1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
|
/* ==========================================================================
* $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_cil.c $
* $Revision: #24 $
* $Date: 2007/02/07 $
* $Change: 791271 $
*
* Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
* "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
* otherwise expressly agreed to in writing between Synopsys and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product under
* any End User Software License Agreement or Agreement for Licensed Product
* with Synopsys or any supplement thereto. You are permitted to use and
* redistribute this Software in source and binary forms, with or without
* modification, provided that redistributions of source code must retain this
* notice. You may not view, use, disclose, copy or distribute this file or
* any information contained herein except pursuant to this license grant from
* Synopsys. If you do not agree with this notice, including the disclaimer
* below, then you are not authorized to use the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
* ========================================================================== */
/** @file
*
* The Core Interface Layer provides basic services for accessing and
* managing the DWC_otg hardware. These services are used by both the
* Host Controller Driver and the Peripheral Controller Driver.
*
* The CIL manages the memory map for the core so that the HCD and PCD
* don't have to do this separately. It also handles basic tasks like
* reading/writing the registers and data FIFOs in the controller.
* Some of the data access functions provide encapsulation of several
* operations required to perform a task, such as writing multiple
* registers to start a transfer. Finally, the CIL performs basic
* services that are not specific to either the host or device modes
* of operation. These services include management of the OTG Host
* Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
* Diagnostic API is also provided to allow testing of the controller
* hardware.
*
* The Core Interface Layer has the following requirements:
* - Provides basic controller operations.
* - Minimal use of OS services.
* - The OS services used will be abstracted by using inline functions
* or macros.
*
*/
#include <asm/unaligned.h>
#ifdef CONFIG_DWC_DEBUG
#include <linux/jiffies.h>
#endif /* */
#include <asm/dcr.h>
#include "linux/dwc_otg_plat.h"
#include "dwc_otg_regs.h"
#include "dwc_otg_cil.h"
#ifdef CONFIG_OTG_PLB_DMA_TASKLET
atomic_t release_later = ATOMIC_INIT(0);
#endif
/**
* This function is called to initialize the DWC_otg CSR data
* structures. The register addresses in the device and host
* structures are initialized from the base address supplied by the
* caller. The calling function must make the OS calls to get the
* base address of the DWC_otg controller registers. The core_params
* argument holds the parameters that specify how the core should be
* configured.
*
* @param[in] _reg_base_addr Base address of DWC_otg core registers
* @param[in] _core_params Pointer to the core configuration parameters
*
*/
dwc_otg_core_if_t * dwc_otg_cil_init(const uint32_t * _reg_base_addr,
dwc_otg_core_params_t *_core_params)
{
dwc_otg_core_if_t * core_if = 0;
dwc_otg_dev_if_t * dev_if = 0;
dwc_otg_host_if_t * host_if = 0;
uint8_t * reg_base = (uint8_t *) _reg_base_addr;
int i = 0;
DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, _reg_base_addr,
_core_params);
core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL);
if (core_if == 0) {
DWC_DEBUGPL(DBG_CIL,"Allocation of dwc_otg_core_if_t failed\n");
return 0;
}
memset(core_if, 0, sizeof(dwc_otg_core_if_t));
core_if->core_params = _core_params;
core_if->core_global_regs = (dwc_otg_core_global_regs_t *) reg_base;
/*
* Allocate the Device Mode structures.
*/
dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
if (dev_if == 0) {
DWC_DEBUGPL(DBG_CIL,"Allocation of dwc_otg_dev_if_t failed\n");
kfree(core_if);
return 0;
}
dev_if->dev_global_regs = (dwc_otg_device_global_regs_t *)(reg_base +
DWC_DEV_GLOBAL_REG_OFFSET);
for (i = 0; i < MAX_EPS_CHANNELS; i++) {
dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
(reg_base + DWC_DEV_IN_EP_REG_OFFSET + (i * DWC_EP_REG_OFFSET));
dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
(reg_base + DWC_DEV_OUT_EP_REG_OFFSET + (i * DWC_EP_REG_OFFSET));
DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", i,
&dev_if->in_ep_regs[i]->diepctl);
DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", i,
&dev_if->out_ep_regs[i]->doepctl);
}
dev_if->speed = 0; // unknown
core_if->dev_if = dev_if;
/*
* Allocate the Host Mode structures.
*/
host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL);
if (host_if == 0) {
DWC_DEBUGPL(DBG_CIL,"Allocation of dwc_otg_host_if_t failed\n");
kfree(dev_if);
kfree(core_if);
return 0;
}
host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
(reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
host_if->hprt0 = (uint32_t *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
for (i = 0; i < MAX_EPS_CHANNELS; i++) {
host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
(reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + (i * DWC_OTG_CHAN_REGS_OFFSET));
DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", i,&host_if->hc_regs[i]->hcchar);
}
host_if->num_host_channels = MAX_EPS_CHANNELS;
core_if->host_if = host_if;
for (i = 0; i < MAX_EPS_CHANNELS; i++) {
core_if->data_fifo[i] =
(uint32_t *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET +
(i * DWC_OTG_DATA_FIFO_SIZE));
DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n", i,
(unsigned)core_if->data_fifo[i]);
}
core_if->pcgcctl = (uint32_t *) (reg_base + DWC_OTG_PCGCCTL_OFFSET);
/*
* Store the contents of the hardware configuration registers here for
* easy access later.
*/
core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
#ifdef CONFIG_DWC_SLAVE
core_if->hwcfg2.b.architecture = DWC_SLAVE_ONLY_ARCH;
#endif
core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
DWC_DEBUGPL(DBG_CILV, "hwcfg1=%08x\n", core_if->hwcfg1.d32);
DWC_DEBUGPL(DBG_CILV, "hwcfg2=%08x\n", core_if->hwcfg2.d32);
DWC_DEBUGPL(DBG_CILV, "hwcfg3=%08x\n", core_if->hwcfg3.d32);
DWC_DEBUGPL(DBG_CILV, "hwcfg4=%08x\n", core_if->hwcfg4.d32);
DWC_DEBUGPL(DBG_CILV, "op_mode=%0x\n", core_if->hwcfg2.b.op_mode);
DWC_DEBUGPL(DBG_CILV, "arch=%0x\n", core_if->hwcfg2.b.architecture);
DWC_DEBUGPL(DBG_CILV, "num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep + 1);
DWC_DEBUGPL(DBG_CILV, "num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
DWC_DEBUGPL(DBG_CILV, "nonperio_tx_q_depth=0x%0x\n",
core_if->hwcfg2.b.nonperio_tx_q_depth);
DWC_DEBUGPL(DBG_CILV, "host_perio_tx_q_depth=0x%0x\n",
core_if->hwcfg2.b.host_perio_tx_q_depth);
DWC_DEBUGPL(DBG_CILV, "dev_token_q_depth=0x%0x\n",
core_if->hwcfg2.b.dev_token_q_depth);
DWC_DEBUGPL(DBG_CILV, "Total FIFO SZ=%d\n",
core_if->hwcfg3.b.dfifo_depth);
DWC_DEBUGPL(DBG_CILV, "xfer_size_cntr_width=%0x\n",
core_if->hwcfg3.b.xfer_size_cntr_width);
/*
* Set the SRP sucess bit for FS-I2c
*/
core_if->srp_success = 0;
core_if->srp_timer_started = 0;
return core_if;
}
/**
* This function frees the structures allocated by dwc_otg_cil_init().
*
* @param[in] _core_if The core interface pointer returned from
* dwc_otg_cil_init().
*
*/
void dwc_otg_cil_remove(dwc_otg_core_if_t * _core_if)
{
/* Disable all interrupts */
dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 1, 0);
dwc_write_reg32(&_core_if->core_global_regs->gintmsk, 0);
if (_core_if->dev_if) {
kfree(_core_if->dev_if);
}
if (_core_if->host_if) {
kfree(_core_if->host_if);
}
kfree(_core_if);
}
/**
* This function enables the controller's Global Interrupt in the AHB Config
* register.
*
* @param[in] _core_if Programming view of DWC_otg controller.
*/
extern void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t * _core_if)
{
gahbcfg_data_t ahbcfg = {.d32 = 0};
ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
}
/**
* This function disables the controller's Global Interrupt in the AHB Config
* register.
*
* @param[in] _core_if Programming view of DWC_otg controller.
*/
extern void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t * _core_if)
{
gahbcfg_data_t ahbcfg = {.d32 = 0};
ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
dwc_modify_reg32(&_core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
}
/**
* This function initializes the commmon interrupts, used in both
* device and host modes.
*
* @param[in] _core_if Programming view of the DWC_otg controller
*
*/
static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t * _core_if)
{
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
gintmsk_data_t intr_mask = {.d32 = 0};
/* Clear any pending OTG Interrupts */
dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
/* Clear any pending interrupts */
dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
/*
* Enable the interrupts in the GINTMSK.
*/
intr_mask.b.modemismatch = 1;
intr_mask.b.otgintr = 1;
if (!_core_if->dma_enable) {
intr_mask.b.rxstsqlvl = 1;
}
intr_mask.b.conidstschng = 1;
intr_mask.b.wkupintr = 1;
intr_mask.b.disconnect = 1;
intr_mask.b.usbsuspend = 1;
intr_mask.b.sessreqintr = 1;
dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
}
/**
* Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
* type.
*/
static void init_fslspclksel(dwc_otg_core_if_t * _core_if)
{
uint32_t val;
hcfg_data_t hcfg;
if (((_core_if->hwcfg2.b.hs_phy_type == 2) &&
(_core_if->hwcfg2.b.fs_phy_type == 1) &&
(_core_if->core_params->ulpi_fs_ls)) ||
(_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
/* Full speed PHY */
val = DWC_HCFG_48_MHZ;
} else {
/* High speed PHY running at full speed or high speed */
val = DWC_HCFG_30_60_MHZ;
}
DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
hcfg.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hcfg);
hcfg.b.fslspclksel = val;
dwc_write_reg32(&_core_if->host_if->host_global_regs->hcfg, hcfg.d32);
}
/**
* Initializes the DevSpd field of the DCFG register depending on the PHY type
* and the enumeration speed of the device.
*/
static void init_devspd(dwc_otg_core_if_t * _core_if)
{
uint32_t val;
dcfg_data_t dcfg;
if (((_core_if->hwcfg2.b.hs_phy_type == 2) &&
(_core_if->hwcfg2.b.fs_phy_type == 1) &&
(_core_if->core_params->ulpi_fs_ls)) ||
(_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
/* Full speed PHY */
val = 0x3;
} else if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
/* High speed PHY running at full speed */
val = 0x1;
} else {
/* High speed PHY running at high speed */
val = 0x0;
}
DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
dcfg.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dcfg);
dcfg.b.devspd = val;
dwc_write_reg32(&_core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
}
/**
* This function calculates the number of IN EPS
* using GHWCFG1 and GHWCFG2 registers values
*
* @param _pcd the pcd structure.
*/
static uint32_t calc_num_in_eps(dwc_otg_core_if_t * _core_if)
{
uint32_t num_in_eps = 0;
uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep;
uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2;
uint32_t num_tx_fifos = _core_if->hwcfg4.b.num_in_eps;
int i;
for (i = 0; i < num_eps; ++i) {
if (!(hwcfg1 & 0x1))
num_in_eps++;
hwcfg1 >>= 2;
}
if (_core_if->hwcfg4.b.ded_fifo_en) {
num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
}
return num_in_eps;
}
/**
* This function calculates the number of OUT EPS
* using GHWCFG1 and GHWCFG2 registers values
*
* @param _pcd the pcd structure.
*/
static uint32_t calc_num_out_eps(dwc_otg_core_if_t * _core_if)
{
uint32_t num_out_eps = 0;
uint32_t num_eps = _core_if->hwcfg2.b.num_dev_ep;
uint32_t hwcfg1 = _core_if->hwcfg1.d32 >> 2;
int i;
for (i = 0; i < num_eps; ++i) {
if (!(hwcfg1 & 0x2))
num_out_eps++;
hwcfg1 >>= 2;
}
return num_out_eps;
}
/**
* This function initializes the DWC_otg controller registers and
* prepares the core for device mode or host mode operation.
