aboutsummaryrefslogtreecommitdiff
path: root/fs/jffs/jffs_fm.c
blob: 6aab317f56e0cbc83d71afd0f87e0512da0a7a54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/*
 * JFFS -- Journaling Flash File System, Linux implementation.
 *
 * Copyright (C) 1999, 2000  Axis Communications AB.
 *
 * Created by Finn Hakansson <finn@axis.com>.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * $Id: jffs_fm.c,v 1.27 2001/09/20 12:29:47 dwmw2 Exp $
 *
 * Ported to Linux 2.3.x and MTD:
 * Copyright (C) 2000  Alexander Larsson (alex@cendio.se), Cendio Systems AB
 *
 */
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/blkdev.h>
#include <linux/jffs.h>
#include "jffs_fm.h"
#include "intrep.h"

#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset);
#endif

static struct jffs_fm *jffs_alloc_fm(void);
static void jffs_free_fm(struct jffs_fm *n);

extern kmem_cache_t     *fm_cache;
extern kmem_cache_t     *node_cache;

#if CONFIG_JFFS_FS_VERBOSE > 0
void
jffs_print_fmcontrol(struct jffs_fmcontrol *fmc)
{
	D(printk("struct jffs_fmcontrol: 0x%p\n", fmc));
	D(printk("{\n"));
	D(printk("        %u, /* flash_size  */\n", fmc->flash_size));
	D(printk("        %u, /* used_size  */\n", fmc->used_size));
	D(printk("        %u, /* dirty_size  */\n", fmc->dirty_size));
	D(printk("        %u, /* free_size  */\n", fmc->free_size));
	D(printk("        %u, /* sector_size  */\n", fmc->sector_size));
	D(printk("        %u, /* min_free_size  */\n", fmc->min_free_size));
	D(printk("        %u, /* max_chunk_size  */\n", fmc->max_chunk_size));
	D(printk("        0x%p, /* mtd  */\n", fmc->mtd));
	D(printk("        0x%p, /* head  */    "
		 "(head->offset = 0x%08x)\n",
		 fmc->head, (fmc->head ? fmc->head->offset : 0)));
	D(printk("        0x%p, /* tail  */    "
		 "(tail->offset + tail->size = 0x%08x)\n",
		 fmc->tail,
		 (fmc->tail ? fmc->tail->offset + fmc->tail->size : 0)));
	D(printk("        0x%p, /* head_extra  */\n", fmc->head_extra));
	D(printk("        0x%p, /* tail_extra  */\n", fmc->tail_extra));
	D(printk("}\n"));
}
#endif  /*  CONFIG_JFFS_FS_VERBOSE > 0  */

#if CONFIG_JFFS_FS_VERBOSE > 2
static void
jffs_print_fm(struct jffs_fm *fm)
{
	D(printk("struct jffs_fm: 0x%p\n", fm));
	D(printk("{\n"));
	D(printk("       0x%08x, /* offset  */\n", fm->offset));
	D(printk("       %u, /* size  */\n", fm->size));
	D(printk("       0x%p, /* prev  */\n", fm->prev));
	D(printk("       0x%p, /* next  */\n", fm->next));
	D(printk("       0x%p, /* nodes  */\n", fm->nodes));
	D(printk("}\n"));
}
#endif  /*  CONFIG_JFFS_FS_VERBOSE > 2  */

#if 0
void
jffs_print_node_ref(struct jffs_node_ref *ref)
{
	D(printk("struct jffs_node_ref: 0x%p\n", ref));
	D(printk("{\n"));
	D(printk("       0x%p, /* node  */\n", ref->node));
	D(printk("       0x%p, /* next  */\n", ref->next));
	D(printk("}\n"));
}
#endif  /*  0  */

/* This function creates a new shiny flash memory control structure.  */
struct jffs_fmcontrol *
jffs_build_begin(struct jffs_control *c, int unit)
{
	struct jffs_fmcontrol *fmc;
	struct mtd_info *mtd;
	
