aboutsummaryrefslogtreecommitdiff
path: root/fs/nfs/direct.c
blob: df86e526702fa15060e86044971a65d31d4a069e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/*
 * linux/fs/nfs/direct.c
 *
 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
 *
 * High-performance uncached I/O for the Linux NFS client
 *
 * There are important applications whose performance or correctness
 * depends on uncached access to file data.  Database clusters
 * (multiple copies of the same instance running on separate hosts) 
 * implement their own cache coherency protocol that subsumes file
 * system cache protocols.  Applications that process datasets 
 * considerably larger than the client's memory do not always benefit 
 * from a local cache.  A streaming video server, for instance, has no 
 * need to cache the contents of a file.
 *
 * When an application requests uncached I/O, all read and write requests
 * are made directly to the server; data stored or fetched via these
 * requests is not cached in the Linux page cache.  The client does not
 * correct unaligned requests from applications.  All requested bytes are
 * held on permanent storage before a direct write system call returns to
 * an application.
 *
 * Solaris implements an uncached I/O facility called directio() that
 * is used for backups and sequential I/O to very large files.  Solaris
 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
 * an undocumented mount option.
 *
 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
 * help from Andrew Morton.
 *
 * 18 Dec 2001	Initial implementation for 2.4  --cel
 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
 * 08 Jun 2003	Port to 2.5 APIs  --cel
 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
 * 15 Sep 2004	Parallel async reads  --cel
 *
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/smp_lock.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/kref.h>

#include <linux/nfs_fs.h>
#include <linux/nfs_page.h>
#include <linux/sunrpc/clnt.h>

#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>

#include "iostat.h"

#define NFSDBG_FACILITY		NFSDBG_VFS
#define MAX_DIRECTIO_SIZE	(4096UL << PAGE_SHIFT)

static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
static kmem_cache_t *nfs_direct_cachep;

/*
 * This represents a set of asynchronous requests that we're waiting on
 */
struct nfs_direct_req {
	struct kref		kref;		/* release manager */
	struct list_head	list;		/* nfs_read_data structs */
	struct file *		filp;		/* file descriptor */
	struct kiocb *		iocb;		/* controlling i/o request */
	wait_queue_head_t	wait;		/* wait for i/o completion */
	struct inode *		inode;		/* target file of I/O */
	struct page **		pages;		/* pages in our buffer */
	unsigned int		npages;		/* count of pages */
	atomic_t		complete,	/* i/os we're waiting for */
				count,		/* bytes actually processed */
				error;		/* any reported error */
};


/**
 * nfs_direct_IO - NFS address space operation for direct I/O
 * @rw: direction (read or write)
 * @iocb: target I/O control block
 * @iov: array of vectors that define I/O buffer
 * @pos: offset in file to begin the operation
 * @nr_segs: size of iovec array
 *
 * The presence of this routine in the address space ops vector means
 * the NFS client supports direct I/O.  However, we shunt off direct
 * read and write requests before the VFS gets them, so this method
 * should never be called.
 */
ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
{
	struct dentry *dentry = iocb->ki_filp->f_dentry;

	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
			dentry->d_name.name, (long long) pos, nr_segs);

	return -EINVAL;
}

static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
{
	int result = -ENOMEM;
	unsigned long page_count;
	size_t array_size;

	/* set an arbitrary limit to prevent type overflow */
	/* XXX: this can probably be as large as INT_MAX */
	if (size > MAX_DIRECTIO_SIZE) {
		*pages = NULL;
		return -EFBIG;
	}

	page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
	page_count -= user_addr >> PAGE_SHIFT;

	array_size = (page_count * sizeof(struct page *));
	*pages = kmalloc(array_size, GFP_KERNEL);
	if (*pages) {
		down_read(&current->mm->mmap_sem);
		result = get_user_pages(current, current->mm, user_addr,
					page_count, (rw == READ), 0,
					*pages, NULL);
		up_read(&current->mm->mmap_sem);
		/*
		 * If we got fewer pages than expected from get_user_pages(),
		 * the user buffer runs off the end of a mapping; return EFAULT.
		 */
		if (result >= 0 && result < page_count) {
			nfs_free_user_pages(*pages, result, 0);
			*pages = NULL;
			result = -EFAULT;
		}
	}
	return result;
}