*
* @param _core_if Programming view of the DWC_otg controller
*
*/
void dwc_otg_core_init(dwc_otg_core_if_t * _core_if)
{
int i = 0;
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
dwc_otg_dev_if_t * dev_if = _core_if->dev_if;
gahbcfg_data_t ahbcfg = {.d32 = 0};
gusbcfg_data_t usbcfg = {.d32 = 0};
gi2cctl_data_t i2cctl = {.d32 = 0};
DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", _core_if);
/* Common Initialization */
usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
DWC_DEBUGPL(DBG_CIL, "USB config register: 0x%08x\n", usbcfg.d32);
/* Program the ULPI External VBUS bit if needed */
#if defined(OTG_EXT_CHG_PUMP) || defined(CONFIG_460EX) || defined(CONFIG_APM82181)
usbcfg.b.ulpi_ext_vbus_drv = 1;
#else
//usbcfg.b.ulpi_ext_vbus_drv = 0;
usbcfg.b.ulpi_ext_vbus_drv =
(_core_if->core_params->phy_ulpi_ext_vbus ==
DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
#endif
/* Set external TS Dline pulsing */
usbcfg.b.term_sel_dl_pulse = (_core_if->core_params->ts_dline == 1) ? 1 : 0;
dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
/* Reset the Controller */
dwc_otg_core_reset(_core_if);
/* Initialize parameters from Hardware configuration registers. */
dev_if->num_in_eps = calc_num_in_eps(_core_if);
dev_if->num_out_eps = calc_num_out_eps(_core_if);
DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",
_core_if->hwcfg4.b.num_dev_perio_in_ep);
DWC_DEBUGPL(DBG_CIL, "Is power optimization enabled? %s\n",
_core_if->hwcfg4.b.power_optimiz ? "Yes" : "No");
DWC_DEBUGPL(DBG_CIL, "vbus_valid filter enabled? %s\n",
_core_if->hwcfg4.b.vbus_valid_filt_en ? "Yes" : "No");
DWC_DEBUGPL(DBG_CIL, "iddig filter enabled? %s\n",
_core_if->hwcfg4.b.iddig_filt_en ? "Yes" : "No");
for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
dev_if->perio_tx_fifo_size[i] =
dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", i,
dev_if->perio_tx_fifo_size[i]);
}
for (i = 0; i < _core_if->hwcfg4.b.num_in_eps; i++) {
dev_if->tx_fifo_size[i] =
dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", i,
dev_if->perio_tx_fifo_size[i]);
}
_core_if->total_fifo_size = _core_if->hwcfg3.b.dfifo_depth;
_core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz);
_core_if->nperio_tx_fifo_size = dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", _core_if->total_fifo_size);
DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", _core_if->rx_fifo_size);
DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n",_core_if->nperio_tx_fifo_size);
/* This programming sequence needs to happen in FS mode before any other
* programming occurs */
if ((_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
(_core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
/* If FS mode with FS PHY */
/* core_init() is now called on every switch so only call the
* following for the first time through.
*/
if (!_core_if->phy_init_done) {
_core_if->phy_init_done = 1;
DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
usbcfg.b.physel = 1;
dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
/* Reset after a PHY select */
dwc_otg_core_reset(_core_if);
}
/* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
* do this on HNP Dev/Host mode switches (done in dev_init and
* host_init).
*/
if (dwc_otg_is_host_mode(_core_if)) {
DWC_DEBUGPL(DBG_CIL, "host mode\n");
init_fslspclksel(_core_if);
} else {
DWC_DEBUGPL(DBG_CIL, "device mode\n");
init_devspd(_core_if);
}
if (_core_if->core_params->i2c_enable) {
DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
/* Program GUSBCFG.OtgUtmifsSel to I2C */
usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
usbcfg.b.otgutmifssel = 1;
dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
/* Program GI2CCTL.I2CEn */
i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
i2cctl.b.i2cdevaddr = 1;
i2cctl.b.i2cen = 0;
dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
i2cctl.b.i2cen = 1;
dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
}
} /* endif speed == DWC_SPEED_PARAM_FULL */
else {
/* High speed PHY. */
if (!_core_if->phy_init_done) {
_core_if->phy_init_done = 1;
DWC_DEBUGPL(DBG_CIL, "High spped PHY\n");
/* HS PHY parameters. These parameters are preserved
* during soft reset so only program the first time. Do
* a soft reset immediately after setting phyif.
*/
// test-only: in AMCC 460EX code not used!!!???
usbcfg.b.ulpi_utmi_sel = _core_if->core_params->phy_type;
if (usbcfg.b.ulpi_utmi_sel == 1) {
DWC_DEBUGPL(DBG_CIL, "ULPI\n");
/* ULPI interface */
usbcfg.b.phyif = 0;
usbcfg.b.ddrsel = _core_if->core_params->phy_ulpi_ddr;
} else {
/* UTMI+ interface */
if (_core_if->core_params->phy_utmi_width == 16) {
usbcfg.b.phyif = 1;
DWC_DEBUGPL(DBG_CIL, "UTMI+ 16\n");
} else {
DWC_DEBUGPL(DBG_CIL, "UTMI+ 8\n");
usbcfg.b.phyif = 0;
}
}
dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
/* Reset after setting the PHY parameters */
dwc_otg_core_reset(_core_if);
}
}
if ((_core_if->hwcfg2.b.hs_phy_type == 2) &&
(_core_if->hwcfg2.b.fs_phy_type == 1) &&
(_core_if->core_params->ulpi_fs_ls)) {
DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
usbcfg.b.ulpi_fsls = 1;
usbcfg.b.ulpi_clk_sus_m = 1;
dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
} else {
DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS=0\n");
usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
usbcfg.b.ulpi_fsls = 0;
usbcfg.b.ulpi_clk_sus_m = 0;
dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
}
/* Program the GAHBCFG Register. */
switch (_core_if->hwcfg2.b.architecture) {
case DWC_SLAVE_ONLY_ARCH:
DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
_core_if->dma_enable = 0;
break;
case DWC_EXT_DMA_ARCH:
DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
ahbcfg.b.hburstlen = _core_if->core_params->dma_burst_size;
_core_if->dma_enable = (_core_if->core_params->dma_enable != 0);
break;
case DWC_INT_DMA_ARCH:
DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
#if defined(CONFIG_APM82181)
/* Avoid system hang during concurrently using USB and SATA */
ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR16;
#else
ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
#endif
_core_if->dma_enable = (_core_if->core_params->dma_enable != 0);
break;
}
ahbcfg.b.dmaenable = _core_if->dma_enable;
dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
_core_if->en_multiple_tx_fifo = _core_if->hwcfg4.b.ded_fifo_en;
/*
* Program the GUSBCFG register.
*/
usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
switch (_core_if->hwcfg2.b.op_mode) {
case DWC_MODE_HNP_SRP_CAPABLE:
usbcfg.b.hnpcap = (_core_if->core_params->otg_cap ==
DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
break;
case DWC_MODE_SRP_ONLY_CAPABLE:
usbcfg.b.hnpcap = 0;
usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
break;
case DWC_MODE_NO_HNP_SRP_CAPABLE:
usbcfg.b.hnpcap = 0;
usbcfg.b.srpcap = 0;
break;
case DWC_MODE_SRP_CAPABLE_DEVICE:
usbcfg.b.hnpcap = 0;
usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
break;
case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
usbcfg.b.hnpcap = 0;
usbcfg.b.srpcap = 0;
break;
case DWC_MODE_SRP_CAPABLE_HOST:
usbcfg.b.hnpcap = 0;
usbcfg.b.srpcap = (_core_if->core_params->otg_cap !=
DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
break;
case DWC_MODE_NO_SRP_CAPABLE_HOST:
usbcfg.b.hnpcap = 0;
usbcfg.b.srpcap = 0;
break;
}
dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
/* Enable common interrupts */
dwc_otg_enable_common_interrupts(_core_if);
/* Do device or host intialization based on mode during PCD
* and HCD initialization
*/
if (dwc_otg_is_host_mode(_core_if)) {
DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
_core_if->op_state = A_HOST;
} else {
DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
_core_if->op_state = B_PERIPHERAL;
#ifdef CONFIG_DWC_DEVICE_ONLY
dwc_otg_core_dev_init(_core_if);
#endif /* */
}
}
/**
* This function enables the Device mode interrupts.
*
* @param _core_if Programming view of DWC_otg controller
*/
void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t * _core_if)
{
gintmsk_data_t intr_mask = {.d32 = 0};
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
/* Disable all interrupts. */
dwc_write_reg32(&global_regs->gintmsk, 0);
/* Clear any pending interrupts */
dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
/* Enable the common interrupts */
dwc_otg_enable_common_interrupts(_core_if);
/* Enable interrupts */
intr_mask.b.usbreset = 1;
intr_mask.b.enumdone = 1;
intr_mask.b.inepintr = 1;
intr_mask.b.outepintr = 1;
intr_mask.b.erlysuspend = 1;
if (_core_if->en_multiple_tx_fifo == 0) {
intr_mask.b.epmismatch = 1;
}
/** @todo NGS: Should this be a module parameter? */
#ifdef USE_PERIODIC_EP
intr_mask.b.isooutdrop = 1;
intr_mask.b.eopframe = 1;
intr_mask.b.incomplisoin = 1;
intr_mask.b.incomplisoout = 1;
#endif /* */
dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32,
intr_mask.d32);
DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
dwc_read_reg32(&global_regs->gintmsk));
}
/**
* This function initializes the DWC_otg controller registers for
* device mode.
*
* @param _core_if Programming view of DWC_otg controller
*
*/
void dwc_otg_core_dev_init(dwc_otg_core_if_t * _core_if)
{
int i;
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
dwc_otg_dev_if_t * dev_if = _core_if->dev_if;
dwc_otg_core_params_t * params = _core_if->core_params;
dcfg_data_t dcfg = {.d32 = 0};
grstctl_t resetctl = {.d32 = 0};
uint32_t rx_fifo_size;
fifosize_data_t nptxfifosize;
fifosize_data_t txfifosize;
dthrctl_data_t dthrctl;
fifosize_data_t ptxfifosize;
/* Restart the Phy Clock */
dwc_write_reg32(_core_if->pcgcctl, 0);
/* Device configuration register */
init_devspd(_core_if);
dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
/* Configure data FIFO sizes */
if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
_core_if->total_fifo_size);
DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
params->dev_rx_fifo_size);
DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
params->dev_nperio_tx_fifo_size);
/* Rx FIFO */
DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
dwc_read_reg32(&global_regs->grxfsiz));
rx_fifo_size = params->dev_rx_fifo_size;
dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
dwc_read_reg32(&global_regs->grxfsiz));
/** Set Periodic Tx FIFO Mask all bits 0 */
_core_if->p_tx_msk = 0;
/** Set Tx FIFO Mask all bits 0 */
_core_if->tx_msk = 0;
if (_core_if->en_multiple_tx_fifo == 0) {
/* Non-periodic Tx FIFO */
DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
dwc_read_reg32(&global_regs->gnptxfsiz));
nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
dwc_write_reg32(&global_regs->gnptxfsiz,nptxfifosize.d32);
DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
dwc_read_reg32(&global_regs->gnptxfsiz));
/**@todo NGS: Fix Periodic FIFO Sizing! */
/*
* Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
* Indexes of the FIFO size module parameters in the
* dev_perio_tx_fifo_size array and the FIFO size registers in
* the dptxfsiz array run from 0 to 14.
*/
/** @todo Finish debug of this */
ptxfifosize.b.startaddr =
nptxfifosize.b.startaddr + nptxfifosize.b.depth;
for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) {
ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i];
DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n",
i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],ptxfifosize.d32);
DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n",
i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
ptxfifosize.b.startaddr += ptxfifosize.b.depth;
}
} else {
/*
* Tx FIFOs These FIFOs are numbered from 1 to 15.
* Indexes of the FIFO size module parameters in the
* dev_tx_fifo_size array and the FIFO size registers in
* the dptxfsiz_dieptxf array run from 0 to 14.
