/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_trans.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_attr_sf.h"
#include "xfs_dir2_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_rw.h"
#include "xfs_vnodeops.h"
#include "xfs_da_btree.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include <linux/dcache.h>
static const struct vm_operations_struct xfs_file_vm_ops;
/*
* xfs_iozero
*
* xfs_iozero clears the specified range of buffer supplied,
* and marks all the affected blocks as valid and modified. If
* an affected block is not allocated, it will be allocated. If
* an affected block is not completely overwritten, and is not
* valid before the operation, it will be read from disk before
* being partially zeroed.
*/
STATIC int
xfs_iozero(
struct xfs_inode *ip, /* inode */
loff_t pos, /* offset in file */
size_t count) /* size of data to zero */
{
struct page *page;
struct address_space *mapping;
int status;
mapping = VFS_I(ip)->i_mapping;
do {
unsigned offset, bytes;
void *fsdata;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
bytes = PAGE_CACHE_SIZE - offset;
if (bytes > count)
bytes = count;
status = pagecache_write_begin(NULL, mapping, pos, bytes,
AOP_FLAG_UNINTERRUPTIBLE,
&page, &fsdata);
if (status)
break;
zero_user(page, offset, bytes);
status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
page, fsdata);
WARN_ON(status <= 0); /* can't return less than zero! */
pos += bytes;
count -= bytes;
status = 0;
} while (count);
return (-status);
}
STATIC int
xfs_file_fsync(
struct file *file,
int datasync)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_trans *tp;
int error = 0;
int log_flushed = 0;
xfs_itrace_entry(ip);
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -XFS_ERROR(EIO);
xfs_iflags_clear(ip, XFS_ITRUNCATED);
xfs_ioend_wait(ip);
/*
* We always need to make sure that the required inode state is safe on
* disk. The inode might be clean but we still might need to force the
* log because of committed transactions that haven't hit the disk yet.
* Likewise, there could be unflushed non-transactional changes to the
* inode core that have to go to disk and this requires us to issue
* a synchronous transaction to capture these changes correctly.
*
* This code relies on the assumption that if the i_update_core field
* of the inode is clear and the inode is unpinned then it is clean
* and no action is required.
*/
xfs_ilock(ip, XFS_ILOCK_SHARED);
/*
* First check if the VFS inode is marked dirty. All the dirtying
* of non-transactional updates no goes through mark_inode_dirty*,
* which allows us to distinguish beteeen pure timestamp updates
* and i_size updates which need to be caught for fdatasync.
* After that also theck for the dirty state in the XFS inode, which
* might gets cleared when the inode gets written out via the AIL
* or xfs_iflush_cluster.
*/
if (((inode->i_state & I_DIRTY_DATASYNC) ||
((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
ip->i_update_core) {
/*
* Kick off a transaction to log the inode core to get the
* updates. The sync transaction will also force the log.
*/
xfs_iunlock(ip, XFS_ILOCK_SHARED);
tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
error = xfs_trans_reserve(tp, 0,
XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
if (error) {
xfs_trans_cancel(tp, 0);
return -error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
/*
* Note - it's possible that we might have pushed ourselves out
* of the way during trans_reserve which would flush the inode.
* But there's no guarantee that the inode buffer has actually
* gone out yet (it's delwri). Plus the buffer could be pinned
* anyway if it's part of an inode in another recent
* transaction. So we play it safe and fire off the
* transaction anyway.
*/
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
xfs_trans_set_sync(tp);
error =<