aboutsummaryrefslogtreecommitdiff
path: root/include/asm-xtensa/pgtable.h
blob: 7b15afb70c5678b624c55a2a85c715b0e67d241e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/*
 * linux/include/asm-xtensa/page.h
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version2 as
 * published by the Free Software Foundation.
 *
 * Copyright (C) 2001 - 2005 Tensilica Inc.
 */

#ifndef _XTENSA_PGTABLE_H
#define _XTENSA_PGTABLE_H

#include <asm-generic/pgtable-nopmd.h>
#include <asm/page.h>

/* Assertions. */

#ifdef CONFIG_MMU


#if (XCHAL_MMU_RINGS < 2)
# error Linux build assumes at least 2 ring levels.
#endif

#if (XCHAL_MMU_CA_BITS != 4)
# error We assume exactly four bits for CA.
#endif

#if (XCHAL_MMU_SR_BITS != 0)
# error We have no room for SR bits.
#endif

/*
 * Use the first min-wired way for mapping page-table pages.
 * Page coloring requires a second min-wired way.
 */

#if (XCHAL_DTLB_MINWIRED_SETS == 0)
# error Need a min-wired way for mapping page-table pages
#endif

#define DTLB_WAY_PGTABLE XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAY)

#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
# if XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAYS) >= 2
#  define DTLB_WAY_DCACHE_ALIAS0 (DTLB_WAY_PGTABLE + 1)
#  define DTLB_WAY_DCACHE_ALIAS1 (DTLB_WAY_PGTABLE + 2)
# else
#  error Page coloring requires its own wired dtlb way!
# endif
#endif

#endif /* CONFIG_MMU */

/*
 * We only use two ring levels, user and kernel space.
 */

#define USER_RING		1	/* user ring level */
#define KERNEL_RING		0	/* kernel ring level */

/*
 * The Xtensa architecture port of Linux has a two-level page table system,
 * i.e. the logical three-level Linux page table layout are folded.
 * Each task has the following memory page tables:
 *
 *   PGD table (page directory), ie. 3rd-level page table:
 *	One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
 *	(Architectures that don't have the PMD folded point to the PMD tables)
 *
 *	The pointer to the PGD table for a given task can be retrieved from
 *	the task structure (struct task_struct*) t, e.g. current():
 *	  (t->mm ? t->mm : t->active_mm)->pgd
 *
 *   PMD tables (page middle-directory), ie. 2nd-level page tables:
 *	Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
 *
 *   PTE tables (page table entry), ie. 1st-level page tables:
 *	One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
 *	invalid_pte_table for absent mappings.
 *
 * The individual pages are 4 kB big with special pages for the empty_zero_page.
 */
#define PGDIR_SHIFT	22
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/*
 * Entries per page directory level: we use two-level, so
 * we don't really have any PMD directory physically.
 */
#define PTRS_PER_PTE		1024
#define PTRS_PER_PTE_SHIFT	10
#define PTRS_PER_PMD		1
#define PTRS_PER_PGD		1024
#define PGD_ORDER		0
#define PMD_ORDER		0
#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
#define FIRST_USER_ADDRESS      XCHAL_SEG_MAPPABLE_VADDR
#define FIRST_USER_PGD_NR	(FIRST_USER_ADDRESS >> PGDIR_SHIFT)

/* virtual memory area. We keep a distance to other memory regions to be
 * on the safe side. We also use this area for cache aliasing.
 */

// FIXME: virtual memory area must be configuration-dependent

#define VMALLOC_START		0xC0000000
#define VMALLOC_END		0xC7FF0000

/* Xtensa Linux config PTE layout (when present):
 *	31-12:	PPN
 *	11-6:	Software
 *	5-4:	RING
 *	3-0:	CA
 *
 * Similar to the Alpha and MIPS ports, we need to keep track of the ref
 * and mod bits in software.  We have a software "you can read
 * from this page" bit, and a hardware one which actually lets the
 * process read from the page.  On the same token we have a software
 * writable bit and the real hardware one which actually lets the
 * process write to the page.
 *
 * See further below for PTE layout for swapped-out pages.
 */

#define _PAGE_VALID		(1<<0)	/* hardware: page is accessible */
#define _PAGE_WRENABLE		(1<<1)	/* hardware: page is writable */

