/*
* drivers/usb/usb.c
*
* (C) Copyright Linus Torvalds 1999
* (C) Copyright Johannes Erdfelt 1999-2001
* (C) Copyright Andreas Gal 1999
* (C) Copyright Gregory P. Smith 1999
* (C) Copyright Deti Fliegl 1999 (new USB architecture)
* (C) Copyright Randy Dunlap 2000
* (C) Copyright David Brownell 2000-2004
* (C) Copyright Yggdrasil Computing, Inc. 2000
* (usb_device_id matching changes by Adam J. Richter)
* (C) Copyright Greg Kroah-Hartman 2002-2003
*
* NOTE! This is not actually a driver at all, rather this is
* just a collection of helper routines that implement the
* generic USB things that the real drivers can use..
*
* Think of this as a "USB library" rather than anything else.
* It should be considered a slave, with no callbacks. Callbacks
* are evil.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h> /* for in_interrupt() */
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/smp_lock.h>
#include <linux/usb.h>
#include <asm/io.h>
#include <asm/scatterlist.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include "hcd.h"
#include "usb.h"
const char *usbcore_name = "usbcore";
static int nousb; /* Disable USB when built into kernel image */
/**
* usb_ifnum_to_if - get the interface object with a given interface number
* @dev: the device whose current configuration is considered
* @ifnum: the desired interface
*
* This walks the device descriptor for the currently active configuration
* and returns a pointer to the interface with that particular interface
* number, or null.
*
* Note that configuration descriptors are not required to assign interface
* numbers sequentially, so that it would be incorrect to assume that
* the first interface in that descriptor corresponds to interface zero.
* This routine helps device drivers avoid such mistakes.
* However, you should make sure that you do the right thing with any
* alternate settings available for this interfaces.
*
* Don't call this function unless you are bound to one of the interfaces
* on this device or you have locked the device!
*/
struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
{
struct usb_host_config *config = dev->actconfig;
int i;
if (!config)
return NULL;
for (i = 0; i < config->desc.bNumInterfaces; i++)
if (config->interface[i]->altsetting[0]
.desc.bInterfaceNumber == ifnum)
return config->interface[i];
return NULL;
}
/**
* usb_altnum_to_altsetting - get the altsetting structure with a given
* alternate setting number.
* @intf: the interface containing the altsetting in question
* @altnum: the desired alternate setting number
*
* This searches the altsetting array of the specified interface for
* an entry with the correct bAlternateSetting value and returns a pointer
* to that entry, or null.
*
* Note that altsettings need not be stored sequentially by number, so
* it would be incorrect to assume that the first altsetting entry in
* the array corresponds to altsetting zero. This routine helps device
* drivers avoid such mistakes.
*
* Don't call this function unless you are bound to the intf interface
* or you have locked the device!
*/
struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
unsigned int altnum)
{
int i;
for (i = 0; i < intf->num_altsetting; i++) {
if (intf->altsetting[i].desc.bAlternateSetting == altnum)
return &intf->altsetting[i];
}
return NULL;
}
/**
* usb_driver_claim_interface - bind a driver to an interface
* @driver: the driver to be bound
* @iface: the interface to which it will be bound; must be in the
* usb device's active configuration
* @priv: driver data associated with that interface
*
* This is used by usb device drivers that need to claim more than one
* interface on a device when probing (audio and acm are current examples).
* No device driver should directly modify internal usb_interface or
* usb_device structure members.
*
* Few drivers should need to use this routine, since the most natural
* way to bind to an interface is to return the private data from
* the driver's probe() method.
*
* Callers must own the device lock and the driver model's usb_bus_type.subsys
* writelock. So driver probe() entries don't need extra locking,
* but other call contexts may need to explicitly claim those locks.
*/
int usb_driver_claim_interface(struct usb_driver *driver,
struct usb_interface *iface, void* priv)
{
struct device *dev = &iface->dev;
if (dev->driver)
return -EBUSY;