aboutsummaryrefslogtreecommitdiff
path: root/include/asm-ia64/tlb.h
blob: 0bbd79f6a7934b20fe157fae8948efd66e088acd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#ifndef _ASM_IA64_TLB_H
#define _ASM_IA64_TLB_H
/*
 * Based on <asm-generic/tlb.h>.
 *
 * Copyright (C) 2002-2003 Hewlett-Packard Co
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 */
/*
 * Removing a translation from a page table (including TLB-shootdown) is a four-step
 * procedure:
 *
 *	(1) Flush (virtual) caches --- ensures virtual memory is coherent with kernel memory
 *	    (this is a no-op on ia64).
 *	(2) Clear the relevant portions of the page-table
 *	(3) Flush the TLBs --- ensures that stale content is gone from CPU TLBs
 *	(4) Release the pages that were freed up in step (2).
 *
 * Note that the ordering of these steps is crucial to avoid races on MP machines.
 *
 * The Linux kernel defines several platform-specific hooks for TLB-shootdown.  When
 * unmapping a portion of the virtual address space, these hooks are called according to
 * the following template:
 *
 *	tlb <- tlb_gather_mmu(mm, full_mm_flush);	// start unmap for address space MM
 *	{
 *	  for each vma that needs a shootdown do {
 *	    tlb_start_vma(tlb, vma);
 *	      for each page-table-entry PTE that needs to be removed do {
 *		tlb_remove_tlb_entry(tlb, pte, address);
 *		if (pte refers to a normal page) {
 *		  tlb_remove_page(tlb, page);
 *		}
 *	      }
 *	    tlb_end_vma(tlb, vma);
 *	  }
 *	}
 *	tlb_finish_mmu(tlb, start, end);	// finish unmap for address space MM
 */
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/swap.h>

#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/machvec.h>

#ifdef CONFIG_SMP
# define FREE_PTE_NR		2048
# define tlb_fast_mode(tlb)	((tlb)->nr == ~0U)
#else
# define FREE_PTE_NR		0
# define tlb_fast_mode(tlb)	(1)
#endif

struct mmu_gather {
	struct mm_struct	*mm;
	unsigned int		nr;		/* == ~0U => fast mode */
	unsigned char		fullmm;		/* non-zero means full mm flush */
	unsigned char		need_flush;	/* really unmapped some PTEs? */
	unsigned long		freed;		/* number of pages freed */
	unsigned long		start_addr;
	unsigned long		end_addr;
	struct page 		*pages[FREE_PTE_NR];
};

/* Users of the generic TLB shootdown code must declare this storage space. */
DECLARE_PER_CPU(struct mmu_gather, mmu_gathers);

/*
 * Flush the TLB for address range START to END and, if not in fast mode, release the
 * freed pages that where gathered up to this point.
 */
static inline void
ia64_tlb_flush_mmu (struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
	unsigned int nr;

	if (!tlb->need_flush)
		return;
	tlb->need_flush = 0;

	if (tlb->fullmm) {
		/*
		 * Tearing down the entire address space.  This happens both as a result
		 * of exit() and execve().  The latter case necessitates the call to
		 * flush_tlb_mm() here.
		 */
		flush_tlb_mm(tlb->mm);
	} else if (unlikely (end - start >= 1024*1024*1024*1024UL
			     || REGION_NUMBER(start) != REGION_NUMBER(end - 1)))
	{
		/*
		 * If we flush more than a tera-byte or across regions, we're probably
		 * better off just flushing the entire TLB(s).  This should be very rare
		 * and is not worth optimizing for.
		 */
		flush_tlb_all();
	} else {
		/*
		 * XXX fix me: flush_tlb_range() should take an mm pointer instead of a
		 * vma pointer.
		 */
		struct vm_area_struct vma;

		vma.vm_mm = tlb->mm;
		/* flush the address range from the tlb: */
		flush_tlb_range(&vma, start, end);
		/* now flush the virt. page-table area mapping the address range: */
		flush_tlb_range(&vma, ia64_thash(start), ia64_thash(end));
	}

	/* lastly, release the freed pages */
	nr = tlb->nr;
	if (!tlb_fast_mode(tlb)) {
		unsigned long i;
		tlb->nr = 0;
		tlb->start_addr = ~0UL;
		for (i = 0; i < nr; ++i)
			free_page_and_swap_cache(tlb->pages[i]);
	}
}

