aboutsummaryrefslogtreecommitdiff
path: root/drivers/scsi/isci/host.c
blob: 45385f531649d7c4724e85145c0549e703098588 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
/*
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * BSD LICENSE
 *
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in
 *     the documentation and/or other materials provided with the
 *     distribution.
 *   * Neither the name of Intel Corporation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include <linux/circ_buf.h>
#include <linux/device.h>
#include <scsi/sas.h>
#include "host.h"
#include "isci.h"
#include "port.h"
#include "probe_roms.h"
#include "remote_device.h"
#include "request.h"
#include "scu_completion_codes.h"
#include "scu_event_codes.h"
#include "registers.h"
#include "scu_remote_node_context.h"
#include "scu_task_context.h"

#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200

#define smu_max_ports(dcc_value) \
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
	)

#define smu_max_task_contexts(dcc_value)	\
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
	)

#define smu_max_rncs(dcc_value) \
	(\
		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
	)

#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100

/**
 *
 *
 * The number of milliseconds to wait while a given phy is consuming power
 * before allowing another set of phys to consume power. Ultimately, this will
 * be specified by OEM parameter.
 */
#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500

/**
 * NORMALIZE_PUT_POINTER() -
 *
 * This macro will normalize the completion queue put pointer so its value can
 * be used as an array inde
 */
#define NORMALIZE_PUT_POINTER(x) \
	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)


/**
 * NORMALIZE_EVENT_POINTER() -
 *
 * This macro will normalize the completion queue event entry so its value can
 * be used as an index.
 */
#define NORMALIZE_EVENT_POINTER(x) \
	(\
		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
	)

/**
 * NORMALIZE_GET_POINTER() -
 *
 * This macro will normalize the completion queue get pointer so its value can
 * be used as an index into an array
 */
#define NORMALIZE_GET_POINTER(x) \
	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)

/**
 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
 *
 * This macro will normalize the completion queue cycle pointer so it matches
 * the completion queue cycle bit
 */
#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))

/**
 * COMPLETION_QUEUE_CYCLE_BIT() -
 *
 * This macro will return the cycle bit of the completion queue entry
 */
#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)

/* Init the state machine and call the state entry function (if any) */
void sci_init_sm(struct sci_base_state_machine *sm,
		 const struct sci_base_state *state_table, u32 initial_state)
{
	sci_state_transition_t handler;

	sm->initial_state_id    = initial_state;
	sm->previous_state_id   = initial_state;
	sm->current_state_id    = initial_state;
	sm->state_table         = state_table;

	handler = sm->state_table[initial_state].enter_state;
	if (handler)
		handler(sm);
}

/* Call the state exit fn, update the current state, call the state entry fn */
void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
{
	sci_state_transition_t handler;

	handler = sm->state_table[sm->current_state_id].exit_state;
	if (handler)
		handler(sm);

	sm->previous_state_id = sm->current_state_id;
	sm->current_state_id = next_state;

	handler = sm->state_table[sm->current_state_id].enter_state;
	if (handler)
		handler(sm);
}

static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
{
	u32 get_value = ihost->completion_queue_get;
	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;

	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
		return true;

	return false;
}

static bool sci_controller_isr(struct isci_host *ihost)
{
	if (sci_controller_completion_queue_has_entries(ihost))
		return true;

	/* we have a spurious interrupt it could be that we have already
	 * emptied the completion queue from a previous interrupt
	 * FIXME: really!?
	 */
	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);

	/* There is a race in the hardware that could cause us not to be
	 * notified of an interrupt completion if we do not take this
	 * step.  We will mask then unmask the interrupts so if there is
	 * another interrupt pending the clearing of the interrupt
	 * source we get the next interrupt message.
	 */
	spin_lock(&ihost->scic_lock);
	if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
		writel(0, &ihost->smu_registers->interrupt_mask);
	}
	spin_unlock(&ihost->scic_lock);

	return false;
}

irqreturn_t isci_msix_isr(int vec, void *data)
{
	struct isci_host *ihost = data;

	if (sci_controller_isr(ihost))
		tasklet_schedule(&ihost->completion_tasklet);

	return IRQ_HANDLED;
}

static bool sci_controller_error_isr(struct isci_host *ihost)
{
	u32 interrupt_status;

	interrupt_status =
		readl(&ihost->smu_registers->interrupt_status);
	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);

	if (interrupt_status != 0) {
		/*
		 * There is an error interrupt pending so let it through and handle
		 * in the callback */
		return true;
	}

	/*
	 * There is a race in the hardware that could cause us not to be notified
	 * of an interrupt completion if we do not take this step.  We will mask
	 * then unmask the error interrupts so if there was another interrupt
	 * pending we will be notified.
	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
	writel(0xff, &ihost->smu_registers->interrupt_mask);
	writel(0, &ihost->smu_registers->interrupt_mask);

	return false;
}

static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
{
	u32 index = SCU_GET_COMPLETION_INDEX(ent);
	struct isci_request *ireq = ihost->reqs[index];