*/
/* Non-periodic Tx FIFO */
DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
dwc_read_reg32(&global_regs->gnptxfsiz));
nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
dwc_read_reg32(&global_regs->gnptxfsiz));
txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
for (i = 1;i < _core_if->hwcfg4.b.num_dev_perio_in_ep;i++) {
txfifosize.b.depth = params->dev_tx_fifo_size[i];
DWC_DEBUGPL(DBG_CIL,"initial dptxfsiz_dieptxf[%d]=%08x\n",
i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i - 1],txfifosize.d32);
DWC_DEBUGPL(DBG_CIL,"new dptxfsiz_dieptxf[%d]=%08x\n",
i,dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i-1]));
txfifosize.b.startaddr += txfifosize.b.depth;
}
}
}
/* Flush the FIFOs */
dwc_otg_flush_tx_fifo(_core_if, 0x10); /* all Tx FIFOs */
dwc_otg_flush_rx_fifo(_core_if);
/* Flush the Learning Queue. */
resetctl.b.intknqflsh = 1;
dwc_write_reg32(&_core_if->core_global_regs->grstctl, resetctl.d32);
/* Clear all pending Device Interrupts */
dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
for (i = 0; i <= dev_if->num_in_eps; i++) {
depctl_data_t depctl;
depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
if (depctl.b.epena) {
depctl.d32 = 0;
depctl.b.epdis = 1;
depctl.b.snak = 1;
} else {
depctl.d32 = 0;
}
dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
}
for (i = 0; i <= dev_if->num_out_eps; i++) {
depctl_data_t depctl;
depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
if (depctl.b.epena) {
depctl.d32 = 0;
depctl.b.epdis = 1;
depctl.b.snak = 1;
} else {
depctl.d32 = 0;
}
dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
}
if (_core_if->en_multiple_tx_fifo && _core_if->dma_enable) {
dev_if->non_iso_tx_thr_en = _core_if->core_params->thr_ctl & 0x1;
dev_if->iso_tx_thr_en = (_core_if->core_params->thr_ctl >> 1) & 0x1;
dev_if->rx_thr_en = (_core_if->core_params->thr_ctl >> 2) & 0x1;
dev_if->rx_thr_length = _core_if->core_params->rx_thr_length;
dev_if->tx_thr_length = _core_if->core_params->tx_thr_length;
dthrctl.d32 = 0;
dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl,dthrctl.d32);
DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\n"
"Rx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en,
dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len,
dthrctl.b.rx_thr_len);
}
dwc_otg_enable_device_interrupts(_core_if);
{
diepmsk_data_t msk = {.d32 = 0};
msk.b.txfifoundrn = 1;
dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32,msk.d32);
}
}
/**
* This function enables the Host mode interrupts.
*
* @param _core_if Programming view of DWC_otg controller
*/
void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t * _core_if)
{
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
gintmsk_data_t intr_mask = {.d32 = 0};
DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
/* Disable all interrupts. */
dwc_write_reg32(&global_regs->gintmsk, 0);
/* Clear any pending interrupts. */
dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
/* Enable the common interrupts */
dwc_otg_enable_common_interrupts(_core_if);
/*
* Enable host mode interrupts without disturbing common
* interrupts.
*/
intr_mask.b.sofintr = 1;
intr_mask.b.portintr = 1;
intr_mask.b.hcintr = 1;
dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
}
/**
* This function disables the Host Mode interrupts.
*
* @param _core_if Programming view of DWC_otg controller
*/
void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t * _core_if)
{
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
gintmsk_data_t intr_mask = {.d32 = 0};
DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
/*
* Disable host mode interrupts without disturbing common
* interrupts.
*/
intr_mask.b.sofintr = 1;
intr_mask.b.portintr = 1;
intr_mask.b.hcintr = 1;
intr_mask.b.ptxfempty = 1;
intr_mask.b.nptxfempty = 1;
dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
}
#if 0
/* currently not used, keep it here as if needed later */
static int phy_read(dwc_otg_core_if_t * _core_if, int addr)
{
u32 val;
int timeout = 10;
dwc_write_reg32(&_core_if->core_global_regs->gpvndctl,
0x02000000 | (addr << 16));
val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
while (((val & 0x08000000) == 0) && (timeout--)) {
udelay(1000);
val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
}
val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
printk("%s: addr=%02x regval=%02x\n", __func__, addr, val & 0x000000ff);
return 0;
}
#endif
#ifdef CONFIG_405EX
static int phy_write(dwc_otg_core_if_t * _core_if, int addr, int val8)
{
u32 val;
int timeout = 10;
dwc_write_reg32(&_core_if->core_global_regs->gpvndctl,
0x02000000 | 0x00400000 | (addr << 16) | (val8 & 0x000000ff));
val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
while (((val & 0x08000000) == 0) && (timeout--)) {
udelay(1000);
val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
}
val = dwc_read_reg32(&_core_if->core_global_regs->gpvndctl);
return 0;
}
#endif
/**
* This function initializes the DWC_otg controller registers for
* host mode.
*
* This function flushes the Tx and Rx FIFOs and it flushes any entries in the
* request queues. Host channels are reset to ensure that they are ready for
* performing transfers.
*
* @param _core_if Programming view of DWC_otg controller
*
*/
void dwc_otg_core_host_init(dwc_otg_core_if_t * _core_if)
{
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
dwc_otg_host_if_t * host_if = _core_if->host_if;
dwc_otg_core_params_t * params = _core_if->core_params;
hprt0_data_t hprt0 = {.d32 = 0};
fifosize_data_t nptxfifosize;
fifosize_data_t ptxfifosize;
int i;
hcchar_data_t hcchar;
hcfg_data_t hcfg;
dwc_otg_hc_regs_t * hc_regs;
int num_channels;
gotgctl_data_t gotgctl = {.d32 = 0};
DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, _core_if);
/* Restart the Phy Clock */
dwc_write_reg32(_core_if->pcgcctl, 0);
/* Initialize Host Configuration Register */
init_fslspclksel(_core_if);
if (_core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
hcfg.b.fslssupp = 1;
dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
}
/* Configure data FIFO sizes */
if (_core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", _core_if->total_fifo_size);
DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->host_rx_fifo_size);
DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",params->host_nperio_tx_fifo_size);
DWC_DEBUGPL(DBG_CIL, "P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
/* Rx FIFO */
DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",dwc_read_reg32(&global_regs->grxfsiz));
dwc_write_reg32(&global_regs->grxfsiz,params->host_rx_fifo_size);
DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",dwc_read_reg32(&global_regs->grxfsiz));
/* Non-periodic Tx FIFO */
DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",dwc_read_reg32(&global_regs->gnptxfsiz));
nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
nptxfifosize.b.startaddr = params->host_rx_fifo_size;
dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
/* Periodic Tx FIFO */
DWC_DEBUGPL(DBG_CIL, "initial hptxfsiz=%08x\n",dwc_read_reg32(&global_regs->hptxfsiz));
ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
DWC_DEBUGPL(DBG_CIL, "new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
}
/* Clear Host Set HNP Enable in the OTG Control Register */
gotgctl.b.hstsethnpen = 1;
dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
/* Make sure the FIFOs are flushed. */
dwc_otg_flush_tx_fifo(_core_if, 0x10 /* all Tx FIFOs */ );
dwc_otg_flush_rx_fifo(_core_if);
/* Flush out any leftover queued requests. */
num_channels = _core_if->core_params->host_channels;
for (i = 0; i < num_channels; i++) {
hc_regs = _core_if->host_if->hc_regs[i];
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcchar.b.chen = 0;
hcchar.b.chdis = 1;
hcchar.b.epdir = 0;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
}
/* Halt all channels to put them into a known state. */
for (i = 0; i < num_channels; i++) {
int count = 0;
hc_regs = _core_if->host_if->hc_regs[i];
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcchar.b.chen = 1;
hcchar.b.chdis = 1;
hcchar.b.epdir = 0;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
do {
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
if (++count > 200) {
DWC_ERROR
("%s: Unable to clear halt on channel %d\n",
__func__, i);
break;
}
udelay(100);
} while (hcchar.b.chen);
}
/* Turn on the vbus power. */
DWC_PRINT("Init: Port Power? op_state=%d\n", _core_if->op_state);
if (_core_if->op_state == A_HOST) {
hprt0.d32 = dwc_otg_read_hprt0(_core_if);
DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
if (hprt0.b.prtpwr == 0) {
hprt0.b.prtpwr = 1;
dwc_write_reg32(host_if->hprt0, hprt0.d32);
}
}
#ifdef CONFIG_405EX
/* Write 0x60 to USB PHY register 7:
* Modify "Indicator Complement" and "Indicator Pass Thru" of
* Interface control register to disable the internal Vbus
* comparator, as suggested by RichTek FAE.
* This produced better results recognizing and mounting USB
* memory sticks on the Makalu 405EX platform. I couldn't see
* any difference on Kilauea, but since it seems to be better
* on Makalu, let's keep it in here too.
*/
phy_write(_core_if, 7, 0x60);
#endif
dwc_otg_enable_host_interrupts(_core_if);
}
/**
* Prepares a host channel for transferring packets to/from a specific
* endpoint. The HCCHARn register is set up with the characteristics specified
* in _hc. Host channel interrupts that may need to be serviced while this
* transfer is in progress are enabled.
*
* @param _core_if Programming view of DWC_otg controller
* @param _hc Information needed to initialize the host channel
*/
void dwc_otg_hc_init(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc)
{
uint32_t intr_enable;
hcintmsk_data_t hc_intr_mask;
gintmsk_data_t gintmsk = {.d32 = 0};
hcchar_data_t hcchar;
hcsplt_data_t hcsplt;
uint8_t hc_num = _hc->hc_num;
dwc_otg_host_if_t * host_if = _core_if->host_if;
dwc_otg_hc_regs_t * hc_regs = host_if->hc_regs[hc_num];
/* Clear old interrupt conditions for this host channel. */
hc_intr_mask.d32 = 0xFFFFFFFF;
hc_intr_mask.b.reserved = 0;
dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
/* Enable channel interrupts required for this transfer. */
hc_intr_mask.d32 = 0;
hc_intr_mask.b.chhltd = 1;
if (_core_if->dma_enable) {
hc_intr_mask.b.ahberr = 1;
if (_hc->error_state && !_hc->do_split &&
_hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
hc_intr_mask.b.ack = 1;
if (_hc->ep_is_in) {
hc_intr_mask.b.datatglerr = 1;
if (_hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
hc_intr_mask.b.nak = 1;
}
}
}
} else {
switch (_hc->ep_type) {
case DWC_OTG_EP_TYPE_CONTROL:
case DWC_OTG_EP_TYPE_BULK:
hc_intr_mask.b.xfercompl = 1;
hc_intr_mask.b.stall = 1;
hc_intr_mask.b.xacterr = 1;
hc_intr_mask.b.datatglerr = 1;
if (_hc->ep_is_in) {
hc_intr_mask.b.bblerr = 1;
} else {
hc_intr_mask.b.nak = 1;
hc_intr_mask.b.nyet = 1;
if (_hc->do_ping) {
hc_intr_mask.b.ack = 1;
}
}
if (_hc->do_split) {
hc_intr_mask.b.nak = 1;
if (_hc->complete_split) {
hc_intr_mask.b.nyet = 1;
} else {
hc_intr_mask.b.ack = 1;
}
}
if (_hc->error_state) {
hc_intr_mask.b.ack = 1;
}
break;
case DWC_OTG_EP_TYPE_INTR:
hc_intr_mask.b.xfercompl = 1;
hc_intr_mask.b.nak = 1;
hc_intr_mask.b.stall = 1;
hc_intr_mask.b.xacterr = 1;
hc_intr_mask.b.datatglerr = 1;
hc_intr_mask.b.frmovrun = 1;
if (_hc->ep_is_in) {
hc_intr_mask.b.bblerr = 1;
}
if (_hc->error_state) {
hc_intr_mask.b.ack = 1;
}
if (_hc->do_split) {
if (_hc->complete_split) {
hc_intr_mask.b.nyet = 1;
} else {
hc_intr_mask.b.ack = 1;
}
}
break;
case DWC_OTG_EP_TYPE_ISOC:
hc_intr_mask.b.xfercompl = 1;
hc_intr_mask.b.frmovrun = 1;
hc_intr_mask.b.ack = 1;
if (_hc->ep_is_in) {
hc_intr_mask.b.xacterr = 1;
hc_intr_mask.b.bblerr = 1;
}
break;
}
}
dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
/* Enable the top level host channel interrupt. */
intr_enable = (1 << hc_num);
dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
/* Make sure host channel interrupts are enabled. */
gintmsk.b.hcintr = 1;
dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
/*
* Program the HCCHARn register with the endpoint characteristics for
* the current transfer.
*/
hcchar.d32 = 0;
hcchar.b.devaddr = _hc->dev_addr;
hcchar.b.epnum = _hc->ep_num;
hcchar.b.epdir = _hc->ep_is_in;
hcchar.b.lspddev = (_hc->speed == DWC_OTG_EP_SPEED_LOW);
hcchar.b.eptype = _hc->ep_type;
hcchar.b.mps = _hc->max_packet;
dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
/*
* Program the HCSPLIT register for SPLITs
*/
hcsplt.d32 = 0;
if (_hc->do_split) {
DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n",
_hc->hc_num,_hc->complete_split ? "CSPLIT" : "SSPLIT");
hcsplt.b.compsplt = _hc->complete_split;
hcsplt.b.xactpos = _hc->xact_pos;
hcsplt.b.hubaddr = _hc->hub_addr;
hcsplt.b.prtaddr = _hc->port_addr;
DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", _hc->complete_split);
DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", _hc->xact_pos);
DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", _hc->hub_addr);
DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", _hc->port_addr);
DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", _hc->ep_is_in);
DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", _hc->xfer_len);
}
dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
}
/**
* Attempts to halt a host channel. This function should only be called in
* Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
* normal circumstances in DMA mode, the controller halts the channel when the
* transfer is complete or a condition occurs that requires application
* intervention.
