1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
/*
* include/asm-xtensa/uaccess.h
*
* User space memory access functions
*
* These routines provide basic accessing functions to the user memory
* space for the kernel. This header file provides fuctions such as:
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2001 - 2005 Tensilica Inc.
*/
#ifndef _XTENSA_UACCESS_H
#define _XTENSA_UACCESS_H
#include <linux/errno.h>
#define VERIFY_READ 0
#define VERIFY_WRITE 1
#ifdef __ASSEMBLY__
#define _ASMLANGUAGE
#include <asm/current.h>
#include <asm/offsets.h>
#include <asm/processor.h>
/*
* These assembly macros mirror the C macros that follow below. They
* should always have identical functionality. See
* arch/xtensa/kernel/sys.S for usage.
*/
#define KERNEL_DS 0
#define USER_DS 1
#define get_ds (KERNEL_DS)
/*
* get_fs reads current->thread.current_ds into a register.
* On Entry:
* <ad> anything
* <sp> stack
* On Exit:
* <ad> contains current->thread.current_ds
*/
.macro get_fs ad, sp
GET_CURRENT(\ad,\sp)
l32i \ad, \ad, THREAD_CURRENT_DS
.endm
/*
* set_fs sets current->thread.current_ds to some value.
* On Entry:
* <at> anything (temp register)
* <av> value to write
* <sp> stack
* On Exit:
* <at> destroyed (actually, current)
* <av> preserved, value to write
*/
.macro set_fs at, av, sp
GET_CURRENT(\at,\sp)
s32i \av, \at, THREAD_CURRENT_DS
.endm
/*
* kernel_ok determines whether we should bypass addr/size checking.
* See the equivalent C-macro version below for clarity.
* On success, kernel_ok branches to a label indicated by parameter
* <success>. This implies that the macro falls through to the next
* insruction on an error.
*
* Note that while this macro can be used independently, we designed
* in for optimal use in the access_ok macro below (i.e., we fall
* through on error).
*
* On Entry:
* <at> anything (temp register)
* <success> label to branch to on success; implies
* fall-through macro on error
* <sp> stack pointer
* On Exit:
* <at> destroyed (actually, current->thread.current_ds)
*/
#if ((KERNEL_DS != 0) || (USER_DS == 0))
# error Assembly macro kernel_ok fails
#endif
.macro kernel_ok at, sp, success
get_fs \at, \sp
beqz \at, \success
.endm
/*
* user_ok determines whether the access to user-space memory is allowed.
* See the equivalent C-macro version below for clarity.
*
* On error, user_ok branches to a label indicated by parameter
* <error>. This implies that the macro falls through to the next
* instruction on success.
*
* Note that while this macro can be used independently, we designed
* in for optimal use in the access_ok macro below (i.e., we fall
* through on success).
*
* On Entry:
* <aa> register containing memory address
* <as> register containing memory size
* <at> temp register
* <error> label to branch to on error; implies fall-through
* macro on success
* On Exit:
* <aa> preserved
* <as> preserved
* <at> destroyed (actually, (TASK_SIZE + 1 - size))
*/
.macro user_ok aa, as, at, error
movi \at, (TASK_SIZE+1)
bgeu \as, \at, \error
sub \at, \at, \as
bgeu \aa, \at, \error
.endm
/*
* access_ok determines whether a memory access is allowed. See the
* equivalent C-macro version below for clarity.
*
* On error, access_ok branches to a label indicated by parameter
* <error>. This implies that the macro falls through to the next
* instruction on success.
*
* Note that we assume success is the common case, and we optimize the
* branch fall-through case on success.
*
* On Entry:
* <aa> register containing memory address
* <as> register containing memory size
* <at> temp register
* <sp>
* <error> label to branch to on error; implies fall-through
* macro on success
* On Exit:
* <aa> preserved
* <as> preserved
* <at> destroyed
*/
.macro access_ok aa, as, at, sp, error
kernel_ok \at, \sp, .Laccess_ok_\@
user_ok \aa, \as, \at, \error
.Laccess_ok_\@:
.endm
/*
* verify_area determines whether a memory access is allowed. It's
* mostly an unnecessary wrapper for access_ok, but we provide it as a
* duplicate of the verify_area() C inline function below. See the
* equivalent C version below for clarity.
*
* On error, verify_area branches to a label indicated by parameter
* <error>. This implies that the macro falls through to the next
* instruction on success.