	D3(printk("jffs_build_begin()\n"));
	fmc = kmalloc(sizeof(*fmc), GFP_KERNEL);
	if (!fmc) {
		D(printk("jffs_build_begin(): Allocation of "
			 "struct jffs_fmcontrol failed!\n"));
		return (struct jffs_fmcontrol *)0;
	}
	DJM(no_jffs_fmcontrol++);

	mtd = get_mtd_device(NULL, unit);

	if (IS_ERR(mtd)) {
		kfree(fmc);
		DJM(no_jffs_fmcontrol--);
		return NULL;
	}
	
	/* Retrieve the size of the flash memory.  */
	fmc->flash_size = mtd->size;
	D3(printk("  fmc->flash_size = %d bytes\n", fmc->flash_size));

	fmc->used_size = 0;
	fmc->dirty_size = 0;
	fmc->free_size = mtd->size;
	fmc->sector_size = mtd->erasesize;
	fmc->max_chunk_size = fmc->sector_size >> 1;
	/* min_free_size:
	   1 sector, obviously.
	   + 1 x max_chunk_size, for when a nodes overlaps the end of a sector
	   + 1 x max_chunk_size again, which ought to be enough to handle 
		   the case where a rename causes a name to grow, and GC has
		   to write out larger nodes than the ones it's obsoleting.
		   We should fix it so it doesn't have to write the name
		   _every_ time. Later.
	   + another 2 sectors because people keep getting GC stuck and
	           we don't know why. This scares me - I want formal proof
		   of correctness of whatever number we put here. dwmw2.
	*/
	fmc->min_free_size = fmc->sector_size << 2;
	fmc->mtd = mtd;
	fmc->c = c;
	fmc->head = NULL;
	fmc->tail = NULL;
	fmc->head_extra = NULL;
	fmc->tail_extra = NULL;
	mutex_init(&fmc->biglock);
	return fmc;
}


/* When the flash memory scan has completed, this function should be called
   before use of the control structure.  */
void
jffs_build_end(struct jffs_fmcontrol *fmc)
{
	D3(printk("jffs_build_end()\n"));

	if (!fmc->head) {
		fmc->head = fmc->head_extra;
		fmc->tail = fmc->tail_extra;
	}
	else if (fmc->head_extra) {
		fmc->tail_extra->next = fmc->head;
		fmc->head->prev = fmc->tail_extra;
		fmc->head = fmc->head_extra;
	}
	fmc->head_extra = NULL; /* These two instructions should be omitted.  */
	fmc->tail_extra = NULL;
	D3(jffs_print_fmcontrol(fmc));
}


/* Call this function when the file system is unmounted.  This function
   frees all memory used by this module.  */
void
jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc)
{
	if (fmc) {
		struct jffs_fm *next = fmc->head;
		while (next) {
			struct jffs_fm *cur = next;
			next = next->next;
			jffs_free_fm(cur);
		}
		put_mtd_device(fmc->mtd);
		kfree(fmc);
		DJM(no_jffs_fmcontrol--);
	}
}


/* This function returns the size of the first chunk of free space on the
   flash memory.  This function will return something nonzero if the flash
   memory contains any free space.  */
__u32
jffs_free_size1(struct jffs_fmcontrol *fmc)
{
	__u32 head;
	__u32 tail;
	__u32 end = fmc->flash_size;

	if (!fmc->head) {
		/* There is nothing on the flash.  */
		return fmc->flash_size;
	}

	/* Compute the beginning and ending of the contents of the flash.  */
	head = fmc->head->offset;
	tail = fmc->tail->offset + fmc->tail->size;
	if (tail == end) {
		tail = 0;
	}
	ASSERT(else if (tail > end) {
		printk(KERN_WARNING "jffs_free_size1(): tail > end\n");
		tail = 0;
	});

	if (head <= tail) {
		return end - tail;
	}
	else {
		return head - tail;
	}
}

/* This function will return something nonzero in case there are two free
   areas on the flash.  Like this:

