aboutsummaryrefslogtreecommitdiff
path: root/include/asm-xtensa/xtensa/coreasm.h
blob: a8cfb54c20a15e89de7cdd9ae23947979bee54dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#ifndef XTENSA_COREASM_H
#define XTENSA_COREASM_H

/*
 * THIS FILE IS GENERATED -- DO NOT MODIFY BY HAND
 *
 * include/asm-xtensa/xtensa/coreasm.h -- assembler-specific
 * definitions that depend on CORE configuration.
 *
 * Source for configuration-independent binaries (which link in a
 * configuration-specific HAL library) must NEVER include this file.
 * It is perfectly normal, however, for the HAL itself to include this
 * file.
 *
 * This file must NOT include xtensa/config/system.h.  Any assembler
 * header file that depends on system information should likely go in
 * a new systemasm.h (or sysasm.h) header file.
 *
 *  NOTE: macro beqi32 is NOT configuration-dependent, and is placed
 *        here til we will have configuration-independent header file.
 *
 * This file is subject to the terms and conditions of the GNU General
 * Public License.  See the file "COPYING" in the main directory of
 * this archive for more details.
 *
 * Copyright (C) 2002 Tensilica Inc.
 */


#include <xtensa/config/core.h>
#include <xtensa/config/specreg.h>

/*
 *  Assembly-language specific definitions (assembly macros, etc.).
 */

/*----------------------------------------------------------------------
 *  find_ms_setbit
 *
 *  This macro finds the most significant bit that is set in <as>
 *  and return its index + <base> in <ad>, or <base> - 1 if <as> is zero.
 *  The index counts starting at zero for the lsbit, so the return
 *  value ranges from <base>-1 (no bit set) to <base>+31 (msbit set).
 *
 *  Parameters:
 *	<ad>	destination address register (any register)
 *	<as>	source address register
 *	<at>	temporary address register (must be different than <as>)
 *	<base>	constant value added to result (usually 0 or 1)
 *  On entry:
 *	<ad> = undefined if different than <as>
 *	<as> = value whose most significant set bit is to be found
 *	<at> = undefined
 *	no other registers are used by this macro.
 *  On exit:
 *	<ad> = <base> + index of msbit set in original <as>,
 *	     = <base> - 1 if original <as> was zero.
 *	<as> clobbered (if not <ad>)
 *	<at> clobbered (if not <ad>)
 *  Example:
 *	find_ms_setbit a0, a4, a0, 0		-- return in a0 index of msbit set in a4
 */

	.macro	find_ms_setbit ad, as, at, base
#if XCHAL_HAVE_NSA
	movi	\at, 31+\base
	nsau	\as, \as	// get index of \as, numbered from msbit (32 if absent)
	sub	\ad, \at, \as	// get numbering from lsbit (0..31, -1 if absent)
#else /* XCHAL_HAVE_NSA */
	movi	\at, \base	// start with result of 0 (point to lsbit of 32)

	beqz	\as, 2f		// special case for zero argument: return -1
	bltui	\as, 0x10000, 1f	// is it one of the 16 lsbits? (if so, check lower 16 bits)
	addi	\at, \at, 16	// no, increment result to upper 16 bits (of 32)
	//srli	\as, \as, 16	// check upper half (shift right 16 bits)
	extui	\as, \as, 16, 16	// check upper half (shift right 16 bits)
1:	bltui	\as, 0x100, 1f	// is it one of the 8 lsbits? (if so, check lower 8 bits)
	addi	\at, \at, 8	// no, increment result to upper 8 bits (of 16)
	srli	\as, \as, 8	// shift right to check upper 8 bits
1:	bltui	\as, 0x10, 1f	// is it one of the 4 lsbits? (if so, check lower 4 bits)
	addi	\at, \at, 4	// no, increment result to upper 4 bits (of 8)
	srli	\as, \as, 4	// shift right 4 bits to check upper half
1:	bltui	\as, 0x4, 1f	// is it one of the 2 lsbits? (if so, check lower 2 bits)
	addi	\at, \at, 2	// no, increment result to upper 2 bits (of 4)
	srli	\as, \as, 2	// shift right 2 bits to check upper half
1:	bltui	\as, 0x2, 1f	// is it the lsbit?
	addi	\at, \at, 2	// no, increment result to upper bit (of 2)
2:	addi	\at, \at, -1	// (from just above: add 1;  from beqz: return -1)
	//srli	\as, \as, 1
1:				// done! \at contains index of msbit set (or -1 if none set)
	.if	0x\ad - 0x\at	// destination different than \at ? (works because regs are a0-a15)
	mov	\ad, \at	// then move result to \ad
	.endif
#endif /* XCHAL_HAVE_NSA */
	.endm	// find_ms_setbit