static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
{
	int i;
	for (i = 0; i < npages; i++) {
		struct page *page = pages[i];
		if (do_dirty && !PageCompound(page))
			set_page_dirty_lock(page);
		page_cache_release(page);
	}
	kfree(pages);
}

static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
{
	struct nfs_direct_req *dreq;

	dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
	if (!dreq)
		return NULL;

	kref_init(&dreq->kref);
	init_waitqueue_head(&dreq->wait);
	INIT_LIST_HEAD(&dreq->list);
	dreq->iocb = NULL;
	atomic_set(&dreq->count, 0);
	atomic_set(&dreq->error, 0);

	return dreq;
}

static void nfs_direct_req_release(struct kref *kref)
{
	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
	kmem_cache_free(nfs_direct_cachep, dreq);
}

/*
 * Collects and returns the final error value/byte-count.
 */
static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
{
	int result = -EIOCBQUEUED;

	/* Async requests don't wait here */
	if (dreq->iocb)
		goto out;

	result = wait_event_interruptible(dreq->wait,
					(atomic_read(&dreq->complete) == 0));

	if (!result)
		result = atomic_read(&dreq->error);
	if (!result)
		result = atomic_read(&dreq->count);

out:
	kref_put(&dreq->kref, nfs_direct_req_release);
	return (ssize_t) result;
}

/*
 * We must hold a reference to all the pages in this direct read request
 * until the RPCs complete.  This could be long *after* we are woken up in
 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
 *
 * In addition, synchronous I/O uses a stack-allocated iocb.  Thus we
 * can't trust the iocb is still valid here if this is a synchronous
 * request.  If the waiter is woken prematurely, the iocb is long gone.
 */
static void nfs_direct_complete(struct nfs_direct_req *dreq)
{
	nfs_free_user_pages(dreq->pages, dreq->npages, 1);

	if (dreq->iocb) {
		long res = atomic_read(&dreq->error);
		if (!res)
			res = atomic_read(&dreq->count);
		aio_complete(dreq->iocb, res, 0);
	} else
		wake_up(&dreq->wait);

	kref_put(&dreq->kref, nfs_direct_req_release);
}

/*
 * Note we also set the number of requests we have in the dreq when we are
 * done.  This prevents races with I/O completion so we will always wait
 * until all requests have been dispatched and completed.
 */
static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
{
	struct list_head *list;
	struct nfs_direct_req *dreq;
	unsigned int reads = 0;
	unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

	dreq = nfs_direct_req_alloc();
	if (!dreq)
		return NULL;

	list = &dreq->list;
	for(;;) {
		struct nfs_read_data *data = nfs_readdata_alloc(rpages);

		if (unlikely(!data)) {
			while (!list_empty(list)) {
				data = list_entry(list->next,
						  struct nfs_read_data, pages);
				list_del(&data->pages);
				nfs_readdata_free(data);
			}
			kref_put(&dreq->kref, nfs_direct_req_release);
			return NULL;
		}

		INIT_LIST_HEAD(&data->pages);
		list_add(&data->pages, list);

		data->req = (struct nfs_page *) dreq;
		reads++;
		if (nbytes <= rsize)
			break;
		nbytes -= rsize;
	}
	kref_get(&dreq->kref);
	atomic_set(&dreq->complete, reads);
	return dreq;
}

static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
{
	struct nfs_read_data *data = calldata;
	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;

	if (nfs_readpage_result(task, data) != 0)
		return;
	if (likely(task->tk_status >= 0))
		atomic_add(data->res.count, &dreq->count);
	else
		atomic_set(&dreq->error, task->tk_status);

	if (unlikely(atomic_dec_and_test(&dreq->complete)))
		nfs_direct_complete(dreq);
}

static const struct rpc_call_ops nfs_read_direct_ops = {
	.rpc_call_done = nfs_direct_read_result,
	.rpc_release = nfs_readdata_release,
};