/*
 * Return a pointer to an initialized struct mmu_gather.
 */
static inline struct mmu_gather *
tlb_gather_mmu (struct mm_struct *mm, unsigned int full_mm_flush)
{
	struct mmu_gather *tlb = &get_cpu_var(mmu_gathers);

	tlb->mm = mm;
	/*
	 * Use fast mode if only 1 CPU is online.
	 *
	 * It would be tempting to turn on fast-mode for full_mm_flush as well.  But this
	 * doesn't work because of speculative accesses and software prefetching: the page
	 * table of "mm" may (and usually is) the currently active page table and even
	 * though the kernel won't do any user-space accesses during the TLB shoot down, a
	 * compiler might use speculation or lfetch.fault on what happens to be a valid
	 * user-space address.  This in turn could trigger a TLB miss fault (or a VHPT
	 * walk) and re-insert a TLB entry we just removed.  Slow mode avoids such
	 * problems.  (We could make fast-mode work by switching the current task to a
	 * different "mm" during the shootdown.) --davidm 08/02/2002
	 */
	tlb->nr = (num_online_cpus() == 1) ? ~0U : 0;
	tlb->fullmm = full_mm_flush;
	tlb->freed = 0;
	tlb->start_addr = ~0UL;
	return tlb;
}

/*
 * Called at the end of the shootdown operation to free up any resources that were
 * collected.
 */
static inline void
tlb_finish_mmu (struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
	unsigned long freed = tlb->freed;
	struct mm_struct *mm = tlb->mm;
	unsigned long rss = get_mm_counter(mm, rss);

	if (rss < freed)
		freed = rss;
	add_mm_counter(mm, rss, -freed);
	/*
	 * Note: tlb->nr may be 0 at this point, so we can't rely on tlb->start_addr and
	 * tlb->end_addr.
	 */
	ia64_tlb_flush_mmu(tlb, start, end);

	/* keep the page table cache within bounds */
	check_pgt_cache();

	put_cpu_var(mmu_gathers);
}

/*
 * Logically, this routine frees PAGE.  On MP machines, the actual freeing of the page
 * must be delayed until after the TLB has been flushed (see comments at the beginning of
 * this file).
 */
static inline void
tlb_remove_page (struct mmu_gather *tlb, struct page *page)
{
	tlb->need_flush = 1;

	if (tlb_fast_mode(tlb)) {
		free_page_and_swap_cache(page);
		return;
	}
	tlb->pages[tlb->nr++] = page;
	if (tlb->nr >= FREE_PTE_NR)
		ia64_tlb_flush_mmu(tlb, tlb->start_addr, tlb->end_addr);
}

/*
 * Remove TLB entry for PTE mapped at virtual address ADDRESS.  This is called for any
 * PTE, not just those pointing to (normal) physical memory.
 */
static inline void
__tlb_remove_tlb_entry (struct mmu_gather *tlb, pte_t *ptep, unsigned long address)
{
	if (tlb->start_addr == ~0UL)
		tlb->start_addr = address;
	tlb->end_addr = address + PAGE_SIZE;
}

#define tlb_migrate_finish(mm)	platform_tlb_migrate_finish(mm)

#define tlb_start_vma(tlb, vma)			do { } while (0)
#define tlb_end_vma(tlb, vma)			do { } while (0)

#define tlb_remove_tlb_entry(tlb, ptep, addr)		\
do {							\
	tlb->need_flush = 1;				\
	__tlb_remove_tlb_entry(tlb, ptep, addr);	\
} while (0)

#define pte_free_tlb(tlb, ptep)				\
do {							\
	tlb->need_flush = 1;				\
	__pte_free_tlb(tlb, ptep);			\
} while (0)

#define pmd_free_tlb(tlb, ptep)				\
do {							\
	tlb->need_flush = 1;				\
	__pmd_free_tlb(tlb, ptep);			\
} while (0)

#define pud_free_tlb(tlb, pudp)				\
do {							\
	tlb->need_flush = 1;				\
	__pud_free_tlb(tlb, pudp);			\
} while (0)

#endif /* _ASM_IA64_TLB_H */