoint + 1);
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	/*
	 * We have computed basic pos_ratio above based on global situation. If
	 * the bdi is over/under its share of dirty pages, we want to scale
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
	 * bdi setpoint
	 *
	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
	 *
	 *                        x_intercept - bdi_dirty
	 *                     := --------------------------
	 *                        x_intercept - bdi_setpoint
	 *
	 * The main bdi control line is a linear function that subjects to
	 *
	 * (1) f(bdi_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
	 *
	 * For single bdi case, the dirty pages are observed to fluctuate
	 * regularly within range
	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
	 * own size, so move the slope over accordingly and choose a slope that
	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
	 */
	if (unlikely(bdi_thresh > thresh))
		bdi_thresh = thresh;
	/*
	 * It's very possible that bdi_thresh is close to 0 not because the
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
	/*
	 * scale global setpoint to bdi's:
	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
	 */
	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
	bdi_setpoint = setpoint * (u64)x >> 16;
	/*
	 * Use span=(8*write_bw) in single bdi case as indicated by
	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
	 *
	 *        bdi_thresh                    thresh - bdi_thresh
	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
	 *          thresh                            thresh
	 */
	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
	x_intercept = bdi_setpoint + span;

	if (bdi_dirty < x_intercept - span / 4) {
		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
				    x_intercept - bdi_setpoint + 1);
	} else
		pos_ratio /= 4;

	/*
	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
	x_intercept = bdi_thresh / 2;
	if (bdi_dirty < x_intercept) {
		if (bdi_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
		else
			pos_ratio *= 8;
	}

	return pos_ratio;
}

static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
				       unsigned long elapsed,
				       unsigned long written)
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
	unsigned long avg = bdi->avg_write_bandwidth;
	unsigned long old = bdi->write_bandwidth;
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
	 */
	bw = written - bdi->written_stamp;
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
	bw += (u64)bdi->write_bandwidth * (period - elapsed);
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
	bdi->write_bandwidth = bw;
	bdi->avg_write_bandwidth = avg;
}

/*
 * The global dirtyable memory and dirty threshold could be suddenly knocked
 * down by a large amount (eg. on the startup of KVM in a swapless system).
 * This may throw the system into deep dirty exceeded state and throttle
 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 * global_dirty_limit for tracking slowly down to the knocked down dirty
 * threshold.
 */
static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
{
	unsigned long limit = global_dirty_limit;

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
	 */
	thresh = max(thresh, dirty);
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
	global_dirty_limit = limit;
}

static void global_update_bandwidth(unsigned long thresh,
				    unsigned long dirty,
				    unsigned long now)
{
	static DEFINE_SPINLOCK(dirty_lock);
	static unsigned long update_time;

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
		return;

	spin_lock(&dirty_lock);
	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
		update_dirty_limit(thresh, dirty);
		update_time = now;
	}
	spin_unlock(&dirty_lock);
}

/*
 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 *
 * Normal bdi tasks will be curbed at or below it in long term.
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
				       unsigned long thresh,
				       unsigned long bg_thresh,
				       unsigned long dirty,
				       unsigned long bdi_thresh,
				       unsigned long bdi_dirty,
				       unsigned long dirtied,
				       unsigned long elapsed)
{
	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
	unsigned long limit = hard_dirty_limit(thresh);
	unsigned long setpoint = (freerun + limit) / 2;
	unsigned long write_bw = bdi->avg_write_bandwidth;
	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
	unsigned long pos_ratio;
	unsigned long step;
	unsigned long x;

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;

	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
				       bdi_thresh, bdi_dirty);
	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
					pos_ratio >> RATELIMIT_CALC_SHIFT;
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;

	/*
	 * We could safely do this and return immediately:
	 *
	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
	 * code makes use of task_ratelimit to filter out sigular points and
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
	if (dirty < setpoint) {
		x = min(bdi->balanced_dirty_ratelimit,
			 min(balanced_dirty_ratelimit, task_ratelimit));
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
		x = max(bdi->balanced_dirty_ratelimit,
			 max(balanced_dirty_ratelimit, task_ratelimit));
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;