*
* Note that we assume success is the common case, and we optimize the
* branch fall-through case on success.
*
* On Entry:
* <aa> register containing memory address
* <as> register containing memory size
* <at> temp register
* <error> label to branch to on error; implies fall-through
* macro on success
* On Exit:
* <aa> preserved
* <as> preserved
* <at> destroyed
*/
.macro verify_area aa, as, at, sp, error
access_ok \at, \aa, \as, \sp, \error
.endm
#else /* __ASSEMBLY__ not defined */
#include <linux/sched.h>
#include <asm/types.h>
/*
* The fs value determines whether argument validity checking should
* be performed or not. If get_fs() == USER_DS, checking is
* performed, with get_fs() == KERNEL_DS, checking is bypassed.
*
* For historical reasons (Data Segment Register?), these macros are
* grossly misnamed.
*/
#define KERNEL_DS ((mm_segment_t) { 0 })
#define USER_DS ((mm_segment_t) { 1 })
#define get_ds() (KERNEL_DS)
#define get_fs() (current->thread.current_ds)
#define set_fs(val) (current->thread.current_ds = (val))
#define segment_eq(a,b) ((a).seg == (b).seg)
#define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
#define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
#define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
#define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
extern inline int verify_area(int type, const void * addr, unsigned long size)
{
return access_ok(type,addr,size) ? 0 : -EFAULT;
}
/*
* These are the main single-value transfer routines. They
* automatically use the right size if we just have the right pointer
* type.
*
* This gets kind of ugly. We want to return _two_ values in
* "get_user()" and yet we don't want to do any pointers, because that
* is too much of a performance impact. Thus we have a few rather ugly
* macros here, and hide all the uglyness from the user.
*
* Careful to not
* (a) re-use the arguments for side effects (sizeof is ok)
* (b) require any knowledge of processes at this stage
*/
#define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
#define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
/*
* The "__xxx" versions of the user access functions are versions that
* do not verify the address space, that must have been done previously
* with a separate "access_ok()" call (this is used when we do multiple
* accesses to the same area of user memory).
*/
#define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
#define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
extern long __put_user_bad(void);
#define __put_user_nocheck(x,ptr,size) \
({ \
long __pu_err; \
__put_user_size((x),(ptr),(size),__pu_err); \
__pu_err; \
})
#define __put_user_check(x,ptr,size) \
({ \
long __pu_err = -EFAULT; \
__typeof__(*(ptr)) *__pu_addr = (ptr); \
if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
__put_user_size((x),__pu_addr,(size),__pu_err); \
__pu_err; \
})
#define __put_user_size(x,ptr,size,retval) \
do { \
retval = 0; \
switch (size) { \
case 1: __put_user_asm(x,ptr,retval,1,"s8i"); break; \
case 2: __put_user_asm(x,ptr,retval,2,"s16i"); break; \
case 4: __put_user_asm(x,ptr,retval,4,"s32i"); break; \
case 8: { \
__typeof__(*ptr) __v64 = x; \
retval = __copy_to_user(ptr,&__v64,8); \
break; \
} \
default: __put_user_bad(); \
} \
} while (0)
/*
* Consider a case of a user single load/store would cause both an
* unaligned exception and an MMU-related exception (unaligned
* exceptions happen first):
*
* User code passes a bad variable ptr to a system call.
* Kernel tries to access the variable.
* Unaligned exception occurs.
* Unaligned exception handler tries to make aligned accesses.
* Double exception occurs for MMU-related cause (e.g., page not mapped).
* do_page_fault() thinks the fault address belongs to the kernel, not the
* user, and panics.
*
* The kernel currently prohibits user unaligned accesses. We use the
* __check_align_* macros to check for unaligned addresses before
* accessing user space so we don't crash the kernel. Both
* __put_user_asm and __get_user_asm use these alignment macros, so
* macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
* sync.
*/
#define __check_align_1 ""
#define __check_align_2 \
" _bbci.l %2, 0, 1f \n" \
" movi %0, %3 \n" \
" _j 2f \n"
#define __check_align_4 \
" _bbsi.l %2, 0, 0f \n" \
" _bbci.l %2, 1, 1f \n" \
"0: movi %0, %3 \n" \
" _j 2f \n"
/*
* We don't tell gcc that we are accessing memory, but this is OK
* because we do not write to any memory gcc knows about, so there
* are no aliasing issues.