*
* In slave mode, checks for a free request queue entry, then sets the Channel
* Enable and Channel Disable bits of the Host Channel Characteristics
* register of the specified channel to intiate the halt. If there is no free
* request queue entry, sets only the Channel Disable bit of the HCCHARn
* register to flush requests for this channel. In the latter case, sets a
* flag to indicate that the host channel needs to be halted when a request
* queue slot is open.
*
* In DMA mode, always sets the Channel Enable and Channel Disable bits of the
* HCCHARn register. The controller ensures there is space in the request
* queue before submitting the halt request.
*
* Some time may elapse before the core flushes any posted requests for this
* host channel and halts. The Channel Halted interrupt handler completes the
* deactivation of the host channel.
*
* @param _core_if Controller register interface.
* @param _hc Host channel to halt.
* @param _halt_status Reason for halting the channel.
*/
void dwc_otg_hc_halt(dwc_otg_core_if_t * _core_if,
dwc_hc_t * _hc, dwc_otg_halt_status_e _halt_status)
{
gnptxsts_data_t nptxsts;
hptxsts_data_t hptxsts;
hcchar_data_t hcchar;
dwc_otg_hc_regs_t * hc_regs;
dwc_otg_core_global_regs_t * global_regs;
dwc_otg_host_global_regs_t * host_global_regs;
hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
global_regs = _core_if->core_global_regs;
host_global_regs = _core_if->host_if->host_global_regs;
WARN_ON(_halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
if (_halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
_halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
/*
* Disable all channel interrupts except Ch Halted. The QTD
* and QH state associated with this transfer has been cleared
* (in the case of URB_DEQUEUE), so the channel needs to be
* shut down carefully to prevent crashes.
*/
hcintmsk_data_t hcintmsk;
hcintmsk.d32 = 0;
hcintmsk.b.chhltd = 1;
dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
/*
* Make sure no other interrupts besides halt are currently
* pending. Handling another interrupt could cause a crash due
* to the QTD and QH state.
*/
dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
/*
* Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
* even if the channel was already halted for some other
* reason.
*/
_hc->halt_status = _halt_status;
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
if (hcchar.b.chen == 0) {
/*
* The channel is either already halted or it hasn't
* started yet. In DMA mode, the transfer may halt if
* it finishes normally or a condition occurs that
* requires driver intervention. Don't want to halt
* the channel again. In either Slave or DMA mode,
* it's possible that the transfer has been assigned
* to a channel, but not started yet when an URB is
* dequeued. Don't want to halt a channel that hasn't
* started yet.
*/
return;
}
}
if (_hc->halt_pending) {
/*
* A halt has already been issued for this channel. This might
* happen when a transfer is aborted by a higher level in
* the stack.
*/
#ifdef CONFIG_DWC_DEBUG
DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
__func__, _hc->hc_num);
/* dwc_otg_dump_global_registers(_core_if); */
/* dwc_otg_dump_host_registers(_core_if); */
#endif /* */
return;
}
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcchar.b.chen = 1;
hcchar.b.chdis = 1;
if (!_core_if->dma_enable) {
/* Check for space in the request queue to issue the halt. */
if (_hc->ep_type == DWC_OTG_EP_TYPE_CONTROL
|| _hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
if (nptxsts.b.nptxqspcavail == 0) {
hcchar.b.chen = 0;
}
} else {
hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
if ((hptxsts.b.ptxqspcavail == 0) ||
(_core_if->queuing_high_bandwidth)) {
hcchar.b.chen = 0;
}
}
}
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
_hc->halt_status = _halt_status;
if (hcchar.b.chen) {
_hc->halt_pending = 1;
_hc->halt_on_queue = 0;
} else {
_hc->halt_on_queue = 1;
}
DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", _hc->halt_pending);
DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", _hc->halt_on_queue);
DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", _hc->halt_status);
return;
}
/**
* Clears the transfer state for a host channel. This function is normally
* called after a transfer is done and the host channel is being released.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _hc Identifies the host channel to clean up.
*/
void dwc_otg_hc_cleanup(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc)
{
dwc_otg_hc_regs_t * hc_regs;
_hc->xfer_started = 0;
/*
* Clear channel interrupt enables and any unhandled channel interrupt
* conditions.
*/
hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
dwc_write_reg32(&hc_regs->hcintmsk, 0);
dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
#ifdef CONFIG_DWC_DEBUG
del_timer(&_core_if->hc_xfer_timer[_hc->hc_num]);
{
hcchar_data_t hcchar;
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
if (hcchar.b.chdis) {
DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
__func__, _hc->hc_num, hcchar.d32);
}
}
#endif /* */
}
/**
* Sets the channel property that indicates in which frame a periodic transfer
* should occur. This is always set to the _next_ frame. This function has no
* effect on non-periodic transfers.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _hc Identifies the host channel to set up and its properties.
* @param _hcchar Current value of the HCCHAR register for the specified host
* channel.
*/
static inline void hc_set_even_odd_frame(dwc_otg_core_if_t * _core_if,
dwc_hc_t * _hc, hcchar_data_t * _hcchar)
{
if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
hfnum_data_t hfnum;
hfnum.d32 = dwc_read_reg32(&_core_if->host_if->host_global_regs->hfnum);
/* 1 if _next_ frame is odd, 0 if it's even */
_hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
#ifdef CONFIG_DWC_DEBUG
if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR && _hc->do_split
&& !_hc->complete_split) {
switch (hfnum.b.frnum & 0x7) {
case 7:
_core_if->hfnum_7_samples++;
_core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
break;
case 0:
_core_if->hfnum_0_samples++;
_core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
break;
default:
_core_if->hfnum_other_samples++;
_core_if->hfnum_other_frrem_accum +=
hfnum.b.frrem;
break;
}
}
#endif /* */
}
}
#ifdef CONFIG_DWC_DEBUG
static void hc_xfer_timeout(unsigned long _ptr)
{
hc_xfer_info_t * xfer_info = (hc_xfer_info_t *) _ptr;
int hc_num = xfer_info->hc->hc_num;
DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
DWC_WARN(" start_hcchar_val 0x%08x\n",
xfer_info->core_if->start_hcchar_val[hc_num]);
}
#endif /* */
/*
* This function does the setup for a data transfer for a host channel and
* starts the transfer. May be called in either Slave mode or DMA mode. In
* Slave mode, the caller must ensure that there is sufficient space in the
* request queue and Tx Data FIFO.
*
* For an OUT transfer in Slave mode, it loads a data packet into the
* appropriate FIFO. If necessary, additional data packets will be loaded in
* the Host ISR.
*
* For an IN transfer in Slave mode, a data packet is requested. The data
* packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
* additional data packets are requested in the Host ISR.
*
* For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
* register along with a packet count of 1 and the channel is enabled. This
* causes a single PING transaction to occur. Other fields in HCTSIZ are
* simply set to 0 since no data transfer occurs in this case.
*
* For a PING transfer in DMA mode, the HCTSIZ register is initialized with
* all the information required to perform the subsequent data transfer. In
* addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
* controller performs the entire PING protocol, then starts the data
* transfer.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _hc Information needed to initialize the host channel. The xfer_len
* value may be reduced to accommodate the max widths of the XferSize and
* PktCnt fields in the HCTSIZn register. The multi_count value may be changed
* to reflect the final xfer_len value.
*/
void dwc_otg_hc_start_transfer(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc)
{
hcchar_data_t hcchar;
hctsiz_data_t hctsiz;
uint16_t num_packets;
uint32_t max_hc_xfer_size = _core_if->core_params->max_transfer_size;
uint16_t max_hc_pkt_count = _core_if->core_params->max_packet_count;
dwc_otg_hc_regs_t * hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
hctsiz.d32 = 0;
if (_hc->do_ping) {
if (!_core_if->dma_enable) {
dwc_otg_hc_do_ping(_core_if, _hc);
_hc->xfer_started = 1;
return;
} else {
hctsiz.b.dopng = 1;
}
}
if (_hc->do_split) {
num_packets = 1;
if (_hc->complete_split && !_hc->ep_is_in) {
/* For CSPLIT OUT Transfer, set the size to 0 so the
* core doesn't expect any data written to the FIFO */
_hc->xfer_len = 0;
} else if (_hc->ep_is_in || (_hc->xfer_len > _hc->max_packet)) {
_hc->xfer_len = _hc->max_packet;
} else if (!_hc->ep_is_in && (_hc->xfer_len > 188)) {
_hc->xfer_len = 188;
}
hctsiz.b.xfersize = _hc->xfer_len;
} else {
/*
* Ensure that the transfer length and packet count will fit
* in the widths allocated for them in the HCTSIZn register.
*/
if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR
|| _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
/*
* Make sure the transfer size is no larger than one
* (micro)frame's worth of data. (A check was done
* when the periodic transfer was accepted to ensure
* that a (micro)frame's worth of data can be
* programmed into a channel.)
*/
uint32_t max_periodic_len = _hc->multi_count * _hc->max_packet;
if (_hc->xfer_len > max_periodic_len) {
_hc->xfer_len = max_periodic_len;
} else {
}
} else if (_hc->xfer_len > max_hc_xfer_size) {
/* Make sure that xfer_len is a multiple of max packet size. */
_hc->xfer_len = max_hc_xfer_size - _hc->max_packet + 1;
}
if (_hc->xfer_len > 0) {
num_packets = (_hc->xfer_len + _hc->max_packet - 1) / _hc->max_packet;
if (num_packets > max_hc_pkt_count) {
num_packets = max_hc_pkt_count;
_hc->xfer_len = num_packets * _hc->max_packet;
}
} else {
/* Need 1 packet for transfer length of 0. */
num_packets = 1;
}
if (_hc->ep_is_in) {
/* Always program an integral # of max packets for IN transfers. */
_hc->xfer_len = num_packets * _hc->max_packet;
}
if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR
|| _hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
/*
* Make sure that the multi_count field matches the
* actual transfer length.
*/
_hc->multi_count = num_packets;
}
if (_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
/* Set up the initial PID for the transfer. */
if (_hc->speed == DWC_OTG_EP_SPEED_HIGH) {
if (_hc->ep_is_in) {
if (_hc->multi_count == 1) {
_hc->data_pid_start =
DWC_OTG_HC_PID_DATA0;
} else if (_hc->multi_count == 2) {
_hc->data_pid_start =
DWC_OTG_HC_PID_DATA1;
} else {
_hc->data_pid_start =
DWC_OTG_HC_PID_DATA2;
}
} else {
if (_hc->multi_count == 1) {
_hc->data_pid_start =
DWC_OTG_HC_PID_DATA0;
} else {
_hc->data_pid_start =
DWC_OTG_HC_PID_MDATA;
}
}
} else {
_hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
}
}
hctsiz.b.xfersize = _hc->xfer_len;
}
_hc->start_pkt_count = num_packets;
hctsiz.b.pktcnt = num_packets;
hctsiz.b.pid = _hc->data_pid_start;
dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
if (_core_if->dma_enable) {
dwc_write_reg32(&hc_regs->hcdma, (uint32_t) _hc->xfer_buff);
}
/* Start the split */
if (_hc->do_split) {
hcsplt_data_t hcsplt;
hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
hcsplt.b.spltena = 1;
dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
}
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcchar.b.multicnt = _hc->multi_count;
hc_set_even_odd_frame(_core_if, _hc, &hcchar);
#ifdef CONFIG_DWC_DEBUG
_core_if->start_hcchar_val[_hc->hc_num] = hcchar.d32;
if (hcchar.b.chdis) {
DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
__func__, _hc->hc_num, hcchar.d32);
}
#endif /* */
/* Set host channel enable after all other setup is complete. */
hcchar.b.chen = 1;
hcchar.b.chdis = 0;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
_hc->xfer_started = 1;
_hc->requests++;
if (!_core_if->dma_enable && !_hc->ep_is_in && _hc->xfer_len > 0) {
/* Load OUT packet into the appropriate Tx FIFO. */
dwc_otg_hc_write_packet(_core_if, _hc);
}
#ifdef CONFIG_DWC_DEBUG
/* Start a timer for this transfer. */
_core_if->hc_xfer_timer[_hc->hc_num].function = hc_xfer_timeout;
_core_if->hc_xfer_info[_hc->hc_num].core_if = _core_if;
_core_if->hc_xfer_info[_hc->hc_num].hc = _hc;
_core_if->hc_xfer_timer[_hc->hc_num].data =
(unsigned long)(&_core_if->hc_xfer_info[_hc->hc_num]);
_core_if->hc_xfer_timer[_hc->hc_num].expires = jiffies + (HZ * 10);
add_timer(&_core_if->hc_xfer_timer[_hc->hc_num]);
#endif /* */
}
/**
* This function continues a data transfer that was started by previous call
* to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
* sufficient space in the request queue and Tx Data FIFO. This function
* should only be called in Slave mode. In DMA mode, the controller acts
* autonomously to complete transfers programmed to a host channel.