/*----------------------------------------------------------------------
 *  find_ls_setbit
 *
 *  This macro finds the least significant bit that is set in <as>,
 *  and return its index in <ad>.
 *  Usage is the same as for the find_ms_setbit macro.
 *  Example:
 *	find_ls_setbit a0, a4, a0, 0	-- return in a0 index of lsbit set in a4
 */

	.macro	find_ls_setbit ad, as, at, base
	neg	\at, \as	// keep only the least-significant bit that is set...
	and	\as, \at, \as	// ... in \as
	find_ms_setbit	\ad, \as, \at, \base
	.endm	// find_ls_setbit

/*----------------------------------------------------------------------
 *  find_ls_one
 *
 *  Same as find_ls_setbit with base zero.
 *  Source (as) and destination (ad) registers must be different.
 *  Provided for backward compatibility.
 */

	.macro	find_ls_one ad, as
	find_ls_setbit	\ad, \as, \ad, 0
	.endm	// find_ls_one

/*----------------------------------------------------------------------
 *  floop, floopnez, floopgtz, floopend
 *
 *  These macros are used for fast inner loops that
 *  work whether or not the Loops options is configured.
 *  If the Loops option is configured, they simply use
 *  the zero-overhead LOOP instructions; otherwise
 *  they use explicit decrement and branch instructions.
 *
 *  They are used in pairs, with floop, floopnez or floopgtz
 *  at the beginning of the loop, and floopend at the end.
 *
 *  Each pair of loop macro calls must be given the loop count
 *  address register and a unique label for that loop.
 *
 *  Example:
 *
 *	movi	 a3, 16     // loop 16 times
 *	floop    a3, myloop1
 *	:
 *	bnez     a7, end1	// exit loop if a7 != 0
 *	:
 *	floopend a3, myloop1
 *  end1:
 *
 *  Like the LOOP instructions, these macros cannot be
 *  nested, must include at least one instruction,
 *  cannot call functions inside the loop, etc.
 *  The loop can be exited by jumping to the instruction
 *  following floopend (or elsewhere outside the loop),
 *  or continued by jumping to a NOP instruction placed
 *  immediately before floopend.
 *
 *  Unlike LOOP instructions, the register passed to floop*
 *  cannot be used inside the loop, because it is used as
 *  the loop counter if the Loops option is not configured.
 *  And its value is undefined after exiting the loop.
 *  And because the loop counter register is active inside
 *  the loop, you can't easily use this construct to loop
 *  across a register file using ROTW as you might with LOOP
 *  instructions, unless you copy the loop register along.
 */

	/*  Named label version of the macros:  */

	.macro	floop		ar, endlabel
	floop_		\ar, .Lfloopstart_\endlabel, .Lfloopend_\endlabel
	.endm

	.macro	floopnez	ar, endlabel
	floopnez_	\ar, .Lfloopstart_\endlabel, .Lfloopend_\endlabel
	.endm

	.macro	floopgtz	ar, endlabel
	floopgtz_	\ar, .Lfloopstart_\endlabel, .Lfloopend_\endlabel
	.endm

	.macro	floopend	ar, endlabel
	floopend_	\ar, .Lfloopstart_\endlabel, .Lfloopend_\endlabel
	.endm

	/*  Numbered local label version of the macros:  */
#if 0 /*UNTESTED*/
	.macro	floop89		ar
	floop_		\ar, 8, 9f
	.endm

	.macro	floopnez89	ar
	floopnez_	\ar, 8, 9f
	.endm

	.macro	floopgtz89	ar
	floopgtz_	\ar, 8, 9f
	.endm

	.macro	floopend89	ar
	floopend_	\ar, 8b, 9
	.endm
#endif /*0*/

	/*  Underlying version of the macros:  */

	.macro	floop_	ar, startlabel, endlabelref
	.ifdef	_infloop_
	.if	_infloop_
	.err	// Error: floop cannot be nested
	.endif
	.endif
	.set	_infloop_, 1
#if XCHAL_HAVE_LOOPS
	loop	\ar, \endlabelref
#else /* XCHAL_HAVE_LOOPS */
\startlabel:
	addi	\ar, \ar, -1
#endif /* XCHAL_HAVE_LOOPS */
	.endm	// floop_

