aboutsummaryrefslogtreecommitdiff
path: root/kernel/time/ntp.c
blob: 9c114b726ab3353e75fa222e8597e52db9d34a82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*
 * linux/kernel/time/ntp.c
 *
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */

#include <linux/mm.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/hrtimer.h>
#include <linux/capability.h>
#include <linux/math64.h>
#include <linux/clocksource.h>
#include <asm/timex.h>

/*
 * Timekeeping variables
 */
unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
unsigned long tick_nsec;			/* ACTHZ period (nsec) */
u64 tick_length;
static u64 tick_length_base;

static struct hrtimer leap_timer;

#define MAX_TICKADJ		500		/* microsecs */
#define MAX_TICKADJ_SCALED	(((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
				  NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)

/*
 * phase-lock loop variables
 */
/* TIME_ERROR prevents overwriting the CMOS clock */
static int time_state = TIME_OK;	/* clock synchronization status	*/
int time_status = STA_UNSYNC;		/* clock status bits		*/
static long time_tai;			/* TAI offset (s)		*/
static s64 time_offset;			/* time adjustment (ns)		*/
static long time_constant = 2;		/* pll time constant		*/
long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
static s64 time_freq;			/* frequency offset (scaled ns/s)*/
static long time_reftime;		/* time at last adjustment (s)	*/
long time_adjust;
static long ntp_tick_adj;

static void ntp_update_frequency(void)
{
	u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
				<< NTP_SCALE_SHIFT;
	second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
	second_length += time_freq;

	tick_length_base = second_length;

	tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
	tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);
}

static void ntp_update_offset(long offset)
{
	long mtemp;
	s64 freq_adj;

	if (!(time_status & STA_PLL))
		return;

	if (!(time_status & STA_NANO))
		offset *= NSEC_PER_USEC;

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
	offset = min(offset, MAXPHASE);
	offset = max(offset, -MAXPHASE);

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
	if (time_status & STA_FREQHOLD || time_reftime == 0)
		time_reftime = xtime.tv_sec;
	mtemp = xtime.tv_sec - time_reftime;
	time_reftime = xtime.tv_sec;

	freq_adj = (s64)offset * mtemp;
	freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
	time_status &= ~STA_MODE;
	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
		freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL),
				    mtemp);
		time_status |= STA_MODE;
	}
	freq_adj += time_freq;
	freq_adj = min(freq_adj, MAXFREQ_SCALED);
	time_freq = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
}

/**
 * ntp_clear - Clears the NTP state variables
 *
 * Must be called while holding a write on the xtime_lock
 */
void ntp_clear(void)
{
	time_adjust = 0;		/* stop active adjtime() */
	time_status |= STA_UNSYNC;
	time_maxerror = NTP_PHASE_LIMIT;
	time_esterror = NTP_PHASE_LIMIT;

	ntp_update_frequency();

	tick_length = tick_length_base;
	time_offset = 0;
}

/*
 * Leap second processing. If in leap-insert state at the end of the
 * day, the system clock is set back one second; if in leap-delete
 * state, the system clock is set ahead one second.
 */
static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
{
	enum hrtimer_restart res = HRTIMER_NORESTART;

	write_seqlock_irq(&xtime_lock);

	switch (time_state) {
	case TIME_OK:
		break;
	case TIME_INS:
		xtime.tv_sec--;
		wall_to_monotonic.tv_sec++;
		time_state = TIME_OOP;
		printk(KERN_NOTICE "Clock: "
		       "inserting leap second 23:59:60 UTC\n");
		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
		res = HRTIMER_RESTART;
		break;
	case TIME_DEL:
		xtime.tv_sec++;
		time_tai--;
		wall_to_monotonic.tv_sec--;
		time_state = TIME_WAIT;
		printk(KERN_NOTICE "Clock: "
		       "deleting leap second 23:59:59 UTC\n");
		break;
	case TIME_OOP:
		time_tai++;
		time_state = TIME_WAIT;
		/* fall through */
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
			time_state = TIME_OK;
		break;
	}
	update_vsyscall(&xtime, clock);

	write_sequnlock_irq(&xtime_lock);

	return res;
}

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 */
void second_overflow(void)
{
	s64 time_adj;

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
	}

	/*
	 * Compute the phase adjustment for the next second. The offset is
	 * reduced by a fixed factor times the time constant.
	 */
	tick_length = tick_length_base;
	time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
	time_offset -= time_adj;
	tick_length += time_adj;

	if (unlikely(time_adjust)) {
		if (time_adjust > MAX_TICKADJ) {
			time_adjust -= MAX_TICKADJ;
			tick_length += MAX_TICKADJ_SCALED;
		} else if (time_adjust < -MAX_TICKADJ) {
			time_adjust += MAX_TICKADJ;
			tick_length -= MAX_TICKADJ_SCALED;
		} else {
			tick_length += (s64)(time_adjust * NSEC_PER_USEC /
					NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;
			time_adjust = 0;
		}
	}
}

#ifdef CONFIG_GENERIC_CMOS_UPDATE

/* Disable the cmos update - used by virtualization and embedded */
int no_sync_cmos_clock  __read_mostly;

static void sync_cmos_clock(unsigned long dummy);

static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);

static void sync_cmos_clock(unsigned long dummy)
{
	struct timespec now, next;
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
	 */
	if (!ntp_synced())
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;

	getnstimeofday(&now);
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
		fail = update_persistent_clock(now);