	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
}

void __bdi_update_bandwidth(struct backing_dev_info *bdi,
			    unsigned long thresh,
			    unsigned long bg_thresh,
			    unsigned long dirty,
			    unsigned long bdi_thresh,
			    unsigned long bdi_dirty,
			    unsigned long start_time)
{
	unsigned long now = jiffies;
	unsigned long elapsed = now - bdi->bw_time_stamp;
	unsigned long dirtied;
	unsigned long written;

	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
		goto snapshot;

	if (thresh) {
		global_update_bandwidth(thresh, dirty, now);
		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
					   bdi_thresh, bdi_dirty,
					   dirtied, elapsed);
	}
	bdi_update_write_bandwidth(bdi, elapsed, written);

snapshot:
	bdi->dirtied_stamp = dirtied;
	bdi->written_stamp = written;
	bdi->bw_time_stamp = now;
}

static void bdi_update_bandwidth(struct backing_dev_info *bdi,
				 unsigned long thresh,
				 unsigned long bg_thresh,
				 unsigned long dirty,
				 unsigned long bdi_thresh,
				 unsigned long bdi_dirty,
				 unsigned long start_time)
{
	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
		return;
	spin_lock(&bdi->wb.list_lock);
	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
			       bdi_thresh, bdi_dirty, start_time);
	spin_unlock(&bdi->wb.list_lock);
}

/*
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

static long bdi_max_pause(struct backing_dev_info *bdi,
			  unsigned long bdi_dirty)
{
	long bw = bdi->avg_write_bandwidth;
	long t;

	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
	t++;

	return min_t(long, t, MAX_PAUSE);
}

static long bdi_min_pause(struct backing_dev_info *bdi,
			  long max_pause,
			  unsigned long task_ratelimit,
			  unsigned long dirty_ratelimit,
			  int *nr_dirtied_pause)
{
	long hi = ilog2(bdi->avg_write_bandwidth);
	long lo = ilog2(bdi->dirty_ratelimit);
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */

	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
	 * (N * 10ms) on 2^N concurrent tasks.
	 */
	if (hi > lo)
		t += (hi - lo) * (10 * HZ) / 1024;

	/*
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
	 *
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
	 */
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);

	/*
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
	 */
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}

	*nr_dirtied_pause = pages;
	/*
	 * The minimal pause time will normally be half the target pause time.
	 */
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
}

/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
 */
static void balance_dirty_pages(struct address_space *mapping,
				unsigned long pages_dirtied)
{
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
	unsigned long bdi_reclaimable;
	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
	unsigned long bdi_dirty;
	unsigned long freerun;
	unsigned long background_thresh;
	unsigned long dirty_thresh;
	unsigned long bdi_thresh;
	long period;
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
	bool dirty_exceeded = false;
	unsigned long task_ratelimit;
	unsigned long dirty_ratelimit;
	unsigned long pos_ratio;
	struct backing_dev_info *bdi = mapping->backing_dev_info;
	unsigned long start_time = jiffies;

	for (;;) {
		unsigned long now = jiffies;

		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);

		global_dirty_limits(&background_thresh, &dirty_thresh);

		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
		 * when the bdi limits are ramping up.
		 */
		freerun = dirty_freerun_ceiling(dirty_thresh,
						background_thresh);
		if (nr_dirty <= freerun) {
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
			current->nr_dirtied_pause =
				dirty_poll_interval(nr_dirty, dirty_thresh);
			break;
		}

		if (unlikely(!writeback_in_progress(bdi)))
			bdi_start_background_writeback(bdi);

		/*
		 * bdi_thresh is not treated as some limiting factor as
		 * dirty_thresh, due to reasons
		 * - in JBOD setup, bdi_thresh can fluctuate a lot
		 * - in a system with HDD and USB key, the USB key may somehow
		 *   go into state (bdi_dirty >> bdi_thresh) either because
		 *   bdi_dirty starts high, or because bdi_thresh drops low.
		 *   In this case we don't want to hard throttle the USB key
		 *   dirtiers for 100 seconds until bdi_dirty drops under
		 *   bdi_thresh. Instead the auxiliary bdi control line in
		 *   bdi_position_ratio() will let the dirtier task progress
		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
		 */
		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);

