/*
* u_serial.c - utilities for USB gadget "serial port"/TTY support
*
* Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
* Copyright (C) 2008 David Brownell
* Copyright (C) 2008 by Nokia Corporation
*
* This code also borrows from usbserial.c, which is
* Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2000 Peter Berger (pberger@brimson.com)
* Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com)
*
* This software is distributed under the terms of the GNU General
* Public License ("GPL") as published by the Free Software Foundation,
* either version 2 of that License or (at your option) any later version.
*/
/* #define VERBOSE_DEBUG */
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/slab.h>
#include "u_serial.h"
/*
* This component encapsulates the TTY layer glue needed to provide basic
* "serial port" functionality through the USB gadget stack. Each such
* port is exposed through a /dev/ttyGS* node.
*
* After initialization (gserial_setup), these TTY port devices stay
* available until they are removed (gserial_cleanup). Each one may be
* connected to a USB function (gserial_connect), or disconnected (with
* gserial_disconnect) when the USB host issues a config change event.
* Data can only flow when the port is connected to the host.
*
* A given TTY port can be made available in multiple configurations.
* For example, each one might expose a ttyGS0 node which provides a
* login application. In one case that might use CDC ACM interface 0,
* while another configuration might use interface 3 for that. The
* work to handle that (including descriptor management) is not part
* of this component.
*
* Configurations may expose more than one TTY port. For example, if
* ttyGS0 provides login service, then ttyGS1 might provide dialer access
* for a telephone or fax link. And ttyGS2 might be something that just
* needs a simple byte stream interface for some messaging protocol that
* is managed in userspace ... OBEX, PTP, and MTP have been mentioned.
*/
#define PREFIX "ttyGS"
/*
* gserial is the lifecycle interface, used by USB functions
* gs_port is the I/O nexus, used by the tty driver
* tty_struct links to the tty/filesystem framework
*
* gserial <---> gs_port ... links will be null when the USB link is
* inactive; managed by gserial_{connect,disconnect}(). each gserial
* instance can wrap its own USB control protocol.
* gserial->ioport == usb_ep->driver_data ... gs_port
* gs_port->port_usb ... gserial
*
* gs_port <---> tty_struct ... links will be null when the TTY file
* isn't opened; managed by gs_open()/gs_close()
* gserial->port_tty ... tty_struct
* tty_struct->driver_data ... gserial
*/
/* RX and TX queues can buffer QUEUE_SIZE packets before they hit the
* next layer of buffering. For TX that's a circular buffer; for RX
* consider it a NOP. A third layer is provided by the TTY code.
*/
#define QUEUE_SIZE 16
#define WRITE_BUF_SIZE 8192 /* TX only */
/* circular buffer */
struct gs_buf {
unsigned buf_size;
char *buf_buf;
char *buf_get;
char *buf_put;
};
/*
* The port structure holds info for each port, one for each minor number
* (and thus for each /dev/ node).
*/
struct gs_port {
spinlock_t port_lock; /* guard port_* access */
struct gserial *port_usb;
struct tty_struct *port_tty;
unsigned open_count;
bool openclose; /* open/close in progress */
u8 port_num;
wait_queue_head_t close_wait; /* wait for last close */
struct list_head read_pool;
struct list_head read_queue;
unsigned n_read;
struct tasklet_struct push;
struct list_head write_pool;
struct gs_buf port_write_buf;
wait_queue_head_t drain_wait; /* wait while writes drain */
/* REVISIT this state ... */
struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */
};
/* increase N_PORTS if you need more */
#define N_PORTS 4
static struct portmaster {
struct mutex lock; /* protect open/close */
struct gs_port *port;
} ports[N_PORTS];
static unsigned n_ports;
#define GS_CLOSE_TIMEOUT 15 /* seconds */
#ifdef VERBOSE_DEBUG
#define pr_vdebug(fmt, arg...) \
pr_debug(fmt, ##arg)
#else
#define pr_vdebug(fmt, arg...) \
({ if (0) pr_debug(fmt, ##arg); })
#endif
/*---------------------------------------------------------