/*
 * For each nfs_read_data struct that was allocated on the list, dispatch
 * an NFS READ operation
 */
static void nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
{
	struct file *file = dreq->filp;
	struct inode *inode = file->f_mapping->host;
	struct nfs_open_context *ctx = (struct nfs_open_context *)
							file->private_data;
	struct list_head *list = &dreq->list;
	struct page **pages = dreq->pages;
	size_t rsize = NFS_SERVER(inode)->rsize;
	unsigned int curpage, pgbase;

	curpage = 0;
	pgbase = user_addr & ~PAGE_MASK;
	do {
		struct nfs_read_data *data;
		size_t bytes;

		bytes = rsize;
		if (count < rsize)
			bytes = count;

		data = list_entry(list->next, struct nfs_read_data, pages);
		list_del_init(&data->pages);

		data->inode = inode;
		data->cred = ctx->cred;
		data->args.fh = NFS_FH(inode);
		data->args.context = ctx;
		data->args.offset = file_offset;
		data->args.pgbase = pgbase;
		data->args.pages = &pages[curpage];
		data->args.count = bytes;
		data->res.fattr = &data->fattr;
		data->res.eof = 0;
		data->res.count = bytes;

		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
				&nfs_read_direct_ops, data);
		NFS_PROTO(inode)->read_setup(data);

		data->task.tk_cookie = (unsigned long) inode;

		lock_kernel();
		rpc_execute(&data->task);
		unlock_kernel();

		dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
				data->task.tk_pid,
				inode->i_sb->s_id,
				(long long)NFS_FILEID(inode),
				bytes,
				(unsigned long long)data->args.offset);

		file_offset += bytes;
		pgbase += bytes;
		curpage += pgbase >> PAGE_SHIFT;
		pgbase &= ~PAGE_MASK;

		count -= bytes;
	} while (count != 0);
}

static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, unsigned int nr_pages)
{
	ssize_t result;
	sigset_t oldset;
	struct inode *inode = iocb->ki_filp->f_mapping->host;
	struct rpc_clnt *clnt = NFS_CLIENT(inode);
	struct nfs_direct_req *dreq;

	dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
	if (!dreq)
		return -ENOMEM;

	dreq->pages = pages;
	dreq->npages = nr_pages;
	dreq->inode = inode;
	dreq->filp = iocb->ki_filp;
	if (!is_sync_kiocb(iocb))
		dreq->iocb = iocb;

	nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
	rpc_clnt_sigmask(clnt, &oldset);
	nfs_direct_read_schedule(dreq, user_addr, count, file_offset);
	result = nfs_direct_wait(dreq);
	rpc_clnt_sigunmask(clnt, &oldset);

	return result;
}

static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
{
	struct list_head *list;
	struct nfs_direct_req *dreq;
	unsigned int writes = 0;
	unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

	dreq = nfs_direct_req_alloc();
	if (!dreq)
		return NULL;

	list = &dreq->list;
	for(;;) {
		struct nfs_write_data *data = nfs_writedata_alloc(wpages);

		if (unlikely(!data)) {
			while (!list_empty(list)) {
				data = list_entry(list->next,
						  struct nfs_write_data, pages);
				list_del(&data->pages);
				nfs_writedata_free(data);
			}
			kref_put(&dreq->kref, nfs_direct_req_release);
			return NULL;
		}

		INIT_LIST_HEAD(&data->pages);
		list_add(&data->pages, list);

		data->req = (struct nfs_page *) dreq;
		writes++;
		if (nbytes <= wsize)
			break;
		nbytes -= wsize;
	}
	kref_get(&dreq->kref);
	atomic_set(&dreq->complete, writes);
	return dreq;
}

static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
{
	struct nfs_write_data *data = calldata;
	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
	int status = task->tk_status;

	if (nfs_writeback_done(task, data) != 0)
		return;
	/* If the server fell back to an UNSTABLE write, it's an error. */
	if (unlikely(data->res.verf->committed != NFS_FILE_SYNC))
		status = -EIO;

	if (likely(status >= 0))
		atomic_add(data->res.count, &dreq->count);
	else
		atomic_set(&dreq->error, status);

	if (unlikely(atomic_dec_and_test(&dreq->complete))) {
		nfs_end_data_update(data->inode);
		nfs_direct_complete(dreq);
	}
}

static const struct rpc_call_ops nfs_write_direct_ops = {
	.rpc_call_done = nfs_direct_write_result,
	.rpc_release = nfs_writedata_release,
};