/* None of these cache modes include MP coherency:  */
#define _PAGE_NO_CACHE		(0<<2)	/* bypass, non-speculative */
#if XCHAL_DCACHE_IS_WRITEBACK
# define _PAGE_WRITEBACK	(1<<2)	/* write back */
# define _PAGE_WRITETHRU	(2<<2)	/* write through */
#else
# define _PAGE_WRITEBACK	(1<<2)	/* assume write through */
# define _PAGE_WRITETHRU	(1<<2)
#endif
#define _PAGE_NOALLOC		(3<<2)	/* don't allocate cache,if not cached */
#define _CACHE_MASK		(3<<2)

#define _PAGE_USER		(1<<4)	/* user access (ring=1) */
#define _PAGE_KERNEL		(0<<4)	/* kernel access (ring=0) */

/* Software */
#define _PAGE_RW		(1<<6)	/* software: page writable */
#define _PAGE_DIRTY		(1<<7)	/* software: page dirty */
#define _PAGE_ACCESSED		(1<<8)	/* software: page accessed (read) */
#define _PAGE_FILE		(1<<9)	/* nonlinear file mapping*/

#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY)
#define _PAGE_PRESENT	( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED)

#ifdef CONFIG_MMU

# define PAGE_NONE	__pgprot(_PAGE_PRESENT)
# define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW)
# define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER)
# define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER)
# define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE)
# define PAGE_INVALID	__pgprot(_PAGE_USER)

# if (DCACHE_WAY_SIZE > PAGE_SIZE)
#  define PAGE_DIRECTORY  __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL)
# else
#  define PAGE_DIRECTORY  __pgprot(_PAGE_PRESENT | _PAGE_KERNEL)
# endif

#else /* no mmu */

# define PAGE_NONE       __pgprot(0)
# define PAGE_SHARED     __pgprot(0)
# define PAGE_COPY       __pgprot(0)
# define PAGE_READONLY   __pgprot(0)
# define PAGE_KERNEL     __pgprot(0)

#endif

/*
 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
 * the MMU can't do page protection for execute, and considers that the same as
 * read.  Also, write permissions may imply read permissions.
 * What follows is the closest we can get by reasonable means..
 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
 */
#define __P000	PAGE_NONE	/* private --- */
#define __P001	PAGE_READONLY	/* private --r */
#define __P010	PAGE_COPY	/* private -w- */
#define __P011	PAGE_COPY	/* private -wr */
#define __P100	PAGE_READONLY	/* private x-- */
#define __P101	PAGE_READONLY	/* private x-r */
#define __P110	PAGE_COPY	/* private xw- */
#define __P111	PAGE_COPY	/* private xwr */

#define __S000	PAGE_NONE	/* shared  --- */
#define __S001	PAGE_READONLY	/* shared  --r */
#define __S010	PAGE_SHARED	/* shared  -w- */
#define __S011	PAGE_SHARED	/* shared  -wr */
#define __S100	PAGE_READONLY	/* shared  x-- */
#define __S101	PAGE_READONLY	/* shared  x-r */
#define __S110	PAGE_SHARED	/* shared  xw- */
#define __S111	PAGE_SHARED	/* shared  xwr */

#ifndef __ASSEMBLY__

#define pte_ERROR(e) \
	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#define pgd_ERROR(e) \
	printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))

extern unsigned long empty_zero_page[1024];

#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))

extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];

/*
 * The pmd contains the kernel virtual address of the pte page.
 */
#define pmd_page_kernel(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) virt_to_page(pmd_val(pmd))

/*
 * The following only work if pte_present() is true.
 */
#define pte_none(pte)	 (!(pte_val(pte) ^ _PAGE_USER))
#define pte_present(pte) (pte_val(pte) & _PAGE_VALID)
#define pte_clear(mm,addr,ptep)						\
	do { update_pte(ptep, __pte(_PAGE_USER)); } while(0)

#define pmd_none(pmd)	 (!pmd_val(pmd))
#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
#define pmd_clear(pmdp)	 do { set_pmd(pmdp, __pmd(0)); } while (0)
#define pmd_bad(pmd)	 (pmd_val(pmd) & ~PAGE_MASK)

/* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */

static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_file(pte_t pte)  { return pte_val(pte) & _PAGE_FILE; }
static inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; }
static inline pte_t pte_rdprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_USER; return pte; }
static inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
static inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkread(pte_t pte)	{ pte_val(pte) |= _PAGE_USER; return pte; }
static inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
static inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
static inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_RW; return pte; }