     +----------------+------------------+----------------+
     |     FREE 1     |   USED / DIRTY   |     FREE 2     |
     +----------------+------------------+----------------+
       fmc->head -----^
       fmc->tail ------------------------^

   The value returned, will be the size of the first empty area on the
   flash, in this case marked "FREE 1".  */
__u32
jffs_free_size2(struct jffs_fmcontrol *fmc)
{
	if (fmc->head) {
		__u32 head = fmc->head->offset;
		__u32 tail = fmc->tail->offset + fmc->tail->size;
		if (tail == fmc->flash_size) {
			tail = 0;
		}

		if (tail >= head) {
			return head;
		}
	}
	return 0;
}


/* Allocate a chunk of flash memory.  If there is enough space on the
   device, a reference to the associated node is stored in the jffs_fm
   struct.  */
int
jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node,
	     struct jffs_fm **result)
{
	struct jffs_fm *fm;
	__u32 free_chunk_size1;
	__u32 free_chunk_size2;

	D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, "
		  "node = 0x%p\n", fmc, size, node));

	*result = NULL;

	if (!(fm = jffs_alloc_fm())) {
		D(printk("jffs_fmalloc(): kmalloc() failed! (fm)\n"));
		return -ENOMEM;
	}

	free_chunk_size1 = jffs_free_size1(fmc);
	free_chunk_size2 = jffs_free_size2(fmc);
	if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) {
		printk(KERN_WARNING "Free size accounting screwed\n");
		printk(KERN_WARNING "free_chunk_size1 == 0x%x, free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", free_chunk_size1, free_chunk_size2, fmc->free_size);
	}

	D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, "
		  "free_chunk_size2 = %u\n",
		  free_chunk_size1, free_chunk_size2));

	if (size <= free_chunk_size1) {
		if (!(fm->nodes = (struct jffs_node_ref *)
				  kmalloc(sizeof(struct jffs_node_ref),
					  GFP_KERNEL))) {
			D(printk("jffs_fmalloc(): kmalloc() failed! "
				 "(node_ref)\n"));
			jffs_free_fm(fm);
			return -ENOMEM;
		}
		DJM(no_jffs_node_ref++);
		fm->nodes->node = node;
		fm->nodes->next = NULL;
		if (fmc->tail) {
			fm->offset = fmc->tail->offset + fmc->tail->size;
			if (fm->offset == fmc->flash_size) {
				fm->offset = 0;
			}
			ASSERT(else if (fm->offset > fmc->flash_size) {
				printk(KERN_WARNING "jffs_fmalloc(): "
				       "offset > flash_end\n");
				fm->offset = 0;
			});
		}
		else {
			/* There don't have to be files in the file
			   system yet.  */
			fm->offset = 0;
		}
		fm->size = size;
		fmc->free_size -= size;
		fmc->used_size += size;
	}
	else if (size > free_chunk_size2) {
		printk(KERN_WARNING "JFFS: Tried to allocate a too "
		       "large flash memory chunk. (size = %u)\n", size);
		jffs_free_fm(fm);
		return -ENOSPC;
	}
	else {
		fm->offset = fmc->tail->offset + fmc->tail->size;
		fm->size = free_chunk_size1;
		fm->nodes = NULL;
		fmc->free_size -= fm->size;
		fmc->dirty_size += fm->size; /* Changed by simonk. This seemingly fixes a 
						bug that caused infinite garbage collection.
						It previously set fmc->dirty_size to size (which is the
						size of the requested chunk).
					     */
	}

	fm->next = NULL;
	if (!fmc->head) {
		fm->prev = NULL;
		fmc->head = fm;
		fmc->tail = fm;
	}
	else {
		fm->prev = fmc->tail;
		fmc->tail->next = fm;
		fmc->tail = fm;
	}

	D3(jffs_print_fmcontrol(fmc));
	D3(jffs_print_fm(fm));
	*result = fm;
	return 0;
}