		/*
		 * In order to avoid the stacked BDI deadlock we need
		 * to ensure we accurately count the 'dirty' pages when
		 * the threshold is low.
		 *
		 * Otherwise it would be possible to get thresh+n pages
		 * reported dirty, even though there are thresh-m pages
		 * actually dirty; with m+n sitting in the percpu
		 * deltas.
		 */
		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
			bdi_dirty = bdi_reclaimable +
				    bdi_stat_sum(bdi, BDI_WRITEBACK);
		} else {
			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
			bdi_dirty = bdi_reclaimable +
				    bdi_stat(bdi, BDI_WRITEBACK);
		}

		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
				  (nr_dirty > dirty_thresh);
		if (dirty_exceeded && !bdi->dirty_exceeded)
			bdi->dirty_exceeded = 1;

		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
				     nr_dirty, bdi_thresh, bdi_dirty,
				     start_time);

		dirty_ratelimit = bdi->dirty_ratelimit;
		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
					       background_thresh, nr_dirty,
					       bdi_thresh, bdi_dirty);
		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
							RATELIMIT_CALC_SHIFT;
		max_pause = bdi_max_pause(bdi, bdi_dirty);
		min_pause = bdi_min_pause(bdi, max_pause,
					  task_ratelimit, dirty_ratelimit,
					  &nr_dirtied_pause);

		if (unlikely(task_ratelimit == 0)) {
			period = max_pause;
			pause = max_pause;
			goto pause;
		}
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
		if (pause < min_pause) {
			trace_balance_dirty_pages(bdi,
						  dirty_thresh,
						  background_thresh,
						  nr_dirty,
						  bdi_thresh,
						  bdi_dirty,
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
						  period,
						  min(pause, 0L),
						  start_time);
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
			break;
		}
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}

pause:
		trace_balance_dirty_pages(bdi,
					  dirty_thresh,
					  background_thresh,
					  nr_dirty,
					  bdi_thresh,
					  bdi_dirty,
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
					  period,
					  pause,
					  start_time);
		__set_current_state(TASK_KILLABLE);
		io_schedule_timeout(pause);

		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
		current->nr_dirtied_pause = nr_dirtied_pause;

		/*
		 * This is typically equal to (nr_dirty < dirty_thresh) and can
		 * also keep "1000+ dd on a slow USB stick" under control.
		 */
		if (task_ratelimit)
			break;

		/*
		 * In the case of an unresponding NFS server and the NFS dirty
		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
		 * more page. However bdi_dirty has accounting errors.  So use
		 * the larger and more IO friendly bdi_stat_error.
		 */
		if (bdi_dirty <= bdi_stat_error(bdi))
			break;

		if (fatal_signal_pending(current))
			break;
	}

	if (!dirty_exceeded && bdi->dirty_exceeded)
		bdi->dirty_exceeded = 0;

	if (writeback_in_progress(bdi))
		return;

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
	if (laptop_mode)
		return;

	if (nr_reclaimable > background_thresh)
		bdi_start_background_writeback(bdi);
}

void set_page_dirty_balance(struct page *page, int page_mkwrite)
{
	if (set_page_dirty(page) || page_mkwrite) {
		struct address_space *mapping = page_mapping(page);

		if (mapping)
			balance_dirty_pages_ratelimited(mapping);
	}
}

static DEFINE_PER_CPU(int, bdp_ratelimits);