	/* Make sure that we really want to process this IO request */
	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
		/* Yep this is a valid io request pass it along to the
		 * io request handler
		 */
		sci_io_request_tc_completion(ireq, ent);
}

static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
{
	u32 index;
	struct isci_request *ireq;
	struct isci_remote_device *idev;

	index = SCU_GET_COMPLETION_INDEX(ent);

	switch (scu_get_command_request_type(ent)) {
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
		ireq = ihost->reqs[index];
		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
			 __func__, ent, ireq);
		/* @todo For a post TC operation we need to fail the IO
		 * request
		 */
		break;
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
		idev = ihost->device_table[index];
		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
			 __func__, ent, idev);
		/* @todo For a port RNC operation we need to fail the
		 * device
		 */
		break;
	default:
		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
			 __func__, ent);
		break;
	}
}

static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
{
	u32 index;
	u32 frame_index;

	struct scu_unsolicited_frame_header *frame_header;
	struct isci_phy *iphy;
	struct isci_remote_device *idev;

	enum sci_status result = SCI_FAILURE;

	frame_index = SCU_GET_FRAME_INDEX(ent);

	frame_header = ihost->uf_control.buffers.array[frame_index].header;
	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;

	if (SCU_GET_FRAME_ERROR(ent)) {
		/*
		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
		 * /       this cause a problem? We expect the phy initialization will
		 * /       fail if there is an error in the frame. */
		sci_controller_release_frame(ihost, frame_index);
		return;
	}

	if (frame_header->is_address_frame) {
		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
		iphy = &ihost->phys[index];
		result = sci_phy_frame_handler(iphy, frame_index);
	} else {

		index = SCU_GET_COMPLETION_INDEX(ent);

		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
			/*
			 * This is a signature fis or a frame from a direct attached SATA
			 * device that has not yet been created.  In either case forwared
			 * the frame to the PE and let it take care of the frame data. */
			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
			iphy = &ihost->phys[index];
			result = sci_phy_frame_handler(iphy, frame_index);
		} else {
			if (index < ihost->remote_node_entries)
				idev = ihost->device_table[index];
			else
				idev = NULL;

			if (idev != NULL)
				result = sci_remote_device_frame_handler(idev, frame_index);
			else
				sci_controller_release_frame(ihost, frame_index);
		}
	}

	if (result != SCI_SUCCESS) {
		/*
		 * / @todo Is there any reason to report some additional error message
		 * /       when we get this failure notifiction? */
	}
}

static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
{
	struct isci_remote_device *idev;
	struct isci_request *ireq;
	struct isci_phy *iphy;
	u32 index;

	index = SCU_GET_COMPLETION_INDEX(ent);

	switch (scu_get_event_type(ent)) {
	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
		/* / @todo The driver did something wrong and we need to fix the condtion. */
		dev_err(&ihost->pdev->dev,
			"%s: SCIC Controller 0x%p received SMU command error "
			"0x%x\n",
			__func__,
			ihost,
			ent);
		break;

	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
	case SCU_EVENT_TYPE_SMU_ERROR:
	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
		/*
		 * / @todo This is a hardware failure and its likely that we want to
		 * /       reset the controller. */
		dev_err(&ihost->pdev->dev,
			"%s: SCIC Controller 0x%p received fatal controller "
			"event  0x%x\n",
			__func__,
			ihost,
			ent);
		break;

	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
		ireq = ihost->reqs[index];
		sci_io_request_event_handler(ireq, ent);
		break;

	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
		switch (scu_get_event_specifier(ent)) {
		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
			ireq = ihost->reqs[index];
			if (ireq != NULL)
				sci_io_request_event_handler(ireq, ent);
			else
				dev_warn(&ihost->pdev->dev,
					 "%s: SCIC Controller 0x%p received "
					 "event 0x%x for io request object "
					 "that doesnt exist.\n",
					 __func__,
					 ihost,
					 ent);

			break;

		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
			idev = ihost->device_table[index];
			if (idev != NULL)
				sci_remote_device_event_handler(idev, ent);
			else
				dev_warn(&ihost->pdev->dev,
					 "%s: SCIC Controller 0x%p received "
					 "event 0x%x for remote device object "
					 "that doesnt exist.\n",
					 __func__,
					 ihost,
					 ent);

			break;
		}
		break;

	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
	/*
	 * direct the broadcast change event to the phy first and then let
	 * the phy redirect the broadcast change to the port object */
	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
	/*
	 * direct error counter event to the phy object since that is where
	 * we get the event notification.  This is a type 4 event. */
	case SCU_EVENT_TYPE_OSSP_EVENT:
		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
		iphy = &ihost->phys[index];
		sci_phy_event_handler(iphy, ent);
		break;

	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
	case SCU_EVENT_TYPE_RNC_OPS_MISC:
		if (index < ihost->remote_node_entries) {
			idev = ihost->device_table[index];

			if (idev != NULL)
				sci_remote_device_event_handler(idev, ent);
		} else
			dev_err(&ihost->pdev->dev,
				"%s: SCIC Controller 0x%p received event 0x%x "
				"for remote device object 0x%0x that doesnt "
				"exist.\n",
				__func__,
				ihost,
				ent,
				index);

		break;

	default:
		dev_warn(&ihost->pdev->dev,
			 "%s: SCIC Controller received unknown event code %x\n",
			 __func__,
			 ent);
		break;
	}
}

static void sci_controller_process_completions(struct isci_host *ihost)
{
	u32 completion_count = 0;
	u32 ent;
	u32 get_index;
	u32 get_cycle;
	u32 event_get;
	u32 event_cycle;

	dev_dbg(&ihost->pdev->dev,
		"%s: completion queue begining get:0x%08x\n",
		__func__,
		ihost->completion_queue_get);