	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

	if (!fail)
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
	mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
}

static void notify_cmos_timer(void)
{
	if (!no_sync_cmos_clock)
		mod_timer(&sync_cmos_timer, jiffies + 1);
}

#else
static inline void notify_cmos_timer(void) { }
#endif

/* adjtimex mainly allows reading (and writing, if superuser) of
 * kernel time-keeping variables. used by xntpd.
 */
int do_adjtimex(struct timex *txc)
{
	struct timespec ts;
	long save_adjust, sec;
	int result;

	/* In order to modify anything, you gotta be super-user! */
	if (txc->modes && !capable(CAP_SYS_TIME))
		return -EPERM;

	/* Now we validate the data before disabling interrupts */

	if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
		/* singleshot must not be used with any other mode bits */
		if (txc->modes & ~ADJ_OFFSET_SS_READ)
			return -EINVAL;
	}

	/* if the quartz is off by more than 10% something is VERY wrong ! */
	if (txc->modes & ADJ_TICK)
		if (txc->tick <  900000/USER_HZ ||
		    txc->tick > 1100000/USER_HZ)
			return -EINVAL;

	if (time_state != TIME_OK && txc->modes & ADJ_STATUS)
		hrtimer_cancel(&leap_timer);
	getnstimeofday(&ts);

	write_seqlock_irq(&xtime_lock);

	/* Save for later - semantics of adjtime is to return old value */
	save_adjust = time_adjust;

	/* If there are input parameters, then process them */
	if (txc->modes) {
		if (txc->modes & ADJ_STATUS) {
			if ((time_status & STA_PLL) &&
			    !(txc->status & STA_PLL)) {
				time_state = TIME_OK;
				time_status = STA_UNSYNC;
			}
			/* only set allowed bits */
			time_status &= STA_RONLY;
			time_status |= txc->status & ~STA_RONLY;

			switch (time_state) {
			case TIME_OK:
			start_timer:
				sec = ts.tv_sec;
				if (time_status & STA_INS) {
					time_state = TIME_INS;
					sec += 86400 - sec % 86400;
					hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
				} else if (time_status & STA_DEL) {
					time_state = TIME_DEL;
					sec += 86400 - (sec + 1) % 86400;
					hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
				}
				break;
			case TIME_INS:
			case TIME_DEL:
				time_state = TIME_OK;
				goto start_timer;
				break;
			case TIME_WAIT:
				if (!(time_status & (STA_INS | STA_DEL)))
					time_state = TIME_OK;
				break;
			case TIME_OOP:
				hrtimer_restart(&leap_timer);
				break;
			}
		}

		if (txc->modes & ADJ_NANO)
			time_status |= STA_NANO;
		if (txc->modes & ADJ_MICRO)
			time_status &= ~STA_NANO;

		if (txc->modes & ADJ_FREQUENCY) {
			time_freq = (s64)txc->freq * PPM_SCALE;
			time_freq = min(time_freq, MAXFREQ_SCALED);
			time_freq = max(time_freq, -MAXFREQ_SCALED);
		}

		if (txc->modes & ADJ_MAXERROR)
			time_maxerror = txc->maxerror;
		if (txc->modes & ADJ_ESTERROR)
			time_esterror = txc->esterror;

		if (txc->modes & ADJ_TIMECONST) {
			time_constant = txc->constant;
			if (!(time_status & STA_NANO))
				time_constant += 4;
			time_constant = min(time_constant, (long)MAXTC);
			time_constant = max(time_constant, 0l);
		}

		if (txc->modes & ADJ_TAI && txc->constant > 0)
			time_tai = txc->constant;

		if (txc->modes & ADJ_OFFSET) {
			if (txc->modes == ADJ_OFFSET_SINGLESHOT)
				/* adjtime() is independent from ntp_adjtime() */
				time_adjust = txc->offset;
			else
				ntp_update_offset(txc->offset);
		}
		if (txc->modes & ADJ_TICK)
			tick_usec = txc->tick;

		if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
			ntp_update_frequency();
	}

	result = time_state;	/* mostly `TIME_OK' */
	if (time_status & (STA_UNSYNC|STA_CLOCKERR))
		result = TIME_ERROR;

	if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
	    (txc->modes == ADJ_OFFSET_SS_READ))
		txc->offset = save_adjust;
	else {
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
					  NTP_SCALE_SHIFT);
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
	txc->freq	   = shift_right((s32)(time_freq >> PPM_SCALE_INV_SHIFT) *
					 (s64)PPM_SCALE_INV,
					 NTP_SCALE_SHIFT);
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
	txc->precision	   = 1;
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
	txc->tick	   = tick_usec;
	txc->tai	   = time_tai;

	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
	write_sequnlock_irq(&xtime_lock);

	txc->time.tv_sec = ts.tv_sec;
	txc->time.tv_usec = ts.tv_nsec;
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;

	notify_cmos_timer();

	return result;
}

static int __init ntp_tick_adj_setup(char *str)
{
	ntp_tick_adj = simple_strtol(str, NULL, 0);
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);

void __init ntp_init(void)
{
	ntp_clear();
	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	leap_timer.function = ntp_leap_second;
}