aboutsummaryrefslogtreecommitdiff
path: root/include/xen/interface/io/ring.h
blob: 75271b9a8f61bedcec5a18465b5a9ca8e84a38c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/******************************************************************************
 * ring.h
 *
 * Shared producer-consumer ring macros.
 *
 * Tim Deegan and Andrew Warfield November 2004.
 */

#ifndef __XEN_PUBLIC_IO_RING_H__
#define __XEN_PUBLIC_IO_RING_H__

typedef unsigned int RING_IDX;

/* Round a 32-bit unsigned constant down to the nearest power of two. */
#define __RD2(_x)  (((_x) & 0x00000002) ? 0x2		       : ((_x) & 0x1))
#define __RD4(_x)  (((_x) & 0x0000000c) ? __RD2((_x)>>2)<<2    : __RD2(_x))
#define __RD8(_x)  (((_x) & 0x000000f0) ? __RD4((_x)>>4)<<4    : __RD4(_x))
#define __RD16(_x) (((_x) & 0x0000ff00) ? __RD8((_x)>>8)<<8    : __RD8(_x))
#define __RD32(_x) (((_x) & 0xffff0000) ? __RD16((_x)>>16)<<16 : __RD16(_x))

/*
 * Calculate size of a shared ring, given the total available space for the
 * ring and indexes (_sz), and the name tag of the request/response structure.
 * A ring contains as many entries as will fit, rounded down to the nearest
 * power of two (so we can mask with (size-1) to loop around).
 */
#define __CONST_RING_SIZE(_s, _sz)				\
	(__RD32(((_sz) - offsetof(struct _s##_sring, ring)) /	\
		sizeof(((struct _s##_sring *)0)->ring[0])))

/*
 * The same for passing in an actual pointer instead of a name tag.
 */
#define __RING_SIZE(_s, _sz)						\
	(__RD32(((_sz) - (long)&(_s)->ring + (long)(_s)) / sizeof((_s)->ring[0])))

/*
 * Macros to make the correct C datatypes for a new kind of ring.
 *
 * To make a new ring datatype, you need to have two message structures,
 * let's say struct request, and struct response already defined.
 *
 * In a header where you want the ring datatype declared, you then do:
 *
 *     DEFINE_RING_TYPES(mytag, struct request, struct response);
 *
 * These expand out to give you a set of types, as you can see below.
 * The most important of these are:
 *
 *     struct mytag_sring      - The shared ring.
 *     struct mytag_front_ring - The 'front' half of the ring.
 *     struct mytag_back_ring  - The 'back' half of the ring.
 *
 * To initialize a ring in your code you need to know the location and size
 * of the shared memory area (PAGE_SIZE, for instance). To initialise
 * the front half:
 *
 *     struct mytag_front_ring front_ring;
 *     SHARED_RING_INIT((struct mytag_sring *)shared_page);
 *     FRONT_RING_INIT(&front_ring, (struct mytag_sring *)shared_page,
 *		       PAGE_SIZE);
 *
 * Initializing the back follows similarly (note that only the front
 * initializes the shared ring):
 *
 *     struct mytag_back_ring back_ring;
 *     BACK_RING_INIT(&back_ring, (struct mytag_sring *)shared_page,
 *		      PAGE_SIZE);
 */

#define DEFINE_RING_TYPES(__name, __req_t, __rsp_t)			\
									\
/* Shared ring entry */							\
union __name##_sring_entry {						\
    __req_t req;							\
    __rsp_t rsp;							\
};									\
									\
/* Shared ring page */							\
struct __name##_sring {							\
    RING_IDX req_prod, req_event;					\
    RING_IDX rsp_prod, rsp_event;					\
    uint8_t  pad[48];							\
    union __name##_sring_entry ring[1]; /* variable-length */		\
};									\
									\
/* "Front" end's private variables */					\
struct __name##_front_ring {						\
    RING_IDX req_prod_pvt;						\
    RING_IDX rsp_cons;							\
    unsigned int nr_ents;						\
    struct __name##_sring *sring;					\
};									\
									\
/* "Back" end's private variables */					\
struct __name##_back_ring {						\
    RING_IDX rsp_prod_pvt;						\
    RING_IDX req_cons;							\
    unsigned int nr_ents;						\
    struct __name##_sring *sring;					\
};

