/*
* RT-Mutexes: simple blocking mutual exclusion locks with PI support
*
* started by Ingo Molnar and Thomas Gleixner.
*
* Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
* Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
* Copyright (C) 2006 Esben Nielsen
*
* See Documentation/rt-mutex-design.txt for details.
*/
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include "rtmutex_common.h"
/*
* lock->owner state tracking:
*
* lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
* are used to keep track of the "owner is pending" and "lock has
* waiters" state.
*
* owner bit1 bit0
* NULL 0 0 lock is free (fast acquire possible)
* NULL 0 1 invalid state
* NULL 1 0 Transitional State*
* NULL 1 1 invalid state
* taskpointer 0 0 lock is held (fast release possible)
* taskpointer 0 1 task is pending owner
* taskpointer 1 0 lock is held and has waiters
* taskpointer 1 1 task is pending owner and lock has more waiters
*
* Pending ownership is assigned to the top (highest priority)
* waiter of the lock, when the lock is released. The thread is woken
* up and can now take the lock. Until the lock is taken (bit 0
* cleared) a competing higher priority thread can steal the lock
* which puts the woken up thread back on the waiters list.
*
* The fast atomic compare exchange based acquire and release is only
* possible when bit 0 and 1 of lock->owner are 0.
*
* (*) There's a small time where the owner can be NULL and the
* "lock has waiters" bit is set. This can happen when grabbing the lock.
* To prevent a cmpxchg of the owner releasing the lock, we need to set this
* bit before looking at the lock, hence the reason this is a transitional
* state.
*/
static void
rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
unsigned long mask)
{
unsigned long val = (unsigned long)owner | mask;
if (rt_mutex_has_waiters(lock))
val |= RT_MUTEX_HAS_WAITERS;
lock->owner = (struct task_struct *)val;
}
static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
{
lock->owner = (struct task_struct *)
((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
}
static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
{
if (!rt_mutex_has_waiters(lock))
clear_rt_mutex_waiters(lock);
}
/*
* We can speed up the acquire/release, if the architecture
* supports cmpxchg and if there's no debugging state to be set up
*/
#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
unsigned long owner, *p = (unsigned long *) &lock->owner;
do {
owner = *p;
} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
}
#else
# define rt_mutex_cmpxchg(l,c,n) (0)
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
lock->owner = (struct task_struct *)
((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
}
#endif
/*
* Calculate task priority from the waiter list priority
*
* Return task->normal_prio when the waiter list is empty or when
* the waiter is not allowed to do priority boosting
*/
int rt_mutex_getprio(struct task_struct *task)
{
if (likely(!task_has_pi_waiters(task)))
return task->normal_prio;
return min(task_top_pi_waiter(task)->pi_list_entry.prio,
task->normal_prio);
}
/*
* Adjust the priority of a task, after its pi_waiters got modified.
*
* This can be both boosting and unboosting. task->pi_lock must be held.
*/
static void __rt_mutex_adjust_prio(struct task_struct *task)
{
int prio = rt_mutex_getprio(task);
if (task->prio != prio)
rt_mutex_setprio(task, prio);
}
/*
* Adjust task priority (undo boosting). Called from the exit path of
* rt_mutex_slowunlock() and rt_mutex_slowlock().
*
* (Note: We do this outside of the protection of lock->wait_lock to
* allow the lock to be taken while or before we readjust the priority
* of task. We do not use the spin_xx_mutex() variants here as we are
* outside of the debug path.)
*/
static void rt_mutex_adjust_prio(struct task_struct *task)
{
unsigned long flags;
spin_lock_irqsave(&task->pi_lock, flags);
__rt_mutex_adjust_prio(task);
spin_unlock_irqrestore(&task->pi_lock, flags);
}
/*
* Max number of times we'll walk the boosting chain:
*/
int max_lock_depth = 1024;
/*
* Adjust the priority chain. Also used for deadlock detection.
* Decreases task's usage by one - may thus free the task.
* Returns 0 or -EDEADLK.
*/
static int rt_mutex_adjust_prio_chain(struct task_struct *task,
int deadlock_detect,
struct rt_mutex *orig_lock,
struct rt_mutex_waiter *orig_waiter,
struct task_struct