aboutsummaryrefslogtreecommitdiff
path: root/kernel/sched/wait.c
blob: 7d50f794e24802b024393d0c287fbfb1256d0b17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
 * Generic waiting primitives.
 *
 * (C) 2004 Nadia Yvette Chambers, Oracle
 */
#include <linux/init.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/wait.h>
#include <linux/hash.h>

void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
{
	spin_lock_init(&q->lock);
	lockdep_set_class_and_name(&q->lock, key, name);
	INIT_LIST_HEAD(&q->task_list);
}

EXPORT_SYMBOL(__init_waitqueue_head);

void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue);

void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	wait->flags |= WQ_FLAG_EXCLUSIVE;
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue_tail(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(add_wait_queue_exclusive);

void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(remove_wait_queue);


/*
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int wake_flags, void *key)
{
	wait_queue_t *curr, *next;

	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
		unsigned flags = curr->flags;

		if (curr->func(curr, mode, wake_flags, key) &&
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 * @key: is directly passed to the wakeup function
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
void __wake_up(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
{
	__wake_up_common(q, mode, nr, 0, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_locked);

void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
EXPORT_SYMBOL_GPL(__wake_up_locked_key);

/**
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 * @key: opaque value to be passed to wakeup targets
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
{
	unsigned long flags;
	int wake_flags = 1; /* XXX WF_SYNC */

	if (unlikely(!q))
		return;

	if (unlikely(nr_exclusive != 1))
		wake_flags = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

/*
 * Note: we use "set_current_state()" _after_ the wait-queue add,
 * because we need a memory barrier there on SMP, so that any
 * wake-function that tests for the wait-queue being active
 * will be guaranteed to see waitqueue addition _or_ subsequent
 * tests in this thread will see the wakeup having taken place.
 *
 * The spin_unlock() itself is semi-permeable and only protects
 * one way (it only protects stuff inside the critical region and
 * stops them from bleeding out - it would still allow subsequent
 * loads to move into the critical region).
 */
void
prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
	unsigned long flags;

	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	set_current_state(state);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait);

void
prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
	unsigned long flags;

	wait->flags |= WQ_FLAG_EXCLUSIVE;
	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue_tail(q, wait);
	set_current_state(state);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(prepare_to_wait_exclusive);

long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
{
	unsigned long flags;

	if (signal_pending_state(state, current))
		return -ERESTARTSYS;

	wait->private = current;
	wait->func = autoremove_wake_function;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list)) {
		if (wait->flags & WQ_FLAG_EXCLUSIVE)
			__add_wait_queue_tail(q, wait);
		else
			__add_wait_queue(q, wait);
	}
	set_current_state(state);
	spin_unlock_irqrestore(&q->lock, flags);

	return 0;
}
EXPORT_SYMBOL(prepare_to_wait_event);

/**
 * finish_wait - clean up after waiting in a queue
 * @q: waitqueue waited on
 * @wait: wait descriptor
 *
 * Sets current thread back to running state and removes
 * the wait descriptor from the given waitqueue if still
 * queued.
 */
void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	__set_current_state(TASK_RUNNING);
	/*
	 * We can check for list emptiness outside the lock
	 * IFF:
	 *  - we use the "careful" check that verifies both
	 *    the next and prev pointers, so that there cannot
	 *    be any half-pending updates in progress on other
	 *    CPU's that we haven't seen yet (and that might
	 *    still change the stack area.
	 * and
	 *  - all other users take the lock (ie we can only
	 *    have _one_ other CPU that looks at or modifies
	 *    the list).
	 */
	if (!list_empty_careful(&wait->task_list)) {
		spin_lock_irqsave(&q->lock, flags);
		list_del_init(&wait->task_list);
		spin_unlock_irqrestore(&q->lock, flags);
	}
}
EXPORT_SYMBOL(finish_wait);

/**
 * abort_exclusive_wait - abort exclusive waiting in a queue
 * @q: waitqueue waited on
 * @wait: wait descriptor
 * @mode: runstate of the waiter to be woken
 * @key: key to identify a wait bit queue or %NULL
 *
 * Sets current thread back to running state and removes
 * the wait descriptor from the given waitqueue if still
 * queued.
 *
 * Wakes up the next waiter if the caller is concurrently
 * woken up through the queue.
 *
 * This prevents waiter starvation where an exclusive waiter
 * aborts and is woken up concurrently and no one wakes up
 * the next waiter.
 */
void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
			unsigned int mode, void *key)
{
	unsigned long flags;

	__set_current_state(TASK_RUNNING);
	spin_lock_irqsave(&q->lock, flags);
	if (!list_empty(&wait->task_list))
		list_del_init(&wait->task_list);
	else if (waitqueue_active(q))
		__wake_up_locked_key(q, mode, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(abort_exclusive_wait);

int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
{
	int ret = default_wake_function(wait, mode, sync, key);

	if (ret)
		list_del_init(&wait->task_list);
	return ret;
}
EXPORT_SYMBOL(autoremove_wake_function);

int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
{
	struct wait_bit_key *key = arg;
	struct wait_bit_queue *wait_bit
		= container_of(wait, struct wait_bit_queue, wait);

	if (wait_bit->key.flags != key->flags ||
			wait_bit->key.bit_nr != key->bit_nr ||
			test_bit(key->bit_nr, key->flags))
		return 0;
	else
		return autoremove_wake_function(wait, mode, sync, key);
}
EXPORT_SYMBOL(wake_bit_function);