/*
 * Macros for manipulating rings.
 *
 * FRONT_RING_whatever works on the "front end" of a ring: here
 * requests are pushed on to the ring and responses taken off it.
 *
 * BACK_RING_whatever works on the "back end" of a ring: here
 * requests are taken off the ring and responses put on.
 *
 * N.B. these macros do NO INTERLOCKS OR FLOW CONTROL.
 * This is OK in 1-for-1 request-response situations where the
 * requestor (front end) never has more than RING_SIZE()-1
 * outstanding requests.
 */

/* Initialising empty rings */
#define SHARED_RING_INIT(_s) do {					\
    (_s)->req_prod  = (_s)->rsp_prod  = 0;				\
    (_s)->req_event = (_s)->rsp_event = 1;				\
    memset((_s)->pad, 0, sizeof((_s)->pad));				\
} while(0)

#define FRONT_RING_INIT(_r, _s, __size) do {				\
    (_r)->req_prod_pvt = 0;						\
    (_r)->rsp_cons = 0;							\
    (_r)->nr_ents = __RING_SIZE(_s, __size);				\
    (_r)->sring = (_s);							\
} while (0)

#define BACK_RING_INIT(_r, _s, __size) do {				\
    (_r)->rsp_prod_pvt = 0;						\
    (_r)->req_cons = 0;							\
    (_r)->nr_ents = __RING_SIZE(_s, __size);				\
    (_r)->sring = (_s);							\
} while (0)

/* Initialize to existing shared indexes -- for recovery */
#define FRONT_RING_ATTACH(_r, _s, __size) do {				\
    (_r)->sring = (_s);							\
    (_r)->req_prod_pvt = (_s)->req_prod;				\
    (_r)->rsp_cons = (_s)->rsp_prod;					\
    (_r)->nr_ents = __RING_SIZE(_s, __size);				\
} while (0)

#define BACK_RING_ATTACH(_r, _s, __size) do {				\
    (_r)->sring = (_s);							\
    (_r)->rsp_prod_pvt = (_s)->rsp_prod;				\
    (_r)->req_cons = (_s)->req_prod;					\
    (_r)->nr_ents = __RING_SIZE(_s, __size);				\
} while (0)

/* How big is this ring? */
#define RING_SIZE(_r)							\
    ((_r)->nr_ents)

/* Number of free requests (for use on front side only). */
#define RING_FREE_REQUESTS(_r)						\
    (RING_SIZE(_r) - ((_r)->req_prod_pvt - (_r)->rsp_cons))

/* Test if there is an empty slot available on the front ring.
 * (This is only meaningful from the front. )
 */
#define RING_FULL(_r)							\
    (RING_FREE_REQUESTS(_r) == 0)

/* Test if there are outstanding messages to be processed on a ring. */
#define RING_HAS_UNCONSUMED_RESPONSES(_r)				\
    ((_r)->sring->rsp_prod - (_r)->rsp_cons)

#define RING_HAS_UNCONSUMED_REQUESTS(_r)				\
    ({									\
	unsigned int req = (_r)->sring->req_prod - (_r)->req_cons;	\
	unsigned int rsp = RING_SIZE(_r) -				\
			   ((_r)->req_cons - (_r)->rsp_prod_pvt);	\
	req < rsp ? req : rsp;						\
    })

/* Direct access to individual ring elements, by index. */
#define RING_GET_REQUEST(_r, _idx)					\
    (&((_r)->sring->ring[((_idx) & (RING_SIZE(_r) - 1))].req))

#define RING_GET_RESPONSE(_r, _idx)					\
    (&((_r)->sring->ring[((_idx) & (RING_SIZE(_r) - 1))].rsp))