*
* WARNING: If you modify this macro at all, verify that the
* __check_align_* macros still work.
*/
#define __put_user_asm(x, addr, err, align, insn) \
__asm__ __volatile__( \
__check_align_##align \
"1: "insn" %1, %2, 0 \n" \
"2: \n" \
" .section .fixup,\"ax\" \n" \
" .align 4 \n" \
"4: \n" \
" .long 2b \n" \
"5: \n" \
" l32r %2, 4b \n" \
" movi %0, %3 \n" \
" jx %2 \n" \
" .previous \n" \
" .section __ex_table,\"a\" \n" \
" .long 1b, 5b \n" \
" .previous" \
:"=r" (err) \
:"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
#define __get_user_nocheck(x,ptr,size) \
({ \
long __gu_err, __gu_val; \
__get_user_size(__gu_val,(ptr),(size),__gu_err); \
(x) = (__typeof__(*(ptr)))__gu_val; \
__gu_err; \
})
#define __get_user_check(x,ptr,size) \
({ \
long __gu_err = -EFAULT, __gu_val = 0; \
const __typeof__(*(ptr)) *__gu_addr = (ptr); \
if (access_ok(VERIFY_READ,__gu_addr,size)) \
__get_user_size(__gu_val,__gu_addr,(size),__gu_err); \
(x) = (__typeof__(*(ptr)))__gu_val; \
__gu_err; \
})
extern long __get_user_bad(void);
#define __get_user_size(x,ptr,size,retval) \
do { \
retval = 0; \
switch (size) { \
case 1: __get_user_asm(x,ptr,retval,1,"l8ui"); break; \
case 2: __get_user_asm(x,ptr,retval,2,"l16ui"); break; \
case 4: __get_user_asm(x,ptr,retval,4,"l32i"); break; \
case 8: retval = __copy_from_user(&x,ptr,8); break; \
default: (x) = __get_user_bad(); \
} \
} while (0)
/*
* WARNING: If you modify this macro at all, verify that the
* __check_align_* macros still work.
*/
#define __get_user_asm(x, addr, err, align, insn) \
__asm__ __volatile__( \
__check_align_##align \
"1: "insn" %1, %2, 0 \n" \
"2: \n" \
" .section .fixup,\"ax\" \n" \
" .align 4 \n" \
"4: \n" \
" .long 2b \n" \
"5: \n" \
" l32r %2, 4b \n" \
" movi %1, 0 \n" \
" movi %0, %3 \n" \
" jx %2 \n" \
" .previous \n" \
" .section __ex_table,\"a\" \n" \
" .long 1b, 5b \n" \
" .previous" \
:"=r" (err), "=r" (x) \
:"r" (addr), "i" (-EFAULT), "0" (err))
/*
* Copy to/from user space
*/
/*
* We use a generic, arbitrary-sized copy subroutine. The Xtensa
* architecture would cause heavy code bloat if we tried to inline
* these functions and provide __constant_copy_* equivalents like the
* i386 versions. __xtensa_copy_user is quite efficient. See the
* .fixup section of __xtensa_copy_user for a discussion on the
* X_zeroing equivalents for Xtensa.
*/
extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
#define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
static inline unsigned long
__generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
{
return __copy_user(to,from,n);
}
static inline unsigned long
__generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
{
return __copy_user(to,from,n);
}
static inline unsigned long
__generic_copy_to_user(void *to, const void *from, unsigned long n)
{
prefetch(from);
if (access_ok(VERIFY_WRITE, to, n))
return __copy_user(to,from,n);
return n;
}
static inline unsigned long
__generic_copy_from_user(void *to, const void *from, unsigned long n)
{
prefetchw(to);
if (access_ok(VERIFY_READ, from, n))
return __copy_user(to,from,n);
else
memset(to, 0, n);
return n;
}
#define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
#define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
#define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
#define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
#define __copy_to_user_inatomic __copy_to_user
#define __copy_from_user_inatomic __copy_from_user
/*
* We need to return the number of bytes not cleared. Our memset()
* returns zero if a problem occurs while accessing user-space memory.
* In that event, return no memory cleared. Otherwise, zero for
* success.
*/
extern inline unsigned long
__xtensa_clear_user(void *addr, unsigned long size)
{
if ( ! memset(addr, 0, size) )
return size;
return 0;
}
extern inline unsigned long
clear_user(void *addr, unsigned long size)
{
if <
|