/* The on-flash space is not needed anymore by the passed node.  Remove
   the reference to the node from the node list.  If the data chunk in
   the flash memory isn't used by any more nodes anymore (fm->nodes == 0),
   then mark that chunk as dirty.  */
int
jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node)
{
	struct jffs_node_ref *ref;
	struct jffs_node_ref *prev;
	ASSERT(int del = 0);

	D2(printk("jffs_fmfree(): node->ino = %u, node->version = %u\n",
		 node->ino, node->version));

	ASSERT(if (!fmc || !fm || !fm->nodes) {
		printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, "
		       "fm->nodes: 0x%p\n",
		       fmc, fm, (fm ? fm->nodes : NULL));
		return -1;
	});

	/* Find the reference to the node that is going to be removed
	   and remove it.  */
	for (ref = fm->nodes, prev = NULL; ref; ref = ref->next) {
		if (ref->node == node) {
			if (prev) {
				prev->next = ref->next;
			}
			else {
				fm->nodes = ref->next;
			}
			kfree(ref);
			DJM(no_jffs_node_ref--);
			ASSERT(del = 1);
			break;
		}
		prev = ref;
	}

	/* If the data chunk in the flash memory isn't used anymore
	   just mark it as obsolete.  */
	if (!fm->nodes) {
		/* No node uses this chunk so let's remove it.  */
		fmc->used_size -= fm->size;
		fmc->dirty_size += fm->size;
#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
		if (jffs_mark_obsolete(fmc, fm->offset) < 0) {
			D1(printk("jffs_fmfree(): Failed to mark an on-flash "
				  "node obsolete!\n"));
			return -1;
		}
#endif
	}

	ASSERT(if (!del) {
		printk(KERN_WARNING "***jffs_fmfree(): "
		       "Didn't delete any node reference!\n");
	});

	return 0;
}


/* This allocation function is used during the initialization of
   the file system.  */
struct jffs_fm *
jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size,
	       struct jffs_node *node)
{
	struct jffs_fm *fm;

	D3(printk("jffs_fmalloced()\n"));

	if (!(fm = jffs_alloc_fm())) {
		D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!\n",
			 fmc, offset, size, node));
		return NULL;
	}
	fm->offset = offset;
	fm->size = size;
	fm->prev = NULL;
	fm->next = NULL;
	fm->nodes = NULL;
	if (node) {
		/* `node' exists and it should be associated with the
		    jffs_fm structure `fm'.  */
		if (!(fm->nodes = (struct jffs_node_ref *)
				  kmalloc(sizeof(struct jffs_node_ref),
					  GFP_KERNEL))) {
			D(printk("jffs_fmalloced(): !fm->nodes\n"));
			jffs_free_fm(fm);
			return NULL;
		}
		DJM(no_jffs_node_ref++);
		fm->nodes->node = node;
		fm->nodes->next = NULL;
		fmc->used_size += size;
		fmc->free_size -= size;
	}
	else {
		/* If there is no node, then this is just a chunk of dirt.  */
		fmc->dirty_size += size;
		fmc->free_size -= size;
	}

	if (fmc->head_extra) {
		fm->prev = fmc->tail_extra;
		fmc->tail_extra->next = fm;
		fmc->tail_extra = fm;
	}
	else if (!fmc->head) {
		fmc->head = fm;
		fmc->tail = fm;
	}
	else if (fmc->tail->offset + fmc->tail->size < offset) {
		fmc->head_extra = fm;
		fmc->tail_extra = fm;
	}
	else {
		fm->prev = fmc->tail;
		fmc->tail->next = fm;
		fmc->tail = fm;
	}
	D3(jffs_print_fmcontrol(fmc));
	D3(jffs_print_fm(fm));
	return fm;
}


/* Add a new node to an already existing jffs_fm struct.  */
int
jffs_add_node(struct jffs_node *node)
{
	struct jffs_node_ref *ref;

	D3(printk("jffs_add_node(): ino = %u\n", node->ino));

	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
	if (!ref)
		return -ENOMEM;

	DJM(no_jffs_node_ref++);
	ref->node = node;
	ref->next = node->fm->nodes;
	node->fm->nodes = ref;
	return 0;
}