/*
 * For each nfs_write_data struct that was allocated on the list, dispatch
 * an NFS WRITE operation
 *
 * XXX: For now, support only FILE_SYNC writes.  Later we may add
 *      support for UNSTABLE + COMMIT.
 */
static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
{
	struct file *file = dreq->filp;
	struct inode *inode = file->f_mapping->host;
	struct nfs_open_context *ctx = (struct nfs_open_context *)
							file->private_data;
	struct list_head *list = &dreq->list;
	struct page **pages = dreq->pages;
	size_t wsize = NFS_SERVER(inode)->wsize;
	unsigned int curpage, pgbase;

	curpage = 0;
	pgbase = user_addr & ~PAGE_MASK;
	do {
		struct nfs_write_data *data;
		size_t bytes;

		bytes = wsize;
		if (count < wsize)
			bytes = count;

		data = list_entry(list->next, struct nfs_write_data, pages);
		list_del_init(&data->pages);

		data->inode = inode;
		data->cred = ctx->cred;
		data->args.fh = NFS_FH(inode);
		data->args.context = ctx;
		data->args.offset = file_offset;
		data->args.pgbase = pgbase;
		data->args.pages = &pages[curpage];
		data->args.count = bytes;
		data->res.fattr = &data->fattr;
		data->res.count = bytes;
		data->res.verf = &data->verf;

		rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
				&nfs_write_direct_ops, data);
		NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);

		data->task.tk_priority = RPC_PRIORITY_NORMAL;
		data->task.tk_cookie = (unsigned long) inode;

		lock_kernel();
		rpc_execute(&data->task);
		unlock_kernel();

		dfprintk(VFS, "NFS: %4d initiated direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
				data->task.tk_pid,
				inode->i_sb->s_id,
				(long long)NFS_FILEID(inode),
				bytes,
				(unsigned long long)data->args.offset);

		file_offset += bytes;
		pgbase += bytes;
		curpage += pgbase >> PAGE_SHIFT;
		pgbase &= ~PAGE_MASK;

		count -= bytes;
	} while (count != 0);
}

static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages)
{
	ssize_t result;
	sigset_t oldset;
	struct inode *inode = iocb->ki_filp->f_mapping->host;
	struct rpc_clnt *clnt = NFS_CLIENT(inode);
	struct nfs_direct_req *dreq;

	dreq = nfs_direct_write_alloc(count, NFS_SERVER(inode)->wsize);
	if (!dreq)
		return -ENOMEM;

	dreq->pages = pages;
	dreq->npages = nr_pages;
	dreq->inode = inode;
	dreq->filp = iocb->ki_filp;
	if (!is_sync_kiocb(iocb))
		dreq->iocb = iocb;

	nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);

	nfs_begin_data_update(inode);

	rpc_clnt_sigmask(clnt, &oldset);
	nfs_direct_write_schedule(dreq, user_addr, count, file_offset);
	result = nfs_direct_wait(dreq);
	rpc_clnt_sigunmask(clnt, &oldset);

	return result;
}

/**
 * nfs_file_direct_read - file direct read operation for NFS files
 * @iocb: target I/O control block
 * @buf: user's buffer into which to read data
 * count: number of bytes to read
 * pos: byte offset in file where reading starts
 *
 * We use this function for direct reads instead of calling
 * generic_file_aio_read() in order to avoid gfar's check to see if
 * the request starts before the end of the file.  For that check
 * to work, we must generate a GETATTR before each direct read, and
 * even then there is a window between the GETATTR and the subsequent
 * READ where the file size could change.  So our preference is simply
 * to do all reads the application wants, and the server will take
 * care of managing the end of file boundary.
 * 
 * This function also eliminates unnecessarily updating the file's
 * atime locally, as the NFS server sets the file's atime, and this
 * client must read the updated atime from the server back into its
 * cache.
 */
ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
{
	ssize_t retval = -EINVAL;
	int page_count;
	struct page **pages;
	struct file *file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;

	dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
		file->f_dentry->d_parent->d_name.name,
		file->f_dentry->d_name.name,
		(unsigned long) count, (long long) pos);

	if (count < 0)
		goto out;
	retval = -EFAULT;
	if (!access_ok(VERIFY_WRITE, buf, count))
		goto out;
	retval = 0;
	if (!count)
		goto out;

	retval = nfs_sync_mapping(mapping);
	if (retval)
		goto out;

	page_count = nfs_get_user_pages(READ, (unsigned long) buf,
						count, &pages);
	if (page_count < 0) {
		nfs_free_user_pages(pages, 0, 0);
		retval = page_count;
		goto out;
	}

	retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
						pages, page_count);
	if (retval > 0)
		iocb->ki_pos = pos + retval;

out:
	return retval;
}

/**
 * nfs_file_direct_write - file direct write operation for NFS files
 * @iocb: target I/O control block
 * @buf: user's buffer from which to write data
 * count: number of bytes to write
 * pos: byte offset in file where writing starts
 *
 * We use this function for direct writes instead of calling
 * generic_file_aio_write() in order to avoid taking the inode
 * semaphore and updating the i_size.  The NFS server will set
 * the new i_size and this client must read the updated size
 * back into its cache.  We let the server do generic write
 * parameter checking and report problems.
 *
 * We also avoid an unnecessary invocation of generic_osync_inode(),
 * as it is fairly meaningless to sync the metadata of an NFS file.
 *
 * We eliminate local atime updates, see direct read above.
 *
 * We avoid unnecessary page cache invalidations for normal cached
 * readers of this file.
 *
 * Note that O_APPEND is not supported for NFS direct writes, as there
 * is no atomic O_APPEND write facility in the NFS protocol.
 */
ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
{
	ssize_t retval;
	int page_count;
	struct page **pages;
	struct file *file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;

	dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
		file->f_dentry->d_parent->d_name.name,
		file->f_dentry->d_name.name,
		(unsigned long) count, (long long) pos);

	retval = generic_write_checks(file, &pos, &count, 0);
	if (retval)
		goto out;

	retval = -EINVAL;
	if ((ssize_t) count < 0)
		goto out;
	retval = 0;
	if (!count)
		goto out;

	retval = -EFAULT;
	if (!access_ok(VERIFY_READ, buf, count))
		goto out;

	retval = nfs_sync_mapping(mapping);
	if (retval)
		goto out;

	page_count = nfs_get_user_pages(WRITE, (unsigned long) buf,
						count, &pages);
	if (page_count < 0) {
		nfs_free_user_pages(pages, 0, 0);
		retval = page_count;
		goto out;
	}

	retval = nfs_direct_write(iocb, (unsigned long) buf, count,
					pos, pages, page_count);

	/*
	 * XXX: nfs_end_data_update() already ensures this file's
	 *      cached data is subsequently invalidated.  Do we really
	 *      need to call invalidate_inode_pages2() again here?
	 *
	 *      For aio writes, this invalidation will almost certainly
	 *      occur before the writes complete.  Kind of racey.
	 */
	if (mapping->nrpages)
		invalidate_inode_pages2(mapping);

	if (retval > 0)
		iocb->ki_pos = pos + retval;

out:
	return retval;
}

int nfs_init_directcache(void)
{
	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
						sizeof(struct nfs_direct_req),
						0, SLAB_RECLAIM_ACCOUNT,
						NULL, NULL);
	if (nfs_direct_cachep == NULL)
		return -ENOMEM;

	return 0;
}

void nfs_destroy_directcache(void)
{
	if (kmem_cache_destroy(nfs_direct_cachep))
		printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
}