/* Driver for USB Mass Storage compliant devices
*
* $Id: transport.c,v 1.47 2002/04/22 03:39:43 mdharm Exp $
*
* Current development and maintenance by:
* (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
*
* Developed with the assistance of:
* (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
* (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
* (c) 2002 Alan Stern <stern@rowland.org>
*
* Initial work by:
* (c) 1999 Michael Gee (michael@linuxspecific.com)
*
* This driver is based on the 'USB Mass Storage Class' document. This
* describes in detail the protocol used to communicate with such
* devices. Clearly, the designers had SCSI and ATAPI commands in
* mind when they created this document. The commands are all very
* similar to commands in the SCSI-II and ATAPI specifications.
*
* It is important to note that in a number of cases this class
* exhibits class-specific exemptions from the USB specification.
* Notably the usage of NAK, STALL and ACK differs from the norm, in
* that they are used to communicate wait, failed and OK on commands.
*
* Also, for certain devices, the interrupt endpoint is used to convey
* status of a command.
*
* Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
* information about this driver.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include "usb.h"
#include "transport.h"
#include "protocol.h"
#include "scsiglue.h"
#include "debug.h"
/***********************************************************************
* Data transfer routines
***********************************************************************/
/*
* This is subtle, so pay attention:
* ---------------------------------
* We're very concerned about races with a command abort. Hanging this code
* is a sure fire way to hang the kernel. (Note that this discussion applies
* only to transactions resulting from a scsi queued-command, since only
* these transactions are subject to a scsi abort. Other transactions, such
* as those occurring during device-specific initialization, must be handled
* by a separate code path.)
*
* The abort function (usb_storage_command_abort() in scsiglue.c) first
* sets the machine state and the ABORTING bit in us->flags to prevent
* new URBs from being submitted. It then calls usb_stor_stop_transport()
* below, which atomically tests-and-clears the URB_ACTIVE bit in us->flags
* to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
* bit is tested to see if the current_sg scatter-gather request needs to be
* stopped. The timeout callback routine does much the same thing.
*
* When a disconnect occurs, the DISCONNECTING bit in us->flags is set to
* prevent new URBs from being submitted, and usb_stor_stop_transport() is
* called to stop any ongoing requests.
*
* The submit function first verifies that the submitting is allowed
* (neither ABORTING nor DISCONNECTING bits are set) and that the submit
* completes without errors, and only then sets the URB_ACTIVE bit. This
* prevents the stop_transport() function from trying to cancel the URB
* while the submit call is underway. Next, the submit function must test
* the flags to see if an abort or disconnect occurred during the submission
* or before the URB_ACTIVE bit was set. If so, it's essential to cancel
* the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
* is still set). Either way, the function must then wait for the URB to
* finish. Note that the URB can still be in progress even after a call to
* usb_unlink_urb() returns.
*
* The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
* either the stop_transport() function or the submitting function
* is guaranteed to call usb_unlink_urb() for an active URB,
* and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
* called more than once or from being called during usb_submit_urb().
*/
/* This is the completion handler which will wake us up when an URB
* completes.
*/
static void usb_stor_blocking_completion(struct urb *urb)
{
struct completion *urb_done_ptr = (struct completion *)urb->context;
complete(urb_done_ptr);
}
/* This is the common part of the URB message submission code
*
* All URBs from the usb-storage driver involved in handling a queued scsi
* command _must_ pass through this function (or something like it) for the
* abort mechanisms to work properly.
*/
static int usb_stor_msg_common(struct us_data *us, int timeout)
{
struct completion urb_done;
long timeleft;
int status;
/* don't submit URBs during abort/disconnect processing */
if (us->flags & ABORTING_OR_DISCONNECTING)
return -EIO;
/* set up data structures for the wakeup system */
init_completion(&urb_done);
/* fill the common fields in the URB */
us->current_urb->context = &urb_done;
us->current_urb->actual_length = 0;
us->current_urb->error_count = 0;
us->current_urb->status = 0;
/* we assume that if transfer_buffer isn't us->iobuf then it
* hasn't been mapped for DMA. Yes, this is clunky, but it's
* easier than always having the caller tell us whether the
* transfer buffer has already been mapped. */
us->current_urb->transfer_flags = URB_NO_SETUP_DMA_MAP;
if (us->current_urb->transfer_buffer == us->iobuf)
us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
us->current_urb->transfer_dma = us->iobuf_dma;
us->current_urb->setup_dma = us->cr_dma;
/* submit the URB */