#ifndef __LINUX_USB_H
#define __LINUX_USB_H
#include <linux/mod_devicetable.h>
#include <linux/usb_ch9.h>
#define USB_MAJOR 180
#define USB_DEVICE_MAJOR 189
#ifdef __KERNEL__
#include <linux/errno.h> /* for -ENODEV */
#include <linux/delay.h> /* for mdelay() */
#include <linux/interrupt.h> /* for in_interrupt() */
#include <linux/list.h> /* for struct list_head */
#include <linux/kref.h> /* for struct kref */
#include <linux/device.h> /* for struct device */
#include <linux/fs.h> /* for struct file_operations */
#include <linux/completion.h> /* for struct completion */
#include <linux/sched.h> /* for current && schedule_timeout */
#include <linux/mutex.h> /* for struct mutex */
struct usb_device;
struct usb_driver;
/*-------------------------------------------------------------------------*/
/*
* Host-side wrappers for standard USB descriptors ... these are parsed
* from the data provided by devices. Parsing turns them from a flat
* sequence of descriptors into a hierarchy:
*
* - devices have one (usually) or more configs;
* - configs have one (often) or more interfaces;
* - interfaces have one (usually) or more settings;
* - each interface setting has zero or (usually) more endpoints.
*
* And there might be other descriptors mixed in with those.
*
* Devices may also have class-specific or vendor-specific descriptors.
*/
struct ep_device;
/**
* struct usb_host_endpoint - host-side endpoint descriptor and queue
* @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
* @urb_list: urbs queued to this endpoint; maintained by usbcore
* @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
* with one or more transfer descriptors (TDs) per urb
* @ep_dev: ep_device for sysfs info
* @extra: descriptors following this endpoint in the configuration
* @extralen: how many bytes of "extra" are valid
*
* USB requests are always queued to a given endpoint, identified by a
* descriptor within an active interface in a given USB configuration.
*/
struct usb_host_endpoint {
struct usb_endpoint_descriptor desc;
struct list_head urb_list;
void *hcpriv;
struct ep_device *ep_dev; /* For sysfs info */
unsigned char *extra; /* Extra descriptors */
int extralen;
};
/* host-side wrapper for one interface setting's parsed descriptors */
struct usb_host_interface {
struct usb_interface_descriptor desc;
/* array of desc.bNumEndpoint endpoints associated with this
* interface setting. these will be in no particular order.
*/
struct usb_host_endpoint *endpoint;
char *string; /* iInterface string, if present */
unsigned char *extra; /* Extra descriptors */
int extralen;
};
enum usb_interface_condition {
USB_INTERFACE_UNBOUND = 0,
USB_INTERFACE_BINDING,
USB_INTERFACE_BOUND,
USB_INTERFACE_UNBINDING,
};
/**
* struct usb_interface - what usb device drivers talk to
* @altsetting: array of interface structures, one for each alternate
* setting that may be selected. Each one includes a set of
* endpoint configurations. They will be in no particular order.
* @num_altsetting: number of altsettings defined.
* @cur_altsetting: the current altsetting.
* @driver: the USB driver that is bound to this interface.
* @minor: the minor number assigned to this interface, if this
* interface is bound to a driver that uses the USB major number.
* If this interface does not use the USB major, this field should
* be unused. The driver should set this value in the probe()
* function of the driver, after it has been assigned a minor
* number from the USB core by calling usb_register_dev().
* @condition: binding state of the interface: not bound, binding
* (in probe()), bound to a driver, or unbinding (in disconnect())
* @is_active: flag set when the interface is bound and not suspended.
* @needs_remote_wakeup: flag set when the driver requires remote-wakeup
* capability during autosuspend.
* @dev: driver model's view of this device
* @class_dev: driver model's class view of this device.
* @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
* allowed unless the counter is 0.
*
* USB device drivers attach to interfaces on a physical device. Each
* interface encapsulates a single high level function, such as feeding
* an audio stream to a speaker or reporting a change in a volume control.
* Many USB devices only have one interface. The protocol used to talk to
* an interface's endpoints can be defined in a usb "class" specification,
* or by a product's vendor. The (default) control endpoint is part of
* every interface, but is never listed among the interface's descriptors.
*
* The driver that is bound to the interface can use standard driver model
* calls such as dev_get_drvdata() on the dev member of this structure.
*
* Each interface may have alternate settings. The initial configuration
* of a device sets altsetting 0, but the device driver can change
* that setting using usb_set_interface(). Alternate settings are often
* used to control the the use of periodic endpoints, such as by having
* different endpoints use different amounts of reserved USB bandwidth.
* All standards-conformant USB devices that use isochronous endpoints
* will use them in non-default settings.
*
* The USB specification says that alternate setting numbers must run from
* 0 to one less than the total number of alternate settings. But some
* devic