*
* For an OUT transfer, a new data packet is loaded into the appropriate FIFO
* if there is any data remaining to be queued. For an IN transfer, another
* data packet is always requested. For the SETUP phase of a control transfer,
* this function does nothing.
*
* @return 1 if a new request is queued, 0 if no more requests are required
* for this transfer.
*/
int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc)
{
DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
if (_hc->do_split) {
/* SPLITs always queue just once per channel */
return 0;
} else if (_hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
/* SETUPs are queued only once since they can't be NAKed. */
return 0;
} else if (_hc->ep_is_in) {
/*
* Always queue another request for other IN transfers. If
* back-to-back INs are issued and NAKs are received for both,
* the driver may still be processing the first NAK when the
* second NAK is received. When the interrupt handler clears
* the NAK interrupt for the first NAK, the second NAK will
* not be seen. So we can't depend on the NAK interrupt
* handler to requeue a NAKed request. Instead, IN requests
* are issued each time this function is called. When the
* transfer completes, the extra requests for the channel will
* be flushed.
*/
hcchar_data_t hcchar;
dwc_otg_hc_regs_t * hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hc_set_even_odd_frame(_core_if, _hc, &hcchar);
hcchar.b.chen = 1;
hcchar.b.chdis = 0;
DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
_hc->requests++;
return 1;
} else {
/* OUT transfers. */
if (_hc->xfer_count < _hc->xfer_len) {
if (_hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
_hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
hcchar_data_t hcchar;
dwc_otg_hc_regs_t * hc_regs;
hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hc_set_even_odd_frame(_core_if, _hc, &hcchar);
}
/* Load OUT packet into the appropriate Tx FIFO. */
dwc_otg_hc_write_packet(_core_if, _hc);
_hc->requests++;
return 1;
} else {
return 0;
}
}
}
/**
* Starts a PING transfer. This function should only be called in Slave mode.
* The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
*/
void dwc_otg_hc_do_ping(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc)
{
hcchar_data_t hcchar;
hctsiz_data_t hctsiz;
dwc_otg_hc_regs_t * hc_regs = _core_if->host_if->hc_regs[_hc->hc_num];
DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, _hc->hc_num);
hctsiz.d32 = 0;
hctsiz.b.dopng = 1;
hctsiz.b.pktcnt = 1;
dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
hcchar.b.chen = 1;
hcchar.b.chdis = 0;
dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
}
#ifdef CONFIG_OTG_PLB_DMA /* PPC_PLB_DMA mode */
/*
* This will dump the status of the dma registers -
* Only used in debug mode
*/
void ppc4xx_dump_dma(unsigned int dmanr)
{
int index;
printk("%32s:\n", __FUNCTION__);
for (index=0; index<=7; index++) {
printk("%32s dmanr=%d , 0x%x=0x%x\n",__FUNCTION__, dmanr ,
DCRN_DMACR0 + dmanr*8+index, mfdcr(DCRN_DMACR0 + dmanr*8 + index));
}
printk("%32s DCRN_DMASR=0x%x\n", __FUNCTION__, mfdcr(DCRN_DMASR));
}
/*
* This function programs the PLB-DMA engine to perform MEM-MEM transfer
* This is used to RD & WR from the DWC_FIFO by the PLB_DMA engine
*/
void ppc4xx_start_plb_dma(dwc_otg_core_if_t *_core_if, void *src, void *dst, unsigned int length,
unsigned int use_interrupt, unsigned int dma_ch, unsigned int dma_dir)
{
int res = 0;
unsigned int control;
ppc_dma_ch_t p_init;
memset((char *)&p_init, sizeof(p_init), 0);
p_init.polarity = 0;
p_init.pwidth = PW_32;
p_init.in_use = 0;
if ( dma_dir == OTG_TX_DMA) {
p_init.sai = 1;
p_init.dai = 0;
} else if (dma_dir == OTG_RX_DMA) {
p_init.sai = 0;
p_init.dai = 1;
}
res = ppc4xx_init_dma_channel(dma_ch, &p_init);
if (res) {
printk("%32s: nit_dma_channel return %d %d bytes dest %p\n",
__FUNCTION__, res, length, dst);
}
res = ppc4xx_clr_dma_status(dma_ch);
if (res) {
printk("%32s: ppc4xx_clr_dma_status %d\n", __FUNCTION__, res);
}
if (dma_dir == OTG_TX_DMA) {
ppc4xx_set_src_addr(dma_ch, virt_to_bus (src));
ppc4xx_set_dst_addr(dma_ch, (_core_if->phys_addr +
(dst - (void *)(_core_if->core_global_regs))) );
} else if (dma_dir == OTG_RX_DMA) {
ppc4xx_set_src_addr(dma_ch, (_core_if->phys_addr +
(src - (void *)(_core_if->core_global_regs))) );
ppc4xx_set_dst_addr(dma_ch, virt_to_bus (dst));
}
ppc4xx_set_dma_mode(dma_ch, DMA_MODE_MM);
ppc4xx_set_dma_count(dma_ch, length);
/* flush cache before enabling DMA transfer */
if (dma_dir == OTG_TX_DMA) {
flush_dcache_range((unsigned long)src,
(unsigned long)(src + length));
} else if (dma_dir == OTG_RX_DMA) {
flush_dcache_range((unsigned long)dst,
(unsigned long)(dst + length));
}
if (use_interrupt) {
res = ppc4xx_enable_dma_interrupt(dma_ch);
} else {
res = ppc4xx_disable_dma_interrupt(dma_ch);
}
if (res) {
printk("%32s: en/disable_dma_interrupt %d return %d per %d\n",
__FUNCTION__, use_interrupt, res,
ppc4xx_get_peripheral_width(dma_ch));
}
control = mfdcr(DCRN_DMACR0 + (dma_ch * 8));
control &= ~(SET_DMA_BEN(1));
control &= ~(SET_DMA_PSC(3));
control &= ~(SET_DMA_PWC(0x3f));
control &= ~(SET_DMA_PHC(0x7));
control &= ~(SET_DMA_PL(1));
mtdcr(DCRN_DMACR0 + (dma_ch * 8), control);
#ifdef OTG_PLB_DMA_DBG
ppc4xx_dump_dma(dma_ch);
#endif
ppc4xx_enable_dma(dma_ch);
}
#endif
/*
* This function writes a packet into the Tx FIFO associated with the Host
* Channel. For a channel associated with a non-periodic EP, the non-periodic
* Tx FIFO is written. For a channel associated with a periodic EP, the
* periodic Tx FIFO is written. This function should only be called in Slave
* mode.
*
* Upon return the xfer_buff and xfer_count fields in _hc are incremented by
* then number of bytes written to the Tx FIFO.
*/
void dwc_otg_hc_write_packet(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc)
{
#ifndef CONFIG_OTG_PLB_DMA
uint32_t i;
#endif
uint32_t remaining_count;
uint32_t byte_count;
uint32_t dword_count;
uint32_t * data_buff = (uint32_t *) (_hc->xfer_buff);
uint32_t * data_fifo = _core_if->data_fifo[_hc->hc_num];
#if !defined( CONFIG_OTG_PLB_DMA_TASKLET) && defined(CONFIG_OTG_PLB_DMA)
uint32_t dma_sts = 0;
#endif
remaining_count = _hc->xfer_len - _hc->xfer_count;
if (remaining_count > _hc->max_packet) {
byte_count = _hc->max_packet;
} else {
byte_count = remaining_count;
}
dword_count = (byte_count + 3) / 4;
#ifdef CONFIG_OTG_PLB_DMA
#ifdef CONFIG_OTG_PLB_DMA_TASKLET
if ( _hc->xfer_len < USB_BUFSIZ) {
int i;
if ((((unsigned long)data_buff) & 0x3) == 0) {
/* xfer_buff is DWORD aligned. */
for (i = 0; i < dword_count; i++, data_buff++) {
dwc_write_datafifo32(data_fifo, *data_buff);
}
} else {
/* xfer_buff is not DWORD aligned. */
for (i = 0; i < dword_count; i++, data_buff++) {
dwc_write_datafifo32(data_fifo, get_unaligned(data_buff));
}
}
} else {
DWC_DEBUGPL(DBG_SP, "%s set release_later %d\n", __func__, dword_count);
atomic_set(& release_later, 1);
//disable_irq_nosync(94);
dwc_otg_disable_global_interrupts(_core_if);
_core_if->dma_xfer.dma_data_buff = data_buff;
_core_if->dma_xfer.dma_data_fifo = (void *)data_fifo;
_core_if->dma_xfer.dma_count = dword_count;
_core_if->dma_xfer.dma_dir = OTG_TX_DMA;
tasklet_schedule(_core_if->plbdma_tasklet);
}
#else /* !CONFIG_OTG_PLB_DMA_TASKLET */
if ((((unsigned long)data_buff) & 0x3) == 0) {
/* call tx_dma - src,dest,len,intr */
ppc4xx_start_plb_dma(_core_if, (void *)data_buff, data_fifo,
(dword_count * 4), PLB_DMA_INT_DIS, PLB_DMA_CH, OTG_TX_DMA);
} else {
ppc4xx_start_plb_dma(_core_if, (void *)get_unaligned(data_buff),
data_fifo, (dword_count * 4), PLB_DMA_INT_DIS, PLB_DMA_CH, OTG_TX_DMA);
}
while (mfdcr(DCRN_DMACR0 + (PLB_DMA_CH*8)) & DMA_CE_ENABLE) {
}
dma_sts = (uint32_t)ppc4xx_get_dma_status();
#ifdef OTG_PLB_DMA_DBG
if (!(dma_sts & DMA_CS0)) {
printk("Status (Terminal Count not occured) 0x%08x\n", mfdcr(DCRN_DMASR));
}
#endif
if (dma_sts & DMA_CH0_ERR) {
printk("Status (Channel Error) 0x%08x\n", mfdcr(DCRN_DMASR));
}
ppc4xx_clr_dma_status(PLB_DMA_CH);
#ifdef OTG_PLB_DMA_DBG
printk("%32s DMA Status =0x%08x\n", __FUNCTION__, mfdcr(DCRN_DMASR)); /* vj_dbg */
#endif
#endif /* CONFIG_OTG_PLB_DMA_TASKLET */
#else
if ((((unsigned long)data_buff) & 0x3) == 0) {
/* xfer_buff is DWORD aligned. */
for (i = 0; i < dword_count; i++, data_buff++) {
dwc_write_datafifo32(data_fifo, *data_buff);
}
} else {
/* xfer_buff is not DWORD aligned. */
for (i = 0; i < dword_count; i++, data_buff++) {
dwc_write_datafifo32(data_fifo, get_unaligned(data_buff));
}
}
#endif
_hc->xfer_count += byte_count;
_hc->xfer_buff += byte_count;
}
/**
* Gets the current USB frame number. This is the frame number from the last
* SOF packet.
*/
uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t * _core_if)
{
dsts_data_t dsts;
dsts.d32 = dwc_read_reg32(&_core_if->dev_if->dev_global_regs->dsts);
/* read current frame/microfreme number from DSTS register */
return dsts.b.soffn;
}
/**
* This function reads a setup packet from the Rx FIFO into the destination
* buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
* Interrupt routine when a SETUP packet has been received in Slave mode.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _dest Destination buffer for packet data.