/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

/**
 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 * @mapping: address_space which was dirtied
 * @nr_pages_dirtied: number of pages which the caller has just dirtied
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
					unsigned long nr_pages_dirtied)
{
	struct backing_dev_info *bdi = mapping->backing_dev_info;
	int ratelimit;
	int *p;

	if (!bdi_cap_account_dirty(bdi))
		return;

	ratelimit = current->nr_dirtied_pause;
	if (bdi->dirty_exceeded)
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
	/*
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
	 */
	p =  &__get_cpu_var(bdp_ratelimits);
	if (unlikely(current->nr_dirtied >= ratelimit))
		*p = 0;
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
	}
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
	p = &__get_cpu_var(dirty_throttle_leaks);
	if (*p > 0 && current->nr_dirtied < ratelimit) {
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
	}
	preempt_enable();

	if (unlikely(current->nr_dirtied >= ratelimit))
		balance_dirty_pages(mapping, current->nr_dirtied);
}
EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);

void throttle_vm_writeout(gfp_t gfp_mask)
{
	unsigned long background_thresh;
	unsigned long dirty_thresh;

        for ( ; ; ) {
		global_dirty_limits(&background_thresh, &dirty_thresh);
		dirty_thresh = hard_dirty_limit(dirty_thresh);

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
                congestion_wait(BLK_RW_ASYNC, HZ/10);

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
int dirty_writeback_centisecs_handler(ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, buffer, length, ppos);
	bdi_arm_supers_timer();
	return 0;
}

#ifdef CONFIG_BLOCK
void laptop_mode_timer_fn(unsigned long data)
{
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);

	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
	if (bdi_has_dirty_io(&q->backing_dev_info))
		bdi_start_writeback(&q->backing_dev_info, nr_pages,
					WB_REASON_LAPTOP_TIMER);
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
void laptop_io_completion(struct backing_dev_info *info)
{
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
}
#endif

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 * thresholds.
 */

void writeback_set_ratelimit(void)
{
	unsigned long background_thresh;
	unsigned long dirty_thresh;
	global_dirty_limits(&background_thresh, &dirty_thresh);
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

static int __cpuinit
ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
{
	writeback_set_ratelimit();
	return NOTIFY_DONE;
}

static struct notifier_block __cpuinitdata ratelimit_nb = {
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
 */
void __init page_writeback_init(void)
{
	int shift;

	writeback_set_ratelimit();
	register_cpu_notifier(&ratelimit_nb);

	shift = calc_period_shift();
	prop_descriptor_init(&vm_completions, shift);
}

/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
#define WRITEBACK_TAG_BATCH 4096
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
}
EXPORT_SYMBOL(tag_pages_for_writeback);

/**
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 * @writepage: function called for each page
 * @data: data passed to writepage function
 *
 * If a page is already under I/O, write_cache_pages() skips it, even
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
 */
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
	pgoff_t uninitialized_var(writeback_index);
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	pgoff_t done_index;
	int cycled;
	int range_whole = 0;
	int tag;

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
		cycled = 1; /* ignore range_cyclic tests */
	}
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
retry:
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
		tag_pages_for_writeback(mapping, index, end);
	done_index = index;
	while (!done && (index <= end)) {
		int i;

		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

			done_index = page->index;

			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			trace_wbc_writepage(wbc, mapping->backing_dev_info);
			ret = (*writepage)(page, wbc, data);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
					done_index = page->index + 1;
					done = 1;
					break;
				}
			}

			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	if (!cycled && !done) {
		/*
		 * range_cyclic:
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
		cycled = 1;
		index = 0;
		end = writeback_index - 1;
		goto retry;
	}
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;

	return ret;
}
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
	struct blk_plug plug;
	int ret;

	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
}

EXPORT_SYMBOL(generic_writepages);

int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
	int ret;

	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
		ret = mapping->a_ops->writepages(mapping, wbc);
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
 * @page: the page to write
 * @wait: if true, wait on writeout
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
		return !TestSetPageDirty(page);
	return 0;
}

/*
 * Helper function for set_page_dirty family.
 * NOTE: This relies on being atomic wrt interrupts.
 */
void account_page_dirtied(struct page *page, struct address_space *mapping)
{
	if (mapping_cap_account_dirty(mapping)) {
		__inc_zone_page_state(page, NR_FILE_DIRTY);
		__inc_zone_page_state(page, NR_DIRTIED);
		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
		task_io_account_write(PAGE_CACHE_SIZE);
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
	}
}
EXPORT_SYMBOL(account_page_dirtied);