/*
 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
 * permitted return codes. Nonzero return codes halt waiting and return.
 */
int __sched
__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
			int (*action)(void *), unsigned mode)
{
	int ret = 0;

	do {
		prepare_to_wait(wq, &q->wait, mode);
		if (test_bit(q->key.bit_nr, q->key.flags))
			ret = (*action)(q->key.flags);
	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
	finish_wait(wq, &q->wait);
	return ret;
}
EXPORT_SYMBOL(__wait_on_bit);

int __sched out_of_line_wait_on_bit(void *word, int bit,
					int (*action)(void *), unsigned mode)
{
	wait_queue_head_t *wq = bit_waitqueue(word, bit);
	DEFINE_WAIT_BIT(wait, word, bit);

	return __wait_on_bit(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit);

int __sched
__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
			int (*action)(void *), unsigned mode)
{
	do {
		int ret;

		prepare_to_wait_exclusive(wq, &q->wait, mode);
		if (!test_bit(q->key.bit_nr, q->key.flags))
			continue;
		ret = action(q->key.flags);
		if (!ret)
			continue;
		abort_exclusive_wait(wq, &q->wait, mode, &q->key);
		return ret;
	} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
	finish_wait(wq, &q->wait);
	return 0;
}
EXPORT_SYMBOL(__wait_on_bit_lock);

int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
					int (*action)(void *), unsigned mode)
{
	wait_queue_head_t *wq = bit_waitqueue(word, bit);
	DEFINE_WAIT_BIT(wait, word, bit);

	return __wait_on_bit_lock(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);

void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
{
	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
	if (waitqueue_active(wq))
		__wake_up(wq, TASK_NORMAL, 1, &key);
}
EXPORT_SYMBOL(__wake_up_bit);

/**
 * wake_up_bit - wake up a waiter on a bit
 * @word: the word being waited on, a kernel virtual address
 * @bit: the bit of the word being waited on
 *
 * There is a standard hashed waitqueue table for generic use. This
 * is the part of the hashtable's accessor API that wakes up waiters
 * on a bit. For instance, if one were to have waiters on a bitflag,
 * one would call wake_up_bit() after clearing the bit.
 *
 * In order for this to function properly, as it uses waitqueue_active()
 * internally, some kind of memory barrier must be done prior to calling
 * this. Typically, this will be smp_mb__after_clear_bit(), but in some
 * cases where bitflags are manipulated non-atomically under a lock, one
 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
 * because spin_unlock() does not guarantee a memory barrier.
 */
void wake_up_bit(void *word, int bit)
{
	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
}
EXPORT_SYMBOL(wake_up_bit);

wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
	const struct zone *zone = page_zone(virt_to_page(word));
	unsigned long val = (unsigned long)word << shift | bit;

	return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
}
EXPORT_SYMBOL(bit_waitqueue);

/*
 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
 * index (we're keying off bit -1, but that would produce a horrible hash
 * value).
 */
static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
{
	if (BITS_PER_LONG == 64) {
		unsigned long q = (unsigned long)p;
		return bit_waitqueue((void *)(q & ~1), q & 1);
	}
	return bit_waitqueue(p, 0);
}

static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
				  void *arg)
{
	struct wait_bit_key *key = arg;
	struct wait_bit_queue *wait_bit
		= container_of(wait, struct wait_bit_queue, wait);
	atomic_t *val = key->flags;

	if (wait_bit->key.flags != key->flags ||
	    wait_bit->key.bit_nr != key->bit_nr ||
	    atomic_read(val) != 0)
		return 0;
	return autoremove_wake_function(wait, mode, sync, key);
}

/*
 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
 * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
 * return codes halt waiting and return.
 */
static __sched
int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
		       int (*action)(atomic_t *), unsigned mode)
{
	atomic_t *val;
	int ret = 0;

	do {
		prepare_to_wait(wq, &q->wait, mode);
		val = q->key.flags;
		if (atomic_read(val) == 0)
			break;
		ret = (*action)(val);
	} while (!ret && atomic_read(val) != 0);
	finish_wait(wq, &q->wait);
	return ret;
}

#define DEFINE_WAIT_ATOMIC_T(name, p)					\
	struct wait_bit_queue name = {					\
		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
		.wait	= {						\
			.private	= current,			\
			.func		= wake_atomic_t_function,	\
			.task_list	=				\
				LIST_HEAD_INIT((name).wait.task_list),	\
		},							\
	}

__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
					 unsigned mode)
{
	wait_queue_head_t *wq = atomic_t_waitqueue(p);
	DEFINE_WAIT_ATOMIC_T(wait, p);

	return __wait_on_atomic_t(wq, &wait, action, mode);
}
EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);

/**
 * wake_up_atomic_t - Wake up a waiter on a atomic_t
 * @p: The atomic_t being waited on, a kernel virtual address
 *
 * Wake up anyone waiting for the atomic_t to go to zero.
 *
 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
 * check is done by the waiter's wake function, not the by the waker itself).
 */
void wake_up_atomic_t(atomic_t *p)
{
	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
}
EXPORT_SYMBOL(wake_up_atomic_t);