/* Free a part of some allocated space.  */
void
jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size)
{
	D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, "
		  "fm->nodes->node->ino = %u, size = %u\n",
		  fm, (fm ? fm->nodes : 0),
		  (!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size));

	if (fm->nodes) {
		kfree(fm->nodes);
		DJM(no_jffs_node_ref--);
		fm->nodes = NULL;
	}
	fmc->used_size -= fm->size;
	if (fm == fmc->tail) {
		fm->size -= size;
		fmc->free_size += size;
	}
	fmc->dirty_size += fm->size;
}


/* Find the jffs_fm struct that contains the end of the data chunk that
   begins at the logical beginning of the flash memory and spans `size'
   bytes.  If we want to erase a sector of the flash memory, we use this
   function to find where the sector limit cuts a chunk of data.  */
struct jffs_fm *
jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size)
{
	struct jffs_fm *fm;
	__u32 pos = 0;

	if (size == 0) {
		return NULL;
	}

	ASSERT(if (!fmc) {
		printk(KERN_ERR "jffs_cut_node(): fmc == NULL\n");
		return NULL;
	});

	fm = fmc->head;

	while (fm) {
		pos += fm->size;
		if (pos < size) {
			fm = fm->next;
		}
		else if (pos > size) {
			break;
		}
		else {
			fm = NULL;
			break;
		}
	}

	return fm;
}


/* Move the head of the fmc structures and delete the obsolete parts.  */
void
jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size)
{
	struct jffs_fm *fm;
	struct jffs_fm *del;

	ASSERT(if (!fmc) {
		printk(KERN_ERR "jffs_sync_erase(): fmc == NULL\n");
		return;
	});

	fmc->dirty_size -= erased_size;
	fmc->free_size += erased_size;

	for (fm = fmc->head; fm && (erased_size > 0);) {
		if (erased_size >= fm->size) {
			erased_size -= fm->size;
			del = fm;
			fm = fm->next;
			fm->prev = NULL;
			fmc->head = fm;
			jffs_free_fm(del);
		}
		else {
			fm->size -= erased_size;
			fm->offset += erased_size;
			break;
		}
	}
}


/* Return the oldest used node in the flash memory.  */
struct jffs_node *
jffs_get_oldest_node(struct jffs_fmcontrol *fmc)
{
	struct jffs_fm *fm;
	struct jffs_node_ref *nref;
	struct jffs_node *node = NULL;

	ASSERT(if (!fmc) {
		printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULL\n");
		return NULL;
	});

	for (fm = fmc->head; fm && !fm->nodes; fm = fm->next);

	if (!fm) {
		return NULL;
	}

	/* The oldest node is the last one in the reference list.  This list
	   shouldn't be too long; just one or perhaps two elements.  */
	for (nref = fm->nodes; nref; nref = nref->next) {
		node = nref->node;
	}

	D2(printk("jffs_get_oldest_node(): ino = %u, version = %u\n",
		  (node ? node->ino : 0), (node ? node->version : 0)));

	return node;
}


#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE

/* Mark an on-flash node as obsolete.

   Note that this is just an optimization that isn't necessary for the
   filesystem to work.  */

static int
jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset)
{
	/* The `accurate_pos' holds the position of the accurate byte
	   in the jffs_raw_inode structure that we are going to mark
	   as obsolete.  */
	__u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET;
	unsigned char zero = 0x00;
	size_t len;

	D3(printk("jffs_mark_obsolete(): accurate_pos = %u\n", accurate_pos));
	ASSERT(if (!fmc) {
		printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n");
		return -1;
	});

	/* Write 0x00 to the raw inode's accurate member.  Don't care
	   about the return value.  */
	MTD_WRITE(fmc->mtd, accurate_pos, 1, &len, &zero);
	return 0;
}

#endif /* JFFS_MARK_OBSOLETE  */

/* check if it's possible to erase the wanted range, and if not, return
 * the range that IS erasable, or a negative error code.
 */
static long
jffs_flash_erasable_size(struct mtd_info *mtd, __u32 offset, __u32 size)
{
         u_long ssize;