	/* Get the component parts of the completion queue */
	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;

	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;

	while (
		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
		) {
		completion_count++;

		ent = ihost->completion_queue[get_index];

		/* increment the get pointer and check for rollover to toggle the cycle bit */
		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);

		dev_dbg(&ihost->pdev->dev,
			"%s: completion queue entry:0x%08x\n",
			__func__,
			ent);

		switch (SCU_GET_COMPLETION_TYPE(ent)) {
		case SCU_COMPLETION_TYPE_TASK:
			sci_controller_task_completion(ihost, ent);
			break;

		case SCU_COMPLETION_TYPE_SDMA:
			sci_controller_sdma_completion(ihost, ent);
			break;

		case SCU_COMPLETION_TYPE_UFI:
			sci_controller_unsolicited_frame(ihost, ent);
			break;

		case SCU_COMPLETION_TYPE_EVENT:
			sci_controller_event_completion(ihost, ent);
			break;

		case SCU_COMPLETION_TYPE_NOTIFY: {
			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);

			sci_controller_event_completion(ihost, ent);
			break;
		}
		default:
			dev_warn(&ihost->pdev->dev,
				 "%s: SCIC Controller received unknown "
				 "completion type %x\n",
				 __func__,
				 ent);
			break;
		}
	}

	/* Update the get register if we completed one or more entries */
	if (completion_count > 0) {
		ihost->completion_queue_get =
			SMU_CQGR_GEN_BIT(ENABLE) |
			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
			event_cycle |
			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
			get_cycle |
			SMU_CQGR_GEN_VAL(POINTER, get_index);

		writel(ihost->completion_queue_get,
		       &ihost->smu_registers->completion_queue_get);

	}

	dev_dbg(&ihost->pdev->dev,
		"%s: completion queue ending get:0x%08x\n",
		__func__,
		ihost->completion_queue_get);

}

static void sci_controller_error_handler(struct isci_host *ihost)
{
	u32 interrupt_status;

	interrupt_status =
		readl(&ihost->smu_registers->interrupt_status);

	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
	    sci_controller_completion_queue_has_entries(ihost)) {

		sci_controller_process_completions(ihost);
		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
	} else {
		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
			interrupt_status);

		sci_change_state(&ihost->sm, SCIC_FAILED);

		return;
	}

	/* If we dont process any completions I am not sure that we want to do this.
	 * We are in the middle of a hardware fault and should probably be reset.
	 */
	writel(0, &ihost->smu_registers->interrupt_mask);
}

irqreturn_t isci_intx_isr(int vec, void *data)
{
	irqreturn_t ret = IRQ_NONE;
	struct isci_host *ihost = data;

	if (sci_controller_isr(ihost)) {
		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
		tasklet_schedule(&ihost->completion_tasklet);
		ret = IRQ_HANDLED;
	} else if (sci_controller_error_isr(ihost)) {
		spin_lock(&ihost->scic_lock);
		sci_controller_error_handler(ihost);
		spin_unlock(&ihost->scic_lock);
		ret = IRQ_HANDLED;
	}

	return ret;
}

irqreturn_t isci_error_isr(int vec, void *data)
{
	struct isci_host *ihost = data;

	if (sci_controller_error_isr(ihost))
		sci_controller_error_handler(ihost);

	return IRQ_HANDLED;
}

/**
 * isci_host_start_complete() - This function is called by the core library,
 *    through the ISCI Module, to indicate controller start status.
 * @isci_host: This parameter specifies the ISCI host object
 * @completion_status: This parameter specifies the completion status from the
 *    core library.
 *
 */
static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
{
	if (completion_status != SCI_SUCCESS)
		dev_info(&ihost->pdev->dev,
			"controller start timed out, continuing...\n");
	clear_bit(IHOST_START_PENDING, &ihost->flags);
	wake_up(&ihost->eventq);
}

int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
	struct isci_host *ihost = ha->lldd_ha;

	if (test_bit(IHOST_START_PENDING, &ihost->flags))
		return 0;

	sas_drain_work(ha);

	return 1;
}

/**
 * sci_controller_get_suggested_start_timeout() - This method returns the
 *    suggested sci_controller_start() timeout amount.  The user is free to
 *    use any timeout value, but this method provides the suggested minimum
 *    start timeout value.  The returned value is based upon empirical
 *    information determined as a result of interoperability testing.
 * @controller: the handle to the controller object for which to return the
 *    suggested start timeout.
 *
 * This method returns the number of milliseconds for the suggested start
 * operation timeout.
 */
static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
{
	/* Validate the user supplied parameters. */
	if (!ihost)
		return 0;