*/
void dwc_otg_read_setup_packet(dwc_otg_core_if_t * _core_if, uint32_t * _dest)
{
/* Get the 8 bytes of a setup transaction data */
/* Pop 2 DWORDS off the receive data FIFO into memory */
_dest[0] = dwc_read_datafifo32(_core_if->data_fifo[0]);
_dest[1] = dwc_read_datafifo32(_core_if->data_fifo[0]);
}
/**
* This function enables EP0 OUT to receive SETUP packets and configures EP0
* IN for transmitting packets. It is normally called when the
* "Enumeration Done" interrupt occurs.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP0 data.
*/
void dwc_otg_ep0_activate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep)
{
dwc_otg_dev_if_t * dev_if = _core_if->dev_if;
dsts_data_t dsts;
depctl_data_t diepctl;
depctl_data_t doepctl;
dctl_data_t dctl = {.d32 = 0};
/* Read the Device Status and Endpoint 0 Control registers */
dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
/* Set the MPS of the IN EP based on the enumeration speed */
switch (dsts.b.enumspd) {
case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
diepctl.b.mps = DWC_DEP0CTL_MPS_64;
break;
case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
diepctl.b.mps = DWC_DEP0CTL_MPS_8;
break;
}
dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
/* Enable OUT EP for receive */
doepctl.b.epena = 1;
dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
#ifdef VERBOSE
DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n",
dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n",
dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
#endif /* */
dctl.b.cgnpinnak = 1;
dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
DWC_DEBUGPL(DBG_PCDV, "dctl=%0x\n",
dwc_read_reg32(&dev_if->dev_global_regs->dctl));
}
/**
* This function activates an EP. The Device EP control register for
* the EP is configured as defined in the ep structure. Note: This
* function is not used for EP0.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP to activate.
*/
void dwc_otg_ep_activate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep)
{
dwc_otg_dev_if_t * dev_if = _core_if->dev_if;
depctl_data_t depctl;
volatile uint32_t *addr;
daint_data_t daintmsk = {.d32 = 0};
DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, _ep->num,
(_ep->is_in ? "IN" : "OUT"));
/* Read DEPCTLn register */
if (_ep->is_in == 1) {
addr = &dev_if->in_ep_regs[_ep->num]->diepctl;
daintmsk.ep.in = 1 << _ep->num;
} else {
addr = &dev_if->out_ep_regs[_ep->num]->doepctl;
daintmsk.ep.out = 1 << _ep->num;
}
/* If the EP is already active don't change the EP Control
* register.
*/
depctl.d32 = dwc_read_reg32(addr);
if (!depctl.b.usbactep) {
depctl.b.mps = _ep->maxpacket;
depctl.b.eptype = _ep->type;
depctl.b.txfnum = _ep->tx_fifo_num;
if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
depctl.b.setd0pid = 1; // ???
} else {
depctl.b.setd0pid = 1;
}
depctl.b.usbactep = 1;
dwc_write_reg32(addr, depctl.d32);
DWC_DEBUGPL(DBG_PCDV, "DEPCTL=%08x\n", dwc_read_reg32(addr));
}
/* Enable the Interrupt for this EP */
dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, 0,
daintmsk.d32);
DWC_DEBUGPL(DBG_PCDV, "DAINTMSK=%0x\n",
dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
_ep->stall_clear_flag = 0;
return;
}
/**
* This function deactivates an EP. This is done by clearing the USB Active
* EP bit in the Device EP control register. Note: This function is not used
* for EP0. EP0 cannot be deactivated.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP to deactivate.
*/
void dwc_otg_ep_deactivate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep)
{
depctl_data_t depctl = {.d32 = 0};
volatile uint32_t *addr;
daint_data_t daintmsk = {.d32 = 0};
/* Read DEPCTLn register */
if (_ep->is_in == 1) {
addr = &_core_if->dev_if->in_ep_regs[_ep->num]->diepctl;
daintmsk.ep.in = 1 << _ep->num;
} else {
addr = &_core_if->dev_if->out_ep_regs[_ep->num]->doepctl;
daintmsk.ep.out = 1 << _ep->num;
}
depctl.b.usbactep = 0;
dwc_write_reg32(addr, depctl.d32);
/* Disable the Interrupt for this EP */
dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->daintmsk,
daintmsk.d32, 0);
return;
}
/**
* This function does the setup for a data transfer for an EP and
* starts the transfer. For an IN transfer, the packets will be
* loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
* the packets are unloaded from the Rx FIFO in the ISR. the ISR.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP to start the transfer on.
*/
void dwc_otg_ep_start_transfer(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep)
{
/** @todo Refactor this funciton to check the transfer size
* count value does not execed the number bits in the Transfer
* count register. */
depctl_data_t depctl;
deptsiz_data_t deptsiz;
gintmsk_data_t intr_mask = {.d32 = 0};
#ifdef CHECK_PACKET_COUNTER_WIDTH
const uint32_t MAX_XFER_SIZE = _core_if->core_params->max_transfer_size;
const uint32_t MAX_PKT_COUNT = _core_if->core_params->max_packet_count;
uint32_t num_packets;
uint32_t transfer_len;
dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num];
gnptxsts_data_t txstatus;
int lvl = SET_DEBUG_LEVEL(DBG_PCD);
DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
"xfer_buff=%p start_xfer_buff=%p\n", _ep->num,
(_ep->is_in ? "IN" : "OUT"), _ep->xfer_len,
_ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff);
transfer_len = _ep->xfer_len - _ep->xfer_count;
if (transfer_len > MAX_XFER_SIZE) {
transfer_len = MAX_XFER_SIZE;
}
if (transfer_len == 0) {
num_packets = 1;
/* OUT EP to recieve Zero-length packet set transfer
* size to maxpacket size. */
if (!_ep->is_in) {
transfer_len = _ep->maxpacket;
}
} else {
num_packets = (transfer_len + _ep->maxpacket - 1) / _ep->maxpacket;
if (num_packets > MAX_PKT_COUNT) {
num_packets = MAX_PKT_COUNT;
}
}
DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len,
num_packets);
deptsiz.b.xfersize = transfer_len;
deptsiz.b.pktcnt = num_packets;
/* IN endpoint */
if (_ep->is_in == 1) {
depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
} /* OUT endpoint */
else {
depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
}
/* EP enable, IN data in FIFO */
depctl.b.cnak = 1;
depctl.b.epena = 1;
/* IN endpoint */
if (_ep->is_in == 1) {
txstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
if (txstatus.b.nptxqspcavail == 0) {
DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n",
txstatus.d32);
return;
}
dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
dwc_write_reg32(&in_regs->diepctl, depctl.d32);
/**
* Enable the Non-Periodic Tx FIFO empty interrupt, the
* data will be written into the fifo by the ISR.
*/
if (_core_if->dma_enable) {
dwc_write_reg32(&in_regs->diepdma, (uint32_t) _ep->xfer_buff);
} else {
if (_core_if->en_multiple_tx_fifo == 0) {
intr_mask.b.nptxfempty = 1;
dwc_modify_reg32(&_core_if->core_global_regs->gintsts,
intr_mask.d32, 0);
dwc_modify_reg32(&_core_if->core_global_regs->gintmsk,
intr_mask.d32,intr_mask.d32);
} else {
/* Enable the Tx FIFO Empty Interrupt for this EP */
if (_ep->xfer_len > 0 &&
_ep->type != DWC_OTG_EP_TYPE_ISOC) {
uint32_t fifoemptymsk = 0;
fifoemptymsk = (0x1 << _ep->num);
dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->
dtknqr4_fifoemptymsk,0, fifoemptymsk);
}
}
}
} else {
/* OUT endpoint */
dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
dwc_write_reg32(&out_regs->doepctl, depctl.d32);
if (_core_if->dma_enable) {
dwc_write_reg32(&out_regs->doepdma,(uint32_t) _ep->xfer_buff);
}
}
DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
dwc_read_reg32(&out_regs->doepctl),
dwc_read_reg32(&out_regs->doeptsiz));
DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk),
dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
SET_DEBUG_LEVEL(lvl);
#endif /* */
DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
"xfer_buff=%p start_xfer_buff=%p\n", _ep->num,
(_ep->is_in ? "IN" : "OUT"), _ep->xfer_len,
_ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff);
/* IN endpoint */
if (_ep->is_in == 1) {
dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[_ep->num];
gnptxsts_data_t gtxstatus;
gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
if (_core_if->en_multiple_tx_fifo == 0 &&
gtxstatus.b.nptxqspcavail == 0) {
#ifdef CONFIG_DWC_DEBUG
DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
#endif /* */
return;
}
depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
/* Zero Length Packet? */
if (_ep->xfer_len == 0) {
deptsiz.b.xfersize = 0;
deptsiz.b.pktcnt = 1;
} else {
/* Program the transfer size and packet count
* as follows: xfersize = N * maxpacket +
* short_packet pktcnt = N + (short_packet
* exist ? 1 : 0)
*/
#ifdef CONFIG_405EZ
/*
* Added-sr: 2007-07-26
*
* Since the 405EZ (Ultra) only support 2047 bytes as
* max transfer size, we have to split up bigger transfers
* into multiple transfers of 1024 bytes sized messages.
* I happens often, that transfers of 4096 bytes are
* required (zero-gadget, file_storage-gadget).
*/
if (_ep->xfer_len > MAX_XFER_LEN) {
_ep->bytes_pending = _ep->xfer_len - MAX_XFER_LEN;
_ep->xfer_len = MAX_XFER_LEN;
}
#endif
deptsiz.b.xfersize = _ep->xfer_len;
deptsiz.b.pktcnt = (_ep->xfer_len - 1 + _ep->maxpacket) / _ep->maxpacket;
}
dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
/* Write the DMA register */
if (_core_if->dma_enable) {
dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr);
} else {
if (_ep->type != DWC_OTG_EP_TYPE_ISOC) {
/**
* Enable the Non-Periodic Tx FIFO empty interrupt,
* or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
* the data will be written into the fifo by the ISR.
*/
if (_core_if->en_multiple_tx_fifo == 0) {
intr_mask.b.nptxfempty = 1;
dwc_modify_reg32(&_core_if->core_global_regs->gintsts,
intr_mask.d32, 0);
dwc_modify_reg32(&_core_if->core_global_regs->gintmsk,
intr_mask.d32, intr_mask.d32);
} else {
/* Enable the Tx FIFO Empty Interrupt for this EP */
if (_ep->xfer_len > 0) {
uint32_t fifoemptymsk = 0;
fifoemptymsk = 1 << _ep->num;
dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->
dtknqr4_fifoemptymsk,0,fifoemptymsk);
}
}
}
}
/* EP enable, IN data in FIFO */
depctl.b.cnak = 1;
depctl.b.epena = 1;
dwc_write_reg32(&in_regs->diepctl, depctl.d32);
if (_core_if->dma_enable) {
depctl.d32 = dwc_read_reg32(&_core_if->dev_if->in_ep_regs[0]->diepctl);
depctl.b.nextep = _ep->num;
dwc_write_reg32(&_core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
}
} else {
/* OUT endpoint */
dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
/* Program the transfer size and packet count as follows:
*
* pktcnt = N
* xfersize = N * maxpacket
*/
if (_ep->xfer_len == 0) {
/* Zero Length Packet */
deptsiz.b.xfersize = _ep->maxpacket;
deptsiz.b.pktcnt = 1;
} else {
deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket;
deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket;
}
dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
_ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt);
if (_core_if->dma_enable) {
dwc_write_reg32(&(out_regs->doepdma),
(uint32_t) _ep->dma_addr);
}
if (_ep->type == DWC_OTG_EP_TYPE_ISOC) {
/** @todo NGS: dpid is read-only. Use setd0pid
* or setd1pid. */
if (_ep->even_odd_frame) {
depctl.b.setd1pid = 1;
} else {
depctl.b.setd0pid = 1;
}
}
/* EP enable */
depctl.b.cnak = 1;
depctl.b.epena = 1;
dwc_write_reg32(&out_regs->doepctl, depctl.d32);
DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
dwc_read_reg32(&out_regs->doepctl),
dwc_read_reg32(&out_regs->doeptsiz));
DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
dwc_read_reg32(&_core_if->dev_if->dev_global_regs->daintmsk),
dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
}
}
/**
* This function does the setup for a data transfer for EP0 and starts
* the transfer. For an IN transfer, the packets will be loaded into
* the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
* unloaded from the Rx FIFO in the ISR.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP0 data.
