aboutsummaryrefslogtreecommitdiff
path: root/include/asm-x86/bitops.h
blob: 31e408de90c677735b95c016a45e388c5df02073 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#ifndef _ASM_X86_BITOPS_H
#define _ASM_X86_BITOPS_H

/*
 * Copyright 1992, Linus Torvalds.
 */

#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

#include <linux/compiler.h>
#include <asm/alternative.h>

/*
 * These have to be done with inline assembly: that way the bit-setting
 * is guaranteed to be atomic. All bit operations return 0 if the bit
 * was cleared before the operation and != 0 if it was not.
 *
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */

#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
/* Technically wrong, but this avoids compilation errors on some gcc
   versions. */
#define ADDR "=m" (*(volatile long *)addr)
#define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
#else
#define ADDR "+m" (*(volatile long *) addr)
#define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
#endif
#define BASE_ADDR "m" (*(volatile int *)addr)

/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 *
 * Note: there are no guarantees that this function will not be reordered
 * on non x86 architectures, so if you are writing portable code,
 * make sure not to rely on its reordering guarantees.
 *
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static inline void set_bit(int nr, volatile void *addr)
{
	asm volatile(LOCK_PREFIX "bts %1,%0" : ADDR : "Ir" (nr) : "memory");
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static inline void __set_bit(int nr, volatile void *addr)
{
	asm volatile("bts %1,%0"
		     : ADDR
		     : "Ir" (nr) : "memory");
}


/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
 * in order to ensure changes are visible on other processors.
 */
static inline void clear_bit(int nr, volatile void *addr)
{
	asm volatile(LOCK_PREFIX "btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
}

/*
 * clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and implies release semantics before the memory
 * operation. It can be used for an unlock.
 */
static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
{
	barrier();
	clear_bit(nr, addr);
}

static inline void __clear_bit(int nr, volatile void *addr)
{
	asm volatile("btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
}

/*
 * __clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * __clear_bit() is non-atomic and implies release semantics before the memory
 * operation. It can be used for an unlock if no other CPUs can concurrently
 * modify other bits in the word.
 *
 * No memory barrier is required here, because x86 cannot reorder stores past
 * older loads. Same principle as spin_unlock.
 */
static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
{
	barrier();
	__clear_bit(nr, addr);
}

#define smp_mb__before_clear_bit()	barrier()
#define smp_mb__after_clear_bit()	barrier()

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
static inline void __change_bit(int nr, volatile void *addr)
{
	asm volatile("btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static inline void change_bit(int nr, volatile void *addr)
{
	asm volatile(LOCK_PREFIX "btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
static inline int test_and_set_bit(int nr, volatile void *addr)
{
	int oldbit;

	asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
		     "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");

	return oldbit;
}

/**
 * test_and_set_bit_lock - Set a bit and return its old value for lock
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This is the same as test_and_set_bit on x86.
 */
static inline int test_and_set_bit_lock(int nr, volatile void *addr)
{
	return test_and_set_bit(nr, addr);
}

/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static inline int __test_and_set_bit(int nr, volatile void *addr)
{
	int oldbit;

	asm volatile("bts %2,%3\n\t"
		     "sbb %0,%0"
		     : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
	return oldbit;
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
static inline int test_and_clear_bit(int nr, volatile void *addr)
{
	int oldbit;

	asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
		     "sbb %0,%0"
		     : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");

	return oldbit;
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
static inline int __test_and_clear_bit(int nr, volatile void *addr)
{
	int oldbit;

	asm volatile("btr %2,%3\n\t"
		     "sbb %0,%0"
		     : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
	return oldbit;
}

/* WARNING: non atomic and it can be reordered! */
static inline int __test_and_change_bit(int nr, volatile void *addr)
{
	int oldbit;

	asm volatile("btc %2,%3\n\t"
		     "sbb %0,%0"
		     : "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);

	return oldbit;
}

/**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies a memory barrier.
 */
static inline int test_and_change_bit(int nr, volatile void *addr)
{
	int oldbit;

	asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
		     "sbb %0,%0"
		     : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");

	return oldbit;
}

static inline int constant_test_bit(int nr, const volatile void *addr)
{
	return ((1UL << (nr % BITS_PER_LONG)) &
		(((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
}

static inline int variable_test_bit(int nr, volatile const void *addr)
{
	int oldbit;

	asm volatile("bt %2,%3\n\t"
		     "sbb %0,%0"
		     : "=r" (oldbit)
		     : "m" (((volatile const int *)addr)[nr >> 5]),
		       "Ir" (nr), BASE_ADDR);

	return oldbit;
}

#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
static int test_bit(int nr, const volatile unsigned long *addr);
#endif

#define test_bit(nr,addr)			\
	(__builtin_constant_p(nr) ?		\
	 constant_test_bit((nr),(addr)) :	\
	 variable_test_bit((nr),(addr)))

#undef BASE_ADDR
#undef BIT_ADDR
#undef ADDR

unsigned long find_next_bit(const unsigned long *addr,
		unsigned long size, unsigned long offset);
unsigned long find_next_zero_bit(const unsigned long *addr,
		unsigned long size, unsigned long offset);


#ifdef CONFIG_X86_32
# include "bitops_32.h"
#else
# include "bitops_64.h"
#endif

#endif	/* _ASM_X86_BITOPS_H */