	/*
	 * The suggested minimum timeout value for a controller start operation:
	 *
	 *     Signature FIS Timeout
	 *   + Phy Start Timeout
	 *   + Number of Phy Spin Up Intervals
	 *   ---------------------------------
	 *   Number of milliseconds for the controller start operation.
	 *
	 * NOTE: The number of phy spin up intervals will be equivalent
	 *       to the number of phys divided by the number phys allowed
	 *       per interval - 1 (once OEM parameters are supported).
	 *       Currently we assume only 1 phy per interval. */

	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
}

static void sci_controller_enable_interrupts(struct isci_host *ihost)
{
	set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
	writel(0, &ihost->smu_registers->interrupt_mask);
}

void sci_controller_disable_interrupts(struct isci_host *ihost)
{
	clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
	readl(&ihost->smu_registers->interrupt_mask); /* flush */
}

static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
{
	u32 port_task_scheduler_value;

	port_task_scheduler_value =
		readl(&ihost->scu_registers->peg0.ptsg.control);
	port_task_scheduler_value |=
		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
	writel(port_task_scheduler_value,
	       &ihost->scu_registers->peg0.ptsg.control);
}

static void sci_controller_assign_task_entries(struct isci_host *ihost)
{
	u32 task_assignment;

	/*
	 * Assign all the TCs to function 0
	 * TODO: Do we actually need to read this register to write it back?
	 */

	task_assignment =
		readl(&ihost->smu_registers->task_context_assignment[0]);

	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));

	writel(task_assignment,
		&ihost->smu_registers->task_context_assignment[0]);

}

static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
{
	u32 index;
	u32 completion_queue_control_value;
	u32 completion_queue_get_value;
	u32 completion_queue_put_value;

	ihost->completion_queue_get = 0;

	completion_queue_control_value =
		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));

	writel(completion_queue_control_value,
	       &ihost->smu_registers->completion_queue_control);


	/* Set the completion queue get pointer and enable the queue */
	completion_queue_get_value = (
		(SMU_CQGR_GEN_VAL(POINTER, 0))
		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
		| (SMU_CQGR_GEN_BIT(ENABLE))
		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
		);

	writel(completion_queue_get_value,
	       &ihost->smu_registers->completion_queue_get);

	/* Set the completion queue put pointer */
	completion_queue_put_value = (
		(SMU_CQPR_GEN_VAL(POINTER, 0))
		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
		);

	writel(completion_queue_put_value,
	       &ihost->smu_registers->completion_queue_put);

	/* Initialize the cycle bit of the completion queue entries */
	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
		/*
		 * If get.cycle_bit != completion_queue.cycle_bit
		 * its not a valid completion queue entry
		 * so at system start all entries are invalid */
		ihost->completion_queue[index] = 0x80000000;
	}
}

static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
{
	u32 frame_queue_control_value;
	u32 frame_queue_get_value;
	u32 frame_queue_put_value;

	/* Write the queue size */
	frame_queue_control_value =
		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);

	writel(frame_queue_control_value,
	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);

	/* Setup the get pointer for the unsolicited frame queue */
	frame_queue_get_value = (
		SCU_UFQGP_GEN_VAL(POINTER, 0)
		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
		);

	writel(frame_queue_get_value,
	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
	/* Setup the put pointer for the unsolicited frame queue */
	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
	writel(frame_queue_put_value,
	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
}

void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
{
	if (ihost->sm.current_state_id == SCIC_STARTING) {
		/*
		 * We move into the ready state, because some of the phys/ports
		 * may be up and operational.
		 */
		sci_change_state(&ihost->sm, SCIC_READY);

		isci_host_start_complete(ihost, status);
	}
}

static bool is_phy_starting(struct isci_phy *iphy)
{
	enum sci_phy_states state;

	state = iphy->sm.current_state_id;
	switch (state) {
	case SCI_PHY_STARTING:
	case SCI_PHY_SUB_INITIAL:
	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
	case SCI_PHY_SUB_AWAIT_IAF_UF:
	case SCI_PHY_SUB_AWAIT_SAS_POWER:
	case SCI_PHY_SUB_AWAIT_SATA_POWER:
	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
	case SCI_PHY_SUB_AWAIT_OSSP_EN:
	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
	case SCI_PHY_SUB_FINAL:
		return true;
	default:
		return false;
	}
}

bool is_controller_start_complete(struct isci_host *ihost)
{
	int i;

	for (i = 0; i < SCI_MAX_PHYS; i++) {
		struct isci_phy *iphy = &ihost->phys[i];
		u32 state = iphy->sm.current_state_id;

		/* in apc mode we need to check every phy, in
		 * mpc mode we only need to check phys that have
		 * been configured into a port
		 */
		if (is_port_config_apc(ihost))
			/* pass */;
		else if (!phy_get_non_dummy_port(iphy))
			continue;

		/* The controller start operation is complete iff:
		 * - all links have been given an opportunity to start
		 * - have no indication of a connected device
		 * - have an indication of a connected device and it has
		 *   finished the link training process.
		 */
		if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
		    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
		    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
		    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
			return false;
	}

	return true;
}

/**
 * sci_controller_start_next_phy - start phy
 * @scic: controller
 *
 * If all the phys have been started, then attempt to transition the
 * controller to the READY state and inform the user
 * (sci_cb_controller_start_complete()).
 */
static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
{
	struct sci_oem_params *oem = &ihost->oem_parameters;
	struct isci_phy *iphy;
	enum sci_status status;

	status = SCI_SUCCESS;

	if (ihost->phy_startup_timer_pending)
		return status;

