/*
* Copyright (C) 2008, 2009 Intel Corporation
* Authors: Andi Kleen, Fengguang Wu
*
* This software may be redistributed and/or modified under the terms of
* the GNU General Public License ("GPL") version 2 only as published by the
* Free Software Foundation.
*
* High level machine check handler. Handles pages reported by the
* hardware as being corrupted usually due to a multi-bit ECC memory or cache
* failure.
*
* In addition there is a "soft offline" entry point that allows stop using
* not-yet-corrupted-by-suspicious pages without killing anything.
*
* Handles page cache pages in various states. The tricky part
* here is that we can access any page asynchronously in respect to
* other VM users, because memory failures could happen anytime and
* anywhere. This could violate some of their assumptions. This is why
* this code has to be extremely careful. Generally it tries to use
* normal locking rules, as in get the standard locks, even if that means
* the error handling takes potentially a long time.
*
* There are several operations here with exponential complexity because
* of unsuitable VM data structures. For example the operation to map back
* from RMAP chains to processes has to walk the complete process list and
* has non linear complexity with the number. But since memory corruptions
* are rare we hope to get away with this. This avoids impacting the core
* VM.
*/
/*
* Notebook:
* - hugetlb needs more code
* - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
* - pass bad pages to kdump next kernel
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/page-flags.h>
#include <linux/kernel-page-flags.h>
#include <linux/sched.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/backing-dev.h>
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/suspend.h>
#include <linux/slab.h>
#include <linux/swapops.h>
#include <linux/hugetlb.h>
#include <linux/memory_hotplug.h>
#include "internal.h"
int sysctl_memory_failure_early_kill __read_mostly = 0;
int sysctl_memory_failure_recovery __read_mostly = 1;
atomic_long_t mce_bad_pages __read_mostly