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
#define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
#define pte_same(a,b)		(pte_val(a) == pte_val(b))
#define pte_page(x)		pfn_to_page(pte_pfn(x))
#define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}

/*
 * Certain architectures need to do special things when pte's
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
static inline void update_pte(pte_t *ptep, pte_t pteval)
{
	*ptep = pteval;
#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
	__asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep));
#endif
}

struct mm_struct;

static inline void
set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
{
	update_pte(ptep, pteval);
}


static inline void
set_pmd(pmd_t *pmdp, pmd_t pmdval)
{
	*pmdp = pmdval;
#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
	__asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp));
#endif
}

struct vm_area_struct;

static inline int
ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
    			  pte_t *ptep)
{
	pte_t pte = *ptep;
	if (!pte_young(pte))
		return 0;
	update_pte(ptep, pte_mkold(pte));
	return 1;
}

static inline int
ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
   			  pte_t *ptep)
{
	pte_t pte = *ptep;
	if (!pte_dirty(pte))
		return 0;
	update_pte(ptep, pte_mkclean(pte));
	return 1;
}

static inline pte_t
ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
	pte_t pte = *ptep;
	pte_clear(mm, addr, ptep);
	return pte;
}

static inline void
ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
  	pte_t pte = *ptep;
  	update_pte(ptep, pte_wrprotect(pte));
}

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address)	pgd_offset(&init_mm, address)

/* to find an entry in a page-table-directory */
#define pgd_offset(mm,address)	((mm)->pgd + pgd_index(address))

#define pgd_index(address)	((address) >> PGDIR_SHIFT)

/* Find an entry in the second-level page table.. */
#define pmd_offset(dir,address) ((pmd_t*)(dir))

/* Find an entry in the third-level page table.. */
#define pte_index(address)	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir,addr) 					\
	((pte_t*) pmd_page_kernel(*(dir)) + pte_index(addr))
#define pte_offset_map(dir,addr)	pte_offset_kernel((dir),(addr))
#define pte_offset_map_nested(dir,addr)	pte_offset_kernel((dir),(addr))

#define pte_unmap(pte)		do { } while (0)
#define pte_unmap_nested(pte)	do { } while (0)


/*
 * Encode and decode a swap entry.
 * Each PTE in a process VM's page table is either:
 *   "present" -- valid and not swapped out, protection bits are meaningful;
 *   "not present" -- which further subdivides in these two cases:
 *      "none" -- no mapping at all; identified by pte_none(), set by pte_clear(
 *      "swapped out" -- the page is swapped out, and the SWP macros below
 *                      are used to store swap file info in the PTE itself.
 *
 * In the Xtensa processor MMU, any PTE entries in user space (or anywhere
 * in virtual memory that can map differently across address spaces)
 * must have a correct ring value that represents the RASID field that
 * is changed when switching address spaces.  Eg. such PTE entries cannot
 * be set to ring zero, because that can cause a (global) kernel ASID
 * entry to be created in the TLBs (even with invalid cache attribute),
 * potentially causing a multihit exception when going back to another
 * address space that mapped the same virtual address at another ring.
 *
 * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs.
 * We also avoid using the _PAGE_VALID bit which must be zero for non-present
 * pages.
 *
 * We end up with the following available bits:  1..3 and 7..31.
 * We don't bother with 1..3 for now (we can use them later if needed),
 * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits
 * for SWP_OFFSET.  At least 5 bits are needed for SWP_TYPE, because it
 * is currently implemented as an index into swap_info[MAX_SWAPFILES]
 * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>.
 * However, for some reason all other architectures in the 2.4 kernel
 * reserve either 6, 7, or 8 bits so I'll not detract from that for now.  :)
 * SWP_OFFSET is an offset into the swap file in page-size units, so
 * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB.
 *
 * FIXME:  2 GB isn't very big.  Other bits can be used to allow
 * larger swap sizes.  In the meantime, it appears relatively easy to get
 * around the 2 GB limitation by simply using multiple swap files.
 */

#define __swp_type(entry)	(((entry).val >> 7) & 0x3f)
#define __swp_offset(entry)	((entry).val >> 13)
#define __swp_entry(type,offs)	((swp_entry_t) {((type) << 7) | ((offs) << 13)})