*/
void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep)
{
volatile depctl_data_t depctl;
volatile deptsiz0_data_t deptsiz;
gintmsk_data_t intr_mask = {.d32 = 0};
DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
"xfer_buff=%p start_xfer_buff=%p total_len=%d\n",
_ep->num, (_ep->is_in ? "IN" : "OUT"), _ep->xfer_len,
_ep->xfer_count, _ep->xfer_buff, _ep->start_xfer_buff,
_ep->total_len);
_ep->total_len = _ep->xfer_len;
/* IN endpoint */
if (_ep->is_in == 1) {
dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0];
gnptxsts_data_t gtxstatus;
gtxstatus.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
if (_core_if->en_multiple_tx_fifo == 0 &&
gtxstatus.b.nptxqspcavail == 0) {
#ifdef CONFIG_DWC_DEBUG
deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
DWC_DEBUGPL(DBG_PCD, "DIEPCTL0=%0x\n",
dwc_read_reg32(&in_regs->diepctl));
DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
deptsiz.d32, deptsiz.b.xfersize,deptsiz.b.pktcnt);
DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", gtxstatus.d32);
#endif /* */
printk("TX Queue or FIFO Full!!!!\n"); // test-only
return;
}
depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
/* Zero Length Packet? */
if (_ep->xfer_len == 0) {
deptsiz.b.xfersize = 0;
deptsiz.b.pktcnt = 1;
} else {
/* Program the transfer size and packet count
* as follows: xfersize = N * maxpacket +
* short_packet pktcnt = N + (short_packet
* exist ? 1 : 0)
*/
if (_ep->xfer_len > _ep->maxpacket) {
_ep->xfer_len = _ep->maxpacket;
deptsiz.b.xfersize = _ep->maxpacket;
} else {
deptsiz.b.xfersize = _ep->xfer_len;
}
deptsiz.b.pktcnt = 1;
}
dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
DWC_DEBUGPL(DBG_PCDV,"IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
_ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32);
/* Write the DMA register */
if (_core_if->dma_enable) {
dwc_write_reg32(&(in_regs->diepdma), (uint32_t) _ep->dma_addr);
}
/* EP enable, IN data in FIFO */
depctl.b.cnak = 1;
depctl.b.epena = 1;
dwc_write_reg32(&in_regs->diepctl, depctl.d32);
/**
* Enable the Non-Periodic Tx FIFO empty interrupt, the
* data will be written into the fifo by the ISR.
*/
if (!_core_if->dma_enable) {
if (_core_if->en_multiple_tx_fifo == 0) {
intr_mask.b.nptxfempty = 1;
dwc_modify_reg32(&_core_if->core_global_regs->gintsts, intr_mask.d32, 0);
dwc_modify_reg32(&_core_if->core_global_regs->gintmsk, intr_mask.d32,
intr_mask.d32);
} else {
/* Enable the Tx FIFO Empty Interrupt for this EP */
if (_ep->xfer_len > 0) {
uint32_t fifoemptymsk = 0;
fifoemptymsk |= 1 << _ep->num;
dwc_modify_reg32(&_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
0, fifoemptymsk);
}
}
}
} else {
/* OUT endpoint */
dwc_otg_dev_out_ep_regs_t * out_regs = _core_if->dev_if->out_ep_regs[_ep->num];
depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
/* Program the transfer size and packet count as follows:
* xfersize = N * (maxpacket + 4 - (maxpacket % 4))
* pktcnt = N */
if (_ep->xfer_len == 0) {
/* Zero Length Packet */
deptsiz.b.xfersize = _ep->maxpacket;
deptsiz.b.pktcnt = 1;
} else {
deptsiz.b.pktcnt = (_ep->xfer_len + (_ep->maxpacket - 1)) / _ep->maxpacket;
deptsiz.b.xfersize = deptsiz.b.pktcnt * _ep->maxpacket;
}
dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
_ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt);
if (_core_if->dma_enable) {
dwc_write_reg32(&(out_regs->doepdma), (uint32_t) _ep->dma_addr);
}
/* EP enable */
depctl.b.cnak = 1;
depctl.b.epena = 1;
dwc_write_reg32(&(out_regs->doepctl), depctl.d32);
}
}
/**
* This function continues control IN transfers started by
* dwc_otg_ep0_start_transfer, when the transfer does not fit in a
* single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
* bit for the packet count.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP0 data.
*/
void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t * _core_if,
dwc_ep_t * _ep)
{
depctl_data_t depctl;
deptsiz0_data_t deptsiz;
gintmsk_data_t intr_mask = {.d32 = 0};
if (_ep->is_in == 1) {
dwc_otg_dev_in_ep_regs_t * in_regs = _core_if->dev_if->in_ep_regs[0];
gnptxsts_data_t tx_status = {.d32 = 0};
tx_status.d32 = dwc_read_reg32(&_core_if->core_global_regs->gnptxsts);
/** @todo Should there be check for room in the Tx
* Status Queue. If not remove the code above this comment. */
depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
/* Program the transfer size and packet count
* as follows: xfersize = N * maxpacket +
* short_packet pktcnt = N + (short_packet
* exist ? 1 : 0)
*/
deptsiz.b.xfersize = (_ep->total_len - _ep->xfer_count) >
_ep->maxpacket ? _ep->maxpacket : (_ep->total_len -
_ep->xfer_count);
deptsiz.b.pktcnt = 1;
_ep->xfer_len += deptsiz.b.xfersize;
dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
DWC_DEBUGPL(DBG_PCDV,"IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
_ep->xfer_len, deptsiz.b.xfersize,deptsiz.b.pktcnt, deptsiz.d32);
/* Write the DMA register */
if (_core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
dwc_write_reg32(&(in_regs->diepdma),(uint32_t) _ep->dma_addr);
}
/* EP enable, IN data in FIFO */
depctl.b.cnak = 1;
depctl.b.epena = 1;
dwc_write_reg32(&in_regs->diepctl, depctl.d32);
/**
* Enable the Non-Periodic Tx FIFO empty interrupt, the
* data will be written into the fifo by the ISR.
*/
if (!_core_if->dma_enable) {
/* First clear it from GINTSTS */
intr_mask.b.nptxfempty = 1;
dwc_write_reg32(&_core_if->core_global_regs->gintsts,
intr_mask.d32);
dwc_modify_reg32(&_core_if->core_global_regs->gintmsk,
intr_mask.d32, intr_mask.d32);
}
}
}
#ifdef CONFIG_DWC_DEBUG
void dump_msg(const u8 * buf, unsigned int length)
{
unsigned int start, num, i;
char line[52], *p;
if (length >= 512)
return;
start = 0;
while (length > 0) {
num = min(length, 16u);
p = line;
for (i = 0; i < num; ++i) {
if (i == 8)
*p++ = ' ';
sprintf(p, " %02x", buf[i]);
p += 3;
}
*p = 0;
DWC_PRINT("%6x: %s\n", start, line);
buf += num;
start += num;
length -= num;
}
}
#else /* */
static inline void dump_msg(const u8 * buf, unsigned int length)
{
}
#endif /* */
/**
* This function writes a packet into the Tx FIFO associated with the
* EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
* periodic EPs the periodic Tx FIFO associated with the EP is written
* with all packets for the next micro-frame.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP to write packet for.
* @param _dma Indicates if DMA is being used.
*/
void dwc_otg_ep_write_packet(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep,
int _dma)
{
/**
* The buffer is padded to DWORD on a per packet basis in
* slave/dma mode if the MPS is not DWORD aligned. The last
* packet, if short, is also padded to a multiple of DWORD.
*
* ep->xfer_buff always starts DWORD aligned in memory and is a
* multiple of DWORD in length
*
* ep->xfer_len can be any number of bytes
*
* ep->xfer_count is a multiple of ep->maxpacket until the last
* packet
*
* FIFO access is DWORD */
#ifndef CONFIG_OTG_PLB_DMA
uint32_t i;
#endif
uint32_t byte_count;
uint32_t dword_count;
uint32_t * fifo;
uint32_t * data_buff = (uint32_t *) _ep->xfer_buff;
#if !defined( CONFIG_OTG_PLB_DMA_TASKLET) && defined(CONFIG_OTG_PLB_DMA)
uint32_t dma_sts = 0;
#endif
//DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, _core_if, _ep);
if (_ep->xfer_count >= _ep->xfer_len) {
DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s() No data for EP%d!!!\n", __func__, _ep->num);
return;
}
/* Find the byte length of the packet either short packet or MPS */
if ((_ep->xfer_len - _ep->xfer_count) < _ep->maxpacket) {
byte_count = _ep->xfer_len - _ep->xfer_count;
} else {
byte_count = _ep->maxpacket;
}
/* Find the DWORD length, padded by extra bytes as neccessary if MPS
* is not a multiple of DWORD */
dword_count = (byte_count + 3) / 4;
#ifdef VERBOSE
dump_msg(_ep->xfer_buff, byte_count);
#endif /* */
/**@todo NGS Where are the Periodic Tx FIFO addresses
* intialized? What should this be? */
fifo = _core_if->data_fifo[_ep->num];
DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n",
fifo, data_buff, *data_buff, byte_count);
if (!_dma) {
#ifdef CONFIG_OTG_PLB_DMA
#ifdef CONFIG_OTG_PLB_DMA_TASKLET
if (byte_count < USB_BUFSIZ) {
int i;
for (i = 0; i < dword_count; i++, data_buff++) {
dwc_write_datafifo32(fifo, *data_buff);
}
}
else {
DWC_DEBUGPL(DBG_SP, "%s set release_later %d\n", __func__, dword_count);
atomic_set(& release_later, 1);
//disable_irq_nosync(94);
dwc_otg_disable_global_interrupts(_core_if);
_core_if->dma_xfer.dma_data_buff = data_buff;
_core_if->dma_xfer.dma_data_fifo = fifo;
_core_if->dma_xfer.dma_count = dword_count;
_core_if->dma_xfer.dma_dir = OTG_TX_DMA;
tasklet_schedule(_core_if->plbdma_tasklet);
}
#else /* !CONFIG_OTG_PLB_DMA_TASKLET */
ppc4xx_start_plb_dma(_core_if, data_buff, fifo, (dword_count * 4),
PLB_DMA_INT_DIS , PLB_DMA_CH, OTG_TX_DMA);
while (mfdcr(DCRN_DMACR0 + (DMA_CH0*8)) & DMA_CE_ENABLE) {
}
dma_sts = (uint32_t)ppc4xx_get_dma_status();
#ifdef OTG_PLB_DMA_DBG
if (!(dma_sts & DMA_CS0)) {
printk("DMA Status (Terminal Count not occured) 0x%08x\n", mfdcr(DCRN_DMASR));
}
#endif
if (dma_sts & DMA_CH0_ERR) {
printk("DMA Status (Channel 0 Error) 0x%08x\n", mfdcr(DCRN_DMASR));
}
ppc4xx_clr_dma_status(PLB_DMA_CH);
#ifdef OTG_PLB_DMA_DBG
printk("%32s DMA Status =0x%08x\n", __FUNCTION__, mfdcr(DCRN_DMASR)); /* vj_dbg */
#endif
#endif /* CONFIG_OTG_PLB_DMA_TASKLET */
#else /* DWC_SLAVE mode */
for (i = 0; i < dword_count; i++, data_buff++) {
dwc_write_datafifo32(fifo, *data_buff);
}
#endif
}
_ep->xfer_count += byte_count;
_ep->xfer_buff += byte_count;
_ep->dma_addr += byte_count;
}
/**
* Set the EP STALL.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP to set the stall on.
*/
void dwc_otg_ep_set_stall(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep)
{
depctl_data_t depctl;
volatile uint32_t *depctl_addr;
DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num,
(_ep->is_in ? "IN" : "OUT"));
if (_ep->is_in == 1) {
depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl);
depctl.d32 = dwc_read_reg32(depctl_addr);
/* set the disable and stall bits */
if (depctl.b.epena) {
depctl.b.epdis = 1;
}
depctl.b.stall = 1;
dwc_write_reg32(depctl_addr, depctl.d32);
} else {
depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl);
depctl.d32 = dwc_read_reg32(depctl_addr);
/* set the stall bit */
depctl.b.stall = 1;
dwc_write_reg32(depctl_addr, depctl.d32);
}
DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr));
return;
}
/**
* Clear the EP STALL.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _ep The EP to clear stall from.
*/
void dwc_otg_ep_clear_stall(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep)
{
depctl_data_t depctl;
volatile uint32_t *depctl_addr;
DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, _ep->num,
(_ep->is_in ? "IN" : "OUT"));
if (_ep->is_in == 1) {
depctl_addr = &(_core_if->dev_if->in_ep_regs[_ep->num]->diepctl);
} else {
depctl_addr = &(_core_if->dev_if->out_ep_regs[_ep->num]->doepctl);
}
depctl.d32 = dwc_read_reg32(depctl_addr);
/* clear the stall bits */
depctl.b.stall = 0;
/*
* USB Spec 9.4.5: For endpoints using data toggle, regardless
* of whether an endpoint has the Halt feature set, a
* ClearFeature(ENDPOINT_HALT) request always results in the
* data toggle being reinitialized to DATA0.