	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
		if (is_controller_start_complete(ihost)) {
			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
			sci_del_timer(&ihost->phy_timer);
			ihost->phy_startup_timer_pending = false;
		}
	} else {
		iphy = &ihost->phys[ihost->next_phy_to_start];

		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
			if (phy_get_non_dummy_port(iphy) == NULL) {
				ihost->next_phy_to_start++;

				/* Caution recursion ahead be forwarned
				 *
				 * The PHY was never added to a PORT in MPC mode
				 * so start the next phy in sequence This phy
				 * will never go link up and will not draw power
				 * the OEM parameters either configured the phy
				 * incorrectly for the PORT or it was never
				 * assigned to a PORT
				 */
				return sci_controller_start_next_phy(ihost);
			}
		}

		status = sci_phy_start(iphy);

		if (status == SCI_SUCCESS) {
			sci_mod_timer(&ihost->phy_timer,
				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
			ihost->phy_startup_timer_pending = true;
		} else {
			dev_warn(&ihost->pdev->dev,
				 "%s: Controller stop operation failed "
				 "to stop phy %d because of status "
				 "%d.\n",
				 __func__,
				 ihost->phys[ihost->next_phy_to_start].phy_index,
				 status);
		}

		ihost->next_phy_to_start++;
	}

	return status;
}

static void phy_startup_timeout(unsigned long data)
{
	struct sci_timer *tmr = (struct sci_timer *)data;
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
	unsigned long flags;
	enum sci_status status;

	spin_lock_irqsave(&ihost->scic_lock, flags);

	if (tmr->cancel)
		goto done;

	ihost->phy_startup_timer_pending = false;

	do {
		status = sci_controller_start_next_phy(ihost);
	} while (status != SCI_SUCCESS);

done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
}

static u16 isci_tci_active(struct isci_host *ihost)
{
	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}

static enum sci_status sci_controller_start(struct isci_host *ihost,
					     u32 timeout)
{
	enum sci_status result;
	u16 index;

	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
		return SCI_FAILURE_INVALID_STATE;
	}

	/* Build the TCi free pool */
	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
	ihost->tci_head = 0;
	ihost->tci_tail = 0;
	for (index = 0; index < ihost->task_context_entries; index++)
		isci_tci_free(ihost, index);

	/* Build the RNi free pool */
	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
					 ihost->remote_node_entries);

	/*
	 * Before anything else lets make sure we will not be
	 * interrupted by the hardware.
	 */
	sci_controller_disable_interrupts(ihost);

	/* Enable the port task scheduler */
	sci_controller_enable_port_task_scheduler(ihost);

	/* Assign all the task entries to ihost physical function */
	sci_controller_assign_task_entries(ihost);

	/* Now initialize the completion queue */
	sci_controller_initialize_completion_queue(ihost);

	/* Initialize the unsolicited frame queue for use */
	sci_controller_initialize_unsolicited_frame_queue(ihost);

	/* Start all of the ports on this controller */
	for (index = 0; index < ihost->logical_port_entries; index++) {
		struct isci_port *iport = &ihost->ports[index];

		result = sci_port_start(iport);
		if (result)
			return result;
	}

	sci_controller_start_next_phy(ihost);

	sci_mod_timer(&ihost->timer, timeout);

	sci_change_state(&ihost->sm, SCIC_STARTING);

	return SCI_SUCCESS;
}

void isci_host_scan_start(struct Scsi_Host *shost)
{
	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);

	set_bit(IHOST_START_PENDING, &ihost->flags);

	spin_lock_irq(&ihost->scic_lock);
	sci_controller_start(ihost, tmo);
	sci_controller_enable_interrupts(ihost);
	spin_unlock_irq(&ihost->scic_lock);
}

static void isci_host_stop_complete(struct isci_host *ihost)
{
	sci_controller_disable_interrupts(ihost);
	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
	wake_up(&ihost->eventq);
}

static void sci_controller_completion_handler(struct isci_host *ihost)
{
	/* Empty out the completion queue */
	if (sci_controller_completion_queue_has_entries(ihost))
		sci_controller_process_completions(ihost);

	/* Clear the interrupt and enable all interrupts again */
	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
	/* Could we write the value of SMU_ISR_COMPLETION? */
	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
	writel(0, &ihost->smu_registers->interrupt_mask);
}

void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
{
	task->lldd_task = NULL;
	if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
	    !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
		if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
			/* Normal notification (task_done) */
			dev_dbg(&ihost->pdev->dev,
				"%s: Normal - ireq/task = %p/%p\n",
				__func__, ireq, task);

			task->task_done(task);
		} else {
			dev_dbg(&ihost->pdev->dev,
				"%s: Error - ireq/task = %p/%p\n",
				__func__, ireq, task);

			sas_task_abort(task);
		}
	}
	if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
		wake_up_all(&ihost->eventq);

	if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
		isci_free_tag(ihost, ireq->io_tag);
}
/**
 * isci_host_completion_routine() - This function is the delayed service
 *    routine that calls the sci core library's completion handler. It's
 *    scheduled as a tasklet from the interrupt service routine when interrupts
 *    in use, or set as the timeout function in polled mode.
 * @data: This parameter specifies the ISCI host object
 *
 */
void isci_host_completion_routine(unsigned long data)
{
	struct isci_host *ihost = (struct isci_host *)data;
	u16 active;

	spin_lock_irq(&ihost->scic_lock);
	sci_controller_completion_handler(ihost);
	spin_unlock_irq(&ihost->scic_lock);