/* Loop termination condition: Would the specified index overflow the ring? */
#define RING_REQUEST_CONS_OVERFLOW(_r, _cons)				\
    (((_cons) - (_r)->rsp_prod_pvt) >= RING_SIZE(_r))

#define RING_PUSH_REQUESTS(_r) do {					\
    wmb(); /* back sees requests /before/ updated producer index */	\
    (_r)->sring->req_prod = (_r)->req_prod_pvt;				\
} while (0)

#define RING_PUSH_RESPONSES(_r) do {					\
    wmb(); /* front sees responses /before/ updated producer index */	\
    (_r)->sring->rsp_prod = (_r)->rsp_prod_pvt;				\
} while (0)

/*
 * Notification hold-off (req_event and rsp_event):
 *
 * When queueing requests or responses on a shared ring, it may not always be
 * necessary to notify the remote end. For example, if requests are in flight
 * in a backend, the front may be able to queue further requests without
 * notifying the back (if the back checks for new requests when it queues
 * responses).
 *
 * When enqueuing requests or responses:
 *
 *  Use RING_PUSH_{REQUESTS,RESPONSES}_AND_CHECK_NOTIFY(). The second argument
 *  is a boolean return value. True indicates that the receiver requires an
 *  asynchronous notification.
 *
 * After dequeuing requests or responses (before sleeping the connection):
 *
 *  Use RING_FINAL_CHECK_FOR_REQUESTS() or RING_FINAL_CHECK_FOR_RESPONSES().
 *  The second argument is a boolean return value. True indicates that there
 *  are pending messages on the ring (i.e., the connection should not be put
 *  to sleep).
 *
 *  These macros will set the req_event/rsp_event field to trigger a
 *  notification on the very next message that is enqueued. If you want to
 *  create batches of work (i.e., only receive a notification after several
 *  messages have been enqueued) then you will need to create a customised
 *  version of the FINAL_CHECK macro in your own code, which sets the event
 *  field appropriately.
 */

#define RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(_r, _notify) do {		\
    RING_IDX __old = (_r)->sring->req_prod;				\
    RING_IDX __new = (_r)->req_prod_pvt;				\
    wmb(); /* back sees requests /before/ updated producer index */	\
    (_r)->sring->req_prod = __new;					\
    mb(); /* back sees new requests /before/ we check req_event */	\
    (_notify) = ((RING_IDX)(__new - (_r)->sring->req_event) <		\
		 (RING_IDX)(__new - __old));				\
} while (0)

#define RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(_r, _notify) do {		\
    RING_IDX __old = (_r)->sring->rsp_prod;				\
    RING_IDX __new = (_r)->rsp_prod_pvt;				\
    wmb(); /* front sees responses /before/ updated producer index */	\
    (_r)->sring->rsp_prod = __new;					\
    mb(); /* front sees new responses /before/ we check rsp_event */	\
    (_notify) = ((RING_IDX)(__new - (_r)->sring->rsp_event) <		\
		 (RING_IDX)(__new - __old));				\
} while (0)

#define RING_FINAL_CHECK_FOR_REQUESTS(_r, _work_to_do) do {		\
    (_work_to_do) = RING_HAS_UNCONSUMED_REQUESTS(_r);			\
    if (_work_to_do) break;						\
    (_r)->sring->req_event = (_r)->req_cons + 1;			\
    mb();								\
    (_work_to_do) = RING_HAS_UNCONSUMED_REQUESTS(_r);			\
} while (0)

#define RING_FINAL_CHECK_FOR_RESPONSES(_r, _work_to_do) do {		\
    (_work_to_do) = RING_HAS_UNCONSUMED_RESPONSES(_r);			\
    if (_work_to_do) break;						\
    (_r)->sring->rsp_event = (_r)->rsp_cons + 1;			\
    mb();								\
    (_work_to_do) = RING_HAS_UNCONSUMED_RESPONSES(_r);			\
} while (0)

#endif /* __XEN_PUBLIC_IO_RING_H__ */