*/
if (_ep->type == DWC_OTG_EP_TYPE_INTR ||
_ep->type == DWC_OTG_EP_TYPE_BULK) {
depctl.b.setd0pid = 1; /* DATA0 */
}
dwc_write_reg32(depctl_addr, depctl.d32);
DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr));
return;
}
/**
* This function reads a packet from the Rx FIFO into the destination
* buffer. To read SETUP data use dwc_otg_read_setup_packet.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _dest Destination buffer for the packet.
* @param _bytes Number of bytes to copy to the destination.
*/
void dwc_otg_read_packet(dwc_otg_core_if_t * _core_if,
uint8_t * _dest, uint16_t _bytes)
{
#ifndef CONFIG_OTG_PLB_DMA
int i;
#endif
int word_count = (_bytes + 3) / 4;
volatile uint32_t *fifo = _core_if->data_fifo[0];
uint32_t * data_buff = (uint32_t *) _dest;
#if !defined( CONFIG_OTG_PLB_DMA_TASKLET) && defined(CONFIG_OTG_PLB_DMA)
uint32_t dma_sts = 0;
#endif
/**
* @todo Account for the case where _dest is not dword aligned. This
* requires reading data from the FIFO into a uint32_t temp buffer,
* then moving it into the data buffer.
*/
DWC_DEBUGPL((DBG_PCDV | DBG_CILV | DBG_SP), "%s(%p,%p,%d)\n", __func__,
_core_if, _dest, _bytes);
#ifdef CONFIG_OTG_PLB_DMA
#ifdef CONFIG_OTG_PLB_DMA_TASKLET
if ( _bytes < USB_BUFSIZ) {
int i;
for (i = 0; i < word_count; i++, data_buff++) {
*data_buff = dwc_read_datafifo32(fifo);
}
} else {
DWC_DEBUGPL(DBG_SP, "%s set release_later %d\n", __func__, _bytes);
atomic_set(& release_later, 1);
//disable_irq_nosync(94);
dwc_otg_disable_global_interrupts(_core_if);
/* plbdma tasklet */
_core_if->dma_xfer.dma_data_buff = data_buff;
_core_if->dma_xfer.dma_data_fifo = (void *)fifo;
_core_if->dma_xfer.dma_count = word_count;
_core_if->dma_xfer.dma_dir = OTG_RX_DMA;
tasklet_schedule(_core_if->plbdma_tasklet);
}
#else /* !CONFIG_OTG_PLB_DMA_TASKLET */
ppc4xx_start_plb_dma(_core_if,(void *)fifo,data_buff, (word_count * 4),
PLB_DMA_INT_DIS, PLB_DMA_CH, OTG_RX_DMA);
while (mfdcr(DCRN_DMACR0 + (DMA_CH0*8)) & DMA_CE_ENABLE) {
}
dma_sts = (uint32_t)ppc4xx_get_dma_status();
#ifdef OTG_PLB_DMA_DBG
if (!(dma_sts & DMA_CS0)) {
printk("DMA Status (Terminal Count not occured) 0x%08x\n", mfdcr(DCRN_DMASR));
}
#endif
if (dma_sts & DMA_CH0_ERR) {
printk("DMA Status (Channel 0 Error) 0x%08x\n", mfdcr(DCRN_DMASR));
}
ppc4xx_clr_dma_status(PLB_DMA_CH);
#ifdef OTG_PLB_DMA_DBG
printk("%32s DMA Status =0x%08x\n", __FUNCTION__, mfdcr(DCRN_DMASR));
printk(" Rxed buffer \n");
for( i=0; i< _bytes; i++) {
printk(" 0x%02x",*(_dest +i));
}
printk(" \n End of Rxed buffer \n");
#endif
#endif /* CONFIG_OTG_PLB_DMA_TASKLET */
#else /* DWC_SLAVE mode */
for (i = 0; i < word_count; i++, data_buff++) {
*data_buff = dwc_read_datafifo32(fifo);
}
#endif
return;
}
/**
* This functions reads the device registers and prints them
*
* @param _core_if Programming view of DWC_otg controller.
*/
void dwc_otg_dump_dev_registers(dwc_otg_core_if_t * _core_if)
{
int i;
volatile uint32_t *addr;
DWC_PRINT("Device Global Registers\n");
addr = &_core_if->dev_if->dev_global_regs->dcfg;
DWC_PRINT("DCFG @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->dev_global_regs->dctl;
DWC_PRINT("DCTL @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->dev_global_regs->dsts;
DWC_PRINT("DSTS @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->dev_global_regs->diepmsk;
DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->dev_global_regs->doepmsk;
DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->dev_global_regs->daint;
DWC_PRINT("DAINT @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->dev_global_regs->dtknqr1;
DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
if (_core_if->hwcfg2.b.dev_token_q_depth > 6) {
addr = &_core_if->dev_if->dev_global_regs->dtknqr2;
DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
(uint32_t) addr, dwc_read_reg32(addr));
}
addr = &_core_if->dev_if->dev_global_regs->dvbusdis;
DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->dev_global_regs->dvbuspulse;
DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
(uint32_t) addr, dwc_read_reg32(addr));
if (_core_if->hwcfg2.b.dev_token_q_depth > 14) {
addr = &_core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
DWC_PRINT("DTKNQR3 @0x%08X : 0x%08X\n",
(uint32_t) addr, dwc_read_reg32(addr));
}
if (_core_if->hwcfg2.b.dev_token_q_depth > 22) {
addr = &_core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
}
for (i = 0; i <= _core_if->dev_if->num_in_eps; i++) {
DWC_PRINT("Device IN EP %d Registers\n", i);
addr = &_core_if->dev_if->in_ep_regs[i]->diepctl;
DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->in_ep_regs[i]->diepint;
DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->in_ep_regs[i]->dieptsiz;
DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->in_ep_regs[i]->diepdma;
DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->in_ep_regs[i]->dtxfsts;
DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
}
for (i = 0; i <= _core_if->dev_if->num_out_eps; i++) {
DWC_PRINT("Device OUT EP %d Registers\n", i);
addr = &_core_if->dev_if->out_ep_regs[i]->doepctl;
DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->out_ep_regs[i]->doepfn;
DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->out_ep_regs[i]->doepint;
DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->out_ep_regs[i]->doeptsiz;
DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->dev_if->out_ep_regs[i]->doepdma;
DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
}
return;
}
/**
* This function reads the host registers and prints them
*
* @param _core_if Programming view of DWC_otg controller.
*/
void dwc_otg_dump_host_registers(dwc_otg_core_if_t * _core_if)
{
int i;
volatile uint32_t *addr;
DWC_PRINT("Host Global Registers\n");
addr = &_core_if->host_if->host_global_regs->hcfg;
DWC_PRINT("HCFG @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->host_global_regs->hfir;
DWC_PRINT("HFIR @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->host_global_regs->hfnum;
DWC_PRINT("HFNUM @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->host_global_regs->hptxsts;
DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->host_global_regs->haint;
DWC_PRINT("HAINT @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->host_global_regs->haintmsk;
DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = _core_if->host_if->hprt0;
DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
for (i = 0; i < _core_if->core_params->host_channels; i++) {
DWC_PRINT("Host Channel %d Specific Registers\n", i);
addr = &_core_if->host_if->hc_regs[i]->hcchar;
DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->hc_regs[i]->hcsplt;
DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->hc_regs[i]->hcint;
DWC_PRINT("HCINT @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->hc_regs[i]->hcintmsk;
DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->hc_regs[i]->hctsiz;
DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->host_if->hc_regs[i]->hcdma;
DWC_PRINT("HCDMA @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
}
return;
}
/**
* This function reads the core global registers and prints them
*
* @param _core_if Programming view of DWC_otg controller.
*/
void dwc_otg_dump_global_registers(dwc_otg_core_if_t * _core_if)
{
int i;
volatile uint32_t *addr;
DWC_PRINT("Core Global Registers");
addr = &_core_if->core_global_regs->gotgctl;
DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gotgint;
DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gahbcfg;
DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gusbcfg;
DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->grstctl;
DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gintsts;
DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gintmsk;
DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->grxstsr;
DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
//addr=&_core_if->core_global_regs->grxstsp;
//DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->grxfsiz;
DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gnptxfsiz;
DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gnptxsts;
DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gi2cctl;
DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gpvndctl;
DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->ggpio;
DWC_PRINT("GGPIO @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->guid;
DWC_PRINT("GUID @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->gsnpsid;
DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->ghwcfg1;
DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->ghwcfg2;
DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->ghwcfg3;
DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->ghwcfg4;
DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
addr = &_core_if->core_global_regs->hptxfsiz;
DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n", (uint32_t) addr,
dwc_read_reg32(addr));
for (i = 0; i < _core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
addr = &_core_if->core_global_regs->dptxfsiz_dieptxf[i];
DWC_PRINT("DPTXFSIZ[%d] @0x%08X : 0x%08X\n", i,
(uint32_t) addr, dwc_read_reg32(addr));
}
}
/**
* Flush a Tx FIFO.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _num Tx FIFO to flush.
*/
extern void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t * _core_if,
const int _num)
{
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
volatile grstctl_t greset = {.d32 = 0 };
int count = 0;
DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "Flush Tx FIFO %d\n", _num);
greset.b.txfflsh = 1;
greset.b.txfnum = _num;
dwc_write_reg32(&global_regs->grstctl, greset.d32);
do {
greset.d32 = dwc_read_reg32(&global_regs->grstctl);
if (++count > 10000) {
DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
__func__, greset.d32, dwc_read_reg32(&global_regs->gnptxsts));
break;
}
udelay(1);
} while (greset.b.txfflsh == 1);
/* Wait for 3 PHY Clocks */
UDELAY(1);
}
/**
* Flush Rx FIFO.
*
* @param _core_if Programming view of DWC_otg controller.
*/
extern void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t * _core_if)
{
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
volatile grstctl_t greset = {.d32 = 0 };
int count = 0;
DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "%s\n", __func__);
/*
*
*/
greset.b.rxfflsh = 1;
dwc_write_reg32(&global_regs->grstctl, greset.d32);
do {
greset.d32 = dwc_read_reg32(&global_regs->grstctl);
if (++count > 10000) {
DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, greset.d32);
break;
}
udelay(1);
} while (greset.b.rxfflsh == 1);
/* Wait for 3 PHY Clocks */
UDELAY(1);
}
/**
* Do core a soft reset of the core. Be careful with this because it
* resets all the internal state machines of the core.
*/
void dwc_otg_core_reset(dwc_otg_core_if_t * _core_if)
{
dwc_otg_core_global_regs_t * global_regs = _core_if->core_global_regs;
volatile grstctl_t greset = {.d32 = 0 };
int count = 0;
DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
/* Wait for AHB master IDLE state. */
do {
UDELAY(10);
greset.d32 = dwc_read_reg32(&global_regs->grstctl);
if (++count > 100000) {
DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__, greset.d32);
return;
}
} while (greset.b.ahbidle == 0);
/* Core Soft Reset */
count = 0;
greset.b.csftrst = 1;
dwc_write_reg32(&global_regs->grstctl, greset.d32);
do {
greset.d32 = dwc_read_reg32(&global_regs->grstctl);
if (++count > 10000) {
DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__, greset.d32);
break;
}
udelay(1);
} while (greset.b.csftrst == 1);
/* Wait for 3 PHY Clocks */
//DWC_PRINT("100ms\n");
MDELAY(100);
}
/**
* Register HCD callbacks. The callbacks are used to start and stop
* the HCD for interrupt processing.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _cb the HCD callback structure.
* @param _p pointer to be passed to callback function (usb_hcd*).
*/
extern void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t * _core_if,
dwc_otg_cil_callbacks_t * _cb, void *_p)
{
_core_if->hcd_cb = _cb;
_cb->p = _p;
}
/**
* Register PCD callbacks. The callbacks are used to start and stop
* the PCD for interrupt processing.
*
* @param _core_if Programming view of DWC_otg controller.
* @param _cb the PCD callback structure.
* @param _p pointer to be passed to callback function (pcd*).
*/
extern void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t * _core_if,
dwc_otg_cil_callbacks_t * _cb, void *_p)
{
_core_if->pcd_cb = _cb;
_cb->p = _p;
}
|