	/* assume that sector size for a partition is constant even
	 * if it spans more than one chip (you usually put the same
	 * type of chips in a system)
	 */

        ssize = mtd->erasesize;

	if (offset % ssize) {
		printk(KERN_WARNING "jffs_flash_erasable_size() given non-aligned offset %x (erasesize %lx)\n", offset, ssize);
		/* The offset is not sector size aligned.  */
		return -1;
	}
	else if (offset > mtd->size) {
		printk(KERN_WARNING "jffs_flash_erasable_size given offset off the end of device (%x > %x)\n", offset, mtd->size);
		return -2;
	}
	else if (offset + size > mtd->size) {
		printk(KERN_WARNING "jffs_flash_erasable_size() given length which runs off the end of device (ofs %x + len %x = %x, > %x)\n", offset,size, offset+size, mtd->size);
		return -3;
	}

	return (size / ssize) * ssize;
}


/* How much dirty flash memory is possible to erase at the moment?  */
long
jffs_erasable_size(struct jffs_fmcontrol *fmc)
{
	struct jffs_fm *fm;
	__u32 size = 0;
	long ret;

	ASSERT(if (!fmc) {
		printk(KERN_ERR "jffs_erasable_size(): fmc = NULL\n");
		return -1;
	});

	if (!fmc->head) {
		/* The flash memory is totally empty. No nodes. No dirt.
		   Just return.  */
		return 0;
	}

	/* Calculate how much space that is dirty.  */
	for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) {
		if (size && fm->offset == 0) {
			/* We have reached the beginning of the flash.  */
			break;
		}
		size += fm->size;
	}

	/* Someone's signature contained this:
	   There's a fine line between fishing and just standing on
	   the shore like an idiot...  */
	ret = jffs_flash_erasable_size(fmc->mtd, fmc->head->offset, size);

	ASSERT(if (ret < 0) {
		printk("jffs_erasable_size: flash_erasable_size() "
		       "returned something less than zero (%ld).\n", ret);
		printk("jffs_erasable_size: offset = 0x%08x\n",
		       fmc->head->offset);
	});

	/* If there is dirt on the flash (which is the reason to why
	   this function was called in the first place) but no space is
	   possible to erase right now, the initial part of the list of
	   jffs_fm structs, that hold place for dirty space, could perhaps
	   be shortened.  The list's initial "dirty" elements are merged
	   into just one large dirty jffs_fm struct.  This operation must
	   only be performed if nothing is possible to erase.  Otherwise,
	   jffs_clear_end_of_node() won't work as expected.  */
	if (ret == 0) {
		struct jffs_fm *head = fmc->head;
		struct jffs_fm *del;
		/* While there are two dirty nodes beside each other.*/
		while (head->nodes == 0
		       && head->next
		       && head->next->nodes == 0) {
			del = head->next;
			head->size += del->size;
			head->next = del->next;
			if (del->next) {
				del->next->prev = head;
			}
			jffs_free_fm(del);
		}
	}

	return (ret >= 0 ? ret : 0);
}

static struct jffs_fm *jffs_alloc_fm(void)
{
	struct jffs_fm *fm;

	fm = kmem_cache_alloc(fm_cache,GFP_KERNEL);
	DJM(if (fm) no_jffs_fm++;);
	
	return fm;
}

static void jffs_free_fm(struct jffs_fm *n)
{
	kmem_cache_free(fm_cache,n);
	DJM(no_jffs_fm--);
}



struct jffs_node *jffs_alloc_node(void)
{
	struct jffs_node *n;

	n = (struct jffs_node *)kmem_cache_alloc(node_cache,GFP_KERNEL);
	if(n != NULL)
		no_jffs_node++;
	return n;
}

void jffs_free_node(struct jffs_node *n)
{
	kmem_cache_free(node_cache,n);
	no_jffs_node--;
}


int jffs_get_node_inuse(void)
{
	return no_jffs_node;
}