	/* the coalesence timeout doubles at each encoding step, so
	 * update it based on the ilog2 value of the outstanding requests
	 */
	active = isci_tci_active(ihost);
	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
	       &ihost->smu_registers->interrupt_coalesce_control);
}

/**
 * sci_controller_stop() - This method will stop an individual controller
 *    object.This method will invoke the associated user callback upon
 *    completion.  The completion callback is called when the following
 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
 *    controller has been quiesced. This method will ensure that all IO
 *    requests are quiesced, phys are stopped, and all additional operation by
 *    the hardware is halted.
 * @controller: the handle to the controller object to stop.
 * @timeout: This parameter specifies the number of milliseconds in which the
 *    stop operation should complete.
 *
 * The controller must be in the STARTED or STOPPED state. Indicate if the
 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
 * controller is not either in the STARTED or STOPPED states.
 */
static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
{
	if (ihost->sm.current_state_id != SCIC_READY) {
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
		return SCI_FAILURE_INVALID_STATE;
	}

	sci_mod_timer(&ihost->timer, timeout);
	sci_change_state(&ihost->sm, SCIC_STOPPING);
	return SCI_SUCCESS;
}

/**
 * sci_controller_reset() - This method will reset the supplied core
 *    controller regardless of the state of said controller.  This operation is
 *    considered destructive.  In other words, all current operations are wiped
 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
 *    requests are not aborted or completed at the actual remote device.
 * @controller: the handle to the controller object to reset.
 *
 * Indicate if the controller reset method succeeded or failed in some way.
 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
 * the controller reset operation is unable to complete.
 */
static enum sci_status sci_controller_reset(struct isci_host *ihost)
{
	switch (ihost->sm.current_state_id) {
	case SCIC_RESET:
	case SCIC_READY:
	case SCIC_STOPPING:
	case SCIC_FAILED:
		/*
		 * The reset operation is not a graceful cleanup, just
		 * perform the state transition.
		 */
		sci_change_state(&ihost->sm, SCIC_RESETTING);
		return SCI_SUCCESS;
	default:
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
		return SCI_FAILURE_INVALID_STATE;
	}
}

static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
{
	u32 index;
	enum sci_status status;
	enum sci_status phy_status;

	status = SCI_SUCCESS;

	for (index = 0; index < SCI_MAX_PHYS; index++) {
		phy_status = sci_phy_stop(&ihost->phys[index]);

		if (phy_status != SCI_SUCCESS &&
		    phy_status != SCI_FAILURE_INVALID_STATE) {
			status = SCI_FAILURE;

			dev_warn(&ihost->pdev->dev,
				 "%s: Controller stop operation failed to stop "
				 "phy %d because of status %d.\n",
				 __func__,
				 ihost->phys[index].phy_index, phy_status);
		}
	}

	return status;
}


/**
 * isci_host_deinit - shutdown frame reception and dma
 * @ihost: host to take down
 *
 * This is called in either the driver shutdown or the suspend path.  In
 * the shutdown case libsas went through port teardown and normal device
 * removal (i.e. physical links stayed up to service scsi_device removal
 * commands).  In the suspend case we disable the hardware without
 * notifying libsas of the link down events since we want libsas to
 * remember the domain across the suspend/resume cycle
 */
void isci_host_deinit(struct isci_host *ihost)
{
	int i;

	/* disable output data selects */
	for (i = 0; i < isci_gpio_count(ihost); i++)
		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);

	set_bit(IHOST_STOP_PENDING, &ihost->flags);

	spin_lock_irq(&ihost->scic_lock);
	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
	spin_unlock_irq(&ihost->scic_lock);

	wait_for_stop(ihost);

	/* phy stop is after controller stop to allow port and device to
	 * go idle before shutting down the phys, but the expectation is
	 * that i/o has been shut off well before we reach this
	 * function.
	 */
	sci_controller_stop_phys(ihost);

	/* disable sgpio: where the above wait should give time for the
	 * enclosure to sample the gpios going inactive
	 */
	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);

	spin_lock_irq(&ihost->scic_lock);
	sci_controller_reset(ihost);
	spin_unlock_irq(&ihost->scic_lock);

	/* Cancel any/all outstanding port timers */
	for (i = 0; i < ihost->logical_port_entries; i++) {
		struct isci_port *iport = &ihost->ports[i];
		del_timer_sync(&iport->timer.timer);
	}