/*
 * Helper function for set_page_writeback family.
 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
 * wrt interrupts.
 */
void account_page_writeback(struct page *page)
{
	inc_zone_page_state(page, NR_WRITEBACK);
}
EXPORT_SYMBOL(account_page_writeback);

/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
 * Most callers have locked the page, which pins the address_space in memory.
 * But zap_pte_range() does not lock the page, however in that case the
 * mapping is pinned by the vma's ->vm_file reference.
 *
 * We take care to handle the case where the page was truncated from the
 * mapping by re-checking page_mapping() inside tree_lock.
 */
int __set_page_dirty_nobuffers(struct page *page)
{
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
		struct address_space *mapping2;

		if (!mapping)
			return 1;

		spin_lock_irq(&mapping->tree_lock);
		mapping2 = page_mapping(page);
		if (mapping2) { /* Race with truncate? */
			BUG_ON(mapping2 != mapping);
			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
			account_page_dirtied(page, mapping);
			radix_tree_tag_set(&mapping->page_tree,
				page_index(page), PAGECACHE_TAG_DIRTY);
		}
		spin_unlock_irq(&mapping->tree_lock);
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
		}
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
	if (mapping && mapping_cap_account_dirty(mapping)) {
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
	}
}
EXPORT_SYMBOL(account_page_redirty);

/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
	wbc->pages_skipped++;
	account_page_redirty(page);
	return __set_page_dirty_nobuffers(page);
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
int set_page_dirty(struct page *page)
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
		ClearPageReclaim(page);
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
	}
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

	lock_page(page);
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);

	BUG_ON(!PageLocked(page));

	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
		 * at this point. We do this by having them hold the
		 * page lock at some point after installing their
		 * pte, but before marking the page dirty.
		 * Pages are always locked coming in here, so we get
		 * the desired exclusion. See mm/memory.c:do_wp_page()
		 * for more comments.
		 */
		if (TestClearPageDirty(page)) {
			dec_zone_page_state(page, NR_FILE_DIRTY);
			dec_bdi_stat(mapping->backing_dev_info,
					BDI_RECLAIMABLE);
			return 1;
		}
		return 0;
	}
	return TestClearPageDirty(page);
}
EXPORT_SYMBOL(clear_page_dirty_for_io);

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int ret;

	if (mapping) {
		struct backing_dev_info *bdi = mapping->backing_dev_info;
		unsigned long flags;

		spin_lock_irqsave(&mapping->tree_lock, flags);
		ret = TestClearPageWriteback(page);
		if (ret) {
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
			if (bdi_cap_account_writeback(bdi)) {
				__dec_bdi_stat(bdi, BDI_WRITEBACK);
				__bdi_writeout_inc(bdi);
			}
		}
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
	} else {
		ret = TestClearPageWriteback(page);
	}
	if (ret) {
		dec_zone_page_state(page, NR_WRITEBACK);
		inc_zone_page_state(page, NR_WRITTEN);
	}
	return ret;
}

int test_set_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int ret;

	if (mapping) {
		struct backing_dev_info *bdi = mapping->backing_dev_info;
		unsigned long flags;

		spin_lock_irqsave(&mapping->tree_lock, flags);
		ret = TestSetPageWriteback(page);
		if (!ret) {
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
			if (bdi_cap_account_writeback(bdi))
				__inc_bdi_stat(bdi, BDI_WRITEBACK);
		}
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
		radix_tree_tag_clear(&mapping->page_tree,
				     page_index(page),
				     PAGECACHE_TAG_TOWRITE);
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
	} else {
		ret = TestSetPageWriteback(page);
	}
	if (!ret)
		account_page_writeback(page);
	return ret;

}
EXPORT_SYMBOL(test_set_page_writeback);

/*
 * Return true if any of the pages in the mapping are marked with the
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
	return radix_tree_tagged(&mapping->page_tree, tag);
}
EXPORT_SYMBOL(mapping_tagged);