	.macro	floopnez_	ar, startlabel, endlabelref
	.ifdef	_infloop_
	.if	_infloop_
	.err	// Error: floopnez cannot be nested
	.endif
	.endif
	.set	_infloop_, 1
#if XCHAL_HAVE_LOOPS
	loopnez	\ar, \endlabelref
#else /* XCHAL_HAVE_LOOPS */
	beqz	\ar, \endlabelref
\startlabel:
	addi	\ar, \ar, -1
#endif /* XCHAL_HAVE_LOOPS */
	.endm	// floopnez_

	.macro	floopgtz_	ar, startlabel, endlabelref
	.ifdef	_infloop_
	.if	_infloop_
	.err	// Error: floopgtz cannot be nested
	.endif
	.endif
	.set	_infloop_, 1
#if XCHAL_HAVE_LOOPS
	loopgtz	\ar, \endlabelref
#else /* XCHAL_HAVE_LOOPS */
	bltz	\ar, \endlabelref
	beqz	\ar, \endlabelref
\startlabel:
	addi	\ar, \ar, -1
#endif /* XCHAL_HAVE_LOOPS */
	.endm	// floopgtz_


	.macro	floopend_	ar, startlabelref, endlabel
	.ifndef	_infloop_
	.err	// Error: floopend without matching floopXXX
	.endif
	.ifeq	_infloop_
	.err	// Error: floopend without matching floopXXX
	.endif
	.set	_infloop_, 0
#if ! XCHAL_HAVE_LOOPS
	bnez	\ar, \startlabelref
#endif /* XCHAL_HAVE_LOOPS */
\endlabel:
	.endm	// floopend_

/*----------------------------------------------------------------------
 *  crsil  --  conditional RSIL (read/set interrupt level)
 *
 *  Executes the RSIL instruction if it exists, else just reads PS.
 *  The RSIL instruction does not exist in the new exception architecture
 *  if the interrupt option is not selected.
 */

	.macro	crsil	ar, newlevel
#if XCHAL_HAVE_OLD_EXC_ARCH || XCHAL_HAVE_INTERRUPTS
	rsil	\ar, \newlevel
#else
	rsr	\ar, PS
#endif
	.endm	// crsil

/*----------------------------------------------------------------------
 *  window_spill{4,8,12}
 *
 *  These macros spill callers' register windows to the stack.
 *  They work for both privileged and non-privileged tasks.
 *  Must be called from a windowed ABI context, eg. within
 *  a windowed ABI function (ie. valid stack frame, window
 *  exceptions enabled, not in exception mode, etc).
 *
 *  This macro requires a single invocation of the window_spill_common
 *  macro in the same assembly unit and section.
 *
 *  Note that using window_spill{4,8,12} macros is more efficient
 *  than calling a function implemented using window_spill_function,
 *  because the latter needs extra code to figure out the size of
 *  the call to the spilling function.
 *
 *  Example usage:
 *
 *		.text
 *		.align	4
 *		.global	some_function
 *		.type	some_function,@function
 *	some_function:
 *		entry	a1, 16
 *		:
 *		:
 *
 *		window_spill4	// spill windows of some_function's callers; preserves a0..a3 only;
 *				// to use window_spill{8,12} in this example function we'd have
 *				// to increase space allocated by the entry instruction, because
 *				// 16 bytes only allows call4; 32 or 48 bytes (+locals) are needed
 *				// for call8/window_spill8 or call12/window_spill12 respectively.
 *		:
 *
 *		retw
 *
 *		window_spill_common	// instantiates code used by window_spill4
 *
 *
 *  On entry:
 *	none (if window_spill4)
 *	stack frame has enough space allocated for call8 (if window_spill8)
 *	stack frame has enough space allocated for call12 (if window_spill12)
 *  On exit:
 *	 a4..a15 clobbered (if window_spill4)
 *	 a8..a15 clobbered (if window_spill8)
 *	a12..a15 clobbered (if window_spill12)
 *	no caller windows are in live registers
 */

	.macro	window_spill4
#if XCHAL_HAVE_WINDOWED
# if XCHAL_NUM_AREGS == 16
	movi	a15, 0			// for 16-register files, no need to call to reach the end
# elif XCHAL_NUM_AREGS == 32
	call4	.L__wdwspill_assist28	// call deep enough to clear out any live callers
# elif XCHAL_NUM_AREGS == 64
	call4	.L__wdwspill_assist60	// call deep enough to clear out any live callers
# endif
#endif
	.endm	// window_spill4

	.macro	window_spill8
#if XCHAL_HAVE_WINDOWED
# if XCHAL_NUM_AREGS == 16
	movi	a15, 0			// for 16-register files, no need to call to reach the end
# elif XCHAL_NUM_AREGS == 32
	call8	.L__wdwspill_assist24	// call deep enoug