	/* Cancel any/all outstanding phy timers */
	for (i = 0; i < SCI_MAX_PHYS; i++) {
		struct isci_phy *iphy = &ihost->phys[i];
		del_timer_sync(&iphy->sata_timer.timer);
	}

	del_timer_sync(&ihost->port_agent.timer.timer);

	del_timer_sync(&ihost->power_control.timer.timer);

	del_timer_sync(&ihost->timer.timer);

	del_timer_sync(&ihost->phy_timer.timer);
}

static void __iomem *scu_base(struct isci_host *isci_host)
{
	struct pci_dev *pdev = isci_host->pdev;
	int id = isci_host->id;

	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
}

static void __iomem *smu_base(struct isci_host *isci_host)
{
	struct pci_dev *pdev = isci_host->pdev;
	int id = isci_host->id;

	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
}

static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
{
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);

	sci_change_state(&ihost->sm, SCIC_RESET);
}

static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
{
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);

	sci_del_timer(&ihost->timer);
}

#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
#define INTERRUPT_COALESCE_NUMBER_MAX                        256
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28

/**
 * sci_controller_set_interrupt_coalescence() - This method allows the user to
 *    configure the interrupt coalescence.
 * @controller: This parameter represents the handle to the controller object
 *    for which its interrupt coalesce register is overridden.
 * @coalesce_number: Used to control the number of entries in the Completion
 *    Queue before an interrupt is generated. If the number of entries exceed
 *    this number, an interrupt will be generated. The valid range of the input
 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
 *    interrupt coalescing timeout.
 *
 * Indicate if the user successfully set the interrupt coalesce parameters.
 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
 */
static enum sci_status
sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
					 u32 coalesce_number,
					 u32 coalesce_timeout)
{
	u8 timeout_encode = 0;
	u32 min = 0;
	u32 max = 0;

	/* Check if the input parameters fall in the range. */
	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
		return SCI_FAILURE_INVALID_PARAMETER_VALUE;

	/*
	 *  Defined encoding for interrupt coalescing timeout:
	 *              Value   Min      Max     Units
	 *              -----   ---      ---     -----
	 *              0       -        -       Disabled
	 *              1       13.3     20.0    ns
	 *              2       26.7     40.0
	 *              3       53.3     80.0
	 *              4       106.7    160.0
	 *              5       213.3    320.0
	 *              6       426.7    640.0
	 *              7       853.3    1280.0
	 *              8       1.7      2.6     us
	 *              9       3.4      5.1
	 *              10      6.8      10.2
	 *              11      13.7     20.5
	 *              12      27.3     41.0
	 *              13      54.6     81.9
	 *              14      109.2    163.8
	 *              15      218.5    327.7
	 *              16      436.9    655.4
	 *              17      873.8    1310.7
	 *              18      1.7      2.6     ms
	 *              19      3.5      5.2
	 *              20      7.0      10.5
	 *              21      14.0     21.0
	 *              22      28.0     41.9
	 *              23      55.9     83.9
	 *              24      111.8    167.8
	 *              25      223.7    335.5
	 *              26      447.4    671.1
	 *              27      894.8    1342.2
	 *              28      1.8      2.7     s
	 *              Others Undefined */

	/*
	 * Use the table above to decide the encode of interrupt coalescing timeout
	 * value for register writing. */
	if (coalesce_timeout == 0)
		timeout_encode = 0;
	else{
		/* make the timeout value in unit of (10 ns). */
		coalesce_timeout = coalesce_timeout * 100;
		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;

		/* get the encode of timeout for register writing. */
		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
		      timeout_encode++) {
			if (min <= coalesce_timeout &&  max > coalesce_timeout)
				break;
			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
					break;
				else{
					timeout_encode++;
					break;
				}
			} else {
				max = max * 2;
				min = min * 2;
			}
		}

		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
			/* the value is out of range. */
			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
	}

	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
	       &ihost->smu_registers->interrupt_coalesce_control);


	ihost->interrupt_coalesce_number = (u16)coalesce_number;
	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;

	return SCI_SUCCESS;
}


static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
{
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
	u32 val;

	/* enable clock gating for power control of the scu unit */
	val = readl(&ihost->smu_registers->clock_gating_control);
	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
	writel(val, &ihost->smu_registers->clock_gating_control);

	/* set the default interrupt coalescence number and timeout value. */
	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
}

static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
{
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);

	/* disable interrupt coalescence. */
	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
}

static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
{
	u32 index;
	enum sci_status port_status;
	enum sci_status status = SCI_SUCCESS;

	for (index = 0; index < ihost->logical_port_entries; index++) {
		struct isci_port *iport = &ihost->ports[index];

		port_status = sci_port_stop(iport);

		if ((port_status != SCI_SUCCESS) &&
		    (port_status != SCI_FAILURE_INVALID_STATE)) {
			status = SCI_FAILURE;

			dev_warn(&ihost->pdev->dev,
				 "%s: Controller stop operation failed to "
				 "stop port %d because of status %d.\n",
				 __func__,
				 iport->logical_port_index,
				 port_status);
		}
	}

	return status;
}

static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
{
	u32 index;
	enum sci_status status;
	enum sci_status device_status;

	status = SCI_SUCCESS;

	for (index = 0; index < ihost->remote_node_entries; index++) {
		if (ihost->device_table[index] != NULL) {
			/* / @todo What timeout value do we want to provide to this request? */
			device_status = sci_remote_device_stop(ihost->device_table[index], 0);

			if ((device_status != SCI_SUCCESS) &&
			    (device_status != SCI_FAILURE_INVALID_STATE)) {
				dev_warn(&ihost->pdev->dev,
					 "%s: Controller stop operation failed "
					 "to stop device 0x%p because of "
					 "status %d.\n",
					 __func__,
					 ihost->device_table[index], device_status);
			}
		}
	}

	return status;
}

static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
{
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);

	sci_controller_stop_devices(ihost);
	sci_controller_stop_ports(ihost);

	if (!sci_controller_has_remote_devices_stopping(ihost))
		isci_host_stop_complete(ihost);
}

static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
{
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);

	sci_del_timer(&ihost->timer);
}

static void sci_controller_reset_hardware(struct isci_host *ihost)
{
	/* Disable interrupts so we dont take any spurious interrupts */
	sci_controller_disable_interrupts(ihost);

	/* Reset the SCU */
	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);

	/* Delay for 1ms to before clearing the CQP and UFQPR. */
	udelay(1000);

	/* The write to the CQGR clears the CQP */
	writel(0x00000000, &ihost->smu_registers->completion_queue_get);

	/* The write to the UFQGP clears the UFQPR */
	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);

	/* clear all interrupts */
	writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
}

static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
{
	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);

	sci_controller_reset_hardware(ihost);
	sci_change_state(&ihost->sm, SCIC_RESET);
}

static const struct sci_base_state sci_controller_state_table[] = {
	[SCIC_INITIAL] = {
		.enter_state = sci_controller_initial_state_enter,
	},
	[SCIC_RESET] = {},
	[SCIC_INITIALIZING] = {},
	[SCIC_INITIALIZED] = {},
	[SCIC_STARTING] = {
		.exit_state  = sci_controller_starting_state_exit,
	},
	[SCIC_READY] = {
		.enter_state = sci_controller_ready_state_enter,
		.exit_state  = sci_controller_ready_state_exit,
	},
	[SCIC_RESETTING] = {
		.enter_state = sci_controller_resetting_state_enter,
	},
	[SCIC_STOPPING] = {
		.enter_state = sci_controller_stopping_state_enter,
		.exit_state = sci_controller_stopping_state_exit,
	},
	[SCIC_FAILED] = {}
};

static void controller_timeout(unsigned long data)
{
	struct sci_timer *tmr = (struct sci_timer *)data;
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
	struct sci_base_state_machine *sm = &ihost->sm;
	unsigned long flags;

	spin_lock_irqsave(&ihost->scic_lock, flags);

	if (tmr->cancel)
		goto done;

	if (sm->current_state_id == SCIC_STARTING)
		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
	else if (sm->current_state_id == SCIC_STOPPING) {
		sci_change_state(sm, SCIC_FAILED);
		isci_host_stop_complete(ihost);
	} else	/* / @todo Now what do we want to do in this case? */
		dev_err(&ihost->pdev->dev,
			"%s: Controller timer fired when controller was not "
			"in a state being timed.\n",
			__func__);

done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
}

static enum sci_status sci_controller_construct(struct isci_host *ihost,
						void __iomem *scu_base,
						void __iomem *smu_base)
{
	u8 i;

	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);

	ihost->scu_registers = scu_base;
	ihost->smu_registers = smu_base;

	sci_port_configuration_agent_construct(&ihost->port_agent);

	/* Construct the ports for this controller */
	for (i = 0; i < SCI_MAX_PORTS; i++)
		sci_port_construct(&ihost->ports[i], i, ihost);
	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);

	/* Construct the phys for this controller */
	for (i = 0; i < SCI_MAX_PHYS; i++) {
		/* Add all the PHYs to the dummy port */
		sci_phy_construct(&ihost->phys[i],
				  &ihost->ports[SCI_MAX_PORTS], i);
	}

	ihost->invalid_phy_mask = 0;

	sci_init_timer(&ihost->timer, controller_timeout);

	return sci_controller_reset(ihost);
}

int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
{
	int i;

	for (i = 0; i < SCI_MAX_PORTS; i++)
		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
			return -EINVAL;

	for (i = 0; i < SCI_MAX_PHYS; i++)
		if (oem->phys[i].sas_address.high == 0 &&
		    oem->phys[i].sas_address.low == 0)
			return -EINVAL;

	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
		for (i = 0; i < SCI_MAX_PHYS; i++)
			if (oem->ports[i].phy_mask != 0)
				return -EINVAL;
	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
		u8 phy_mask = 0;

		for (i = 0; i < SCI_MAX_PHYS; i++)
			phy_mask |= oem->ports[i].phy_mask;

		if (phy_mask == 0)
			return -EINVAL;
	} else
		return -EINVAL;

	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
	    oem->controller.max_concurr_spin_up < 1)
		return -EINVAL;

	if (oem->controller.do_enable_ssc) {
		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
			return -EINVAL;

		if (version >= ISCI_ROM_VER_1_1) {
			u8 test = oem->controller.ssc_sata_tx_spread_level;

			switch (test) {
			case 0:
			case 2:
			case 3:
			case 6:
			case 7:
				break;
			default:
				return -EINVAL;
			}

			test = