1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/*
* linux/fs/pnode.c
*
* (C) Copyright IBM Corporation 2005.
* Released under GPL v2.
* Author : Ram Pai (linuxram@us.ibm.com)
*
*/
#include <linux/namespace.h>
#include <linux/mount.h>
#include <linux/fs.h>
#include "pnode.h"
/* return the next shared peer mount of @p */
static inline struct vfsmount *next_peer(struct vfsmount *p)
{
return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
}
static inline struct vfsmount *first_slave(struct vfsmount *p)
{
return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
}
static inline struct vfsmount *next_slave(struct vfsmount *p)
{
return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
}
static int do_make_slave(struct vfsmount *mnt)
{
struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
struct vfsmount *slave_mnt;
/*
* slave 'mnt' to a peer mount that has the
* same root dentry. If none is available than
* slave it to anything that is available.
*/
while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
peer_mnt->mnt_root != mnt->mnt_root) ;
if (peer_mnt == mnt) {
peer_mnt = next_peer(mnt);
if (peer_mnt == mnt)
peer_mnt = NULL;
}
list_del_init(&mnt->mnt_share);
if (peer_mnt)
master = peer_mnt;
if (master) {
list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
slave_mnt->mnt_master = master;
list_del(&mnt->mnt_slave);
list_add(&mnt->mnt_slave, &master->mnt_slave_list);
list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
INIT_LIST_HEAD(&mnt->mnt_slave_list);
} else {
struct list_head *p = &mnt->mnt_slave_list;
while (!list_empty(p)) {
slave_mnt = list_entry(p->next,
struct vfsmount, mnt_slave);
list_del_init(&slave_mnt->mnt_slave);
slave_mnt->mnt_master = NULL;
}
}
mnt->mnt_master = master;
CLEAR_MNT_SHARED(mnt);
INIT_LIST_HEAD(&mnt->mnt_slave_list);
return 0;
}
void change_mnt_propagation(struct vfsmount *mnt, int type)
{
if (type == MS_SHARED) {
set_mnt_shared(mnt);
return;
}
do_make_slave(mnt);
if (type != MS_SLAVE) {
list_del_init(&mnt->mnt_slave);
mnt->mnt_master = NULL;
if (type == MS_UNBINDABLE)
mnt->mnt_flags |= MNT_UNBINDABLE;
}
}
/*
* get the next mount in the propagation tree.
* @m: the mount seen last
* @origin: the original mount from where the tree walk initiated
*/
static struct vfsmount *propagation_next(struct vfsmount *m,
struct vfsmount *origin)
{
/* are there any slaves of this mount? */
if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
return first_slave(m);
while (1) {
struct vfsmount *next;
struct vfsmount *master = m->mnt_master;
if (master == origin->mnt_master) {
next = next_peer(m);
return ((next == origin) ? NULL : next);
} else if (m->mnt_slave.next != &master->mnt_slave_list)
return next_slave(m);
/* back at master */
m = master;
}
}
/*
* return the source mount to be used for cloning
*
* @dest the current destination mount
* @last_dest the last seen destination mount
* @last_src the last seen source mount
* @type return CL_SLAVE if the new mount has to be
* cloned as a slave.
*/
static struct vfsmount *get_source(struct vfsmount *dest,
struct vfsmount *last_dest,
struct vfsmount *last_src,
int *type)
{
struct vfsmount *p_last_src = NULL;
struct vfsmount *p_last_dest = NULL;
*type = CL_PROPAGATION;;
if (IS_MNT_SHARED(dest))
*type |= CL_MAKE_SHARED;
while (last_dest != dest->mnt_master) {
p_last_dest = last_dest;
p_last_src = last_src;
last_dest = last_dest->mnt_master;
last_src = last_src->mnt_master;
}
if (p_last_dest) {
do {
p_last_dest = next_peer(p_last_dest);
} while (IS_MNT_NEW(p_last_dest));
}
if (dest != p_last_dest) {
*type |= CL_SLAVE;
return last_src;
} else
return p_last_src;
}
/*
* mount 'source_mnt' under the destination 'dest_mnt' at
* dentry 'dest_dentry'. And propagate that mount to
* all the peer and slave mounts of 'dest_mnt'.
* Link all the new mounts into a propagation tree headed at
* source_mnt. Also link all the new mounts using ->mnt_list
* headed at source_mnt's ->mnt_list
*
* @dest_mnt: destination mount.
* @dest_dentry: destination dentry.
* @source_mnt: source mount.
* @tree_list : list of heads of trees to be attached.
*/
int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
struct vfsmount *source_mnt, struct list_head *tree_list)
{
struct vfsmount *m, *child;
int ret = 0;
struct vfsmount *prev_dest_mnt = dest_mnt;
struct vfsmount *prev_src_mnt = source_mnt;
LIST_HEAD(tmp_list);
LIST_HEAD(umount_list);
for (m = propagation_next(dest_mnt, dest_mnt); m;
m = propagation_next(m, dest_mnt)) {
int type;
struct vfsmount *source;
if (IS_MNT_NEW(m))
continue;
source = get_source(m, prev_dest_mnt, prev_src_mnt, &type);
if (!(child = copy_tree(source, source->mnt_root, type))) {
ret = -ENOMEM;
list_splice(tree_list, tmp_list.prev);
goto out;
}
if (is_subdir(dest_dentry, m->mnt_root)) {
mnt_set_mountpoint(m, dest_dentry, child);
list_add_tail(&child->mnt_hash, tree_list);
} else {
/*
* This can happen if the parent mount was bind mounted
* on some subdirectory of a shared/slave mount.
*/
list_add_tail(&child->mnt_hash, &tmp_list);
}
prev_dest_mnt = m;
prev_src_mnt = child;
}
out:
spin_lock(&vfsmount_lock);
while (!list_empty(&tmp_list)) {
child = list_entry(tmp_list.next, struct vfsmount, mnt_hash);
list_del_init(&child->mnt_hash);
umount_tree(child, 0, &umount_list);
}
spin_unlock(&vfsmount_lock);
release_mounts(&umount_list);
return ret;
}
/*
* return true if the refcount is greater than count
*/
static inline int do_refcount_check(struct vfsmount *mnt, int count)
{
int mycount = atomic_read(&mnt->mnt_count);
return (mycount > count);
}
/*
* check if the mount 'mnt' can be unmounted successfully.
* @mnt: the mount to be checked for unmount
* NOTE: unmounting 'mnt' would naturally propagate to all
* other mounts its parent propagates to.
* Check if any of these mounts that **do not have submounts**
* have more references than 'refcnt'. If so return busy.
*/
int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
{
struct vfsmount *m, *child;
struct vfsmount *parent = mnt->mnt_parent;
int ret = 0;
if (mnt == parent)
return do_refcount_check(mnt, refcnt);
/*
* quickly check if the current mount can be unmounted.
* If not, we don't have to go checking for all other
* mounts
*/
if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
return 1;
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
if (child && list_empty(&child->mnt_mounts) &&
(ret = do_refcount_check(child, 1)))
break;
}
return ret;
}
/*
* NOTE: unmounting 'mnt' naturally propagates to all other mounts its
* parent propagates to.
*/
static void __propagate_umount(struct vfsmount *mnt)
{
struct vfsmount *parent = mnt->mnt_parent;
struct vfsmount *m;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
struct vfsmount *child = __lookup_mnt(m,
mnt->mnt_mountpoint, 0);
/*
* umount the child only if the child has no
* other children
*/
if (child && list_empty(&child->mnt_mounts)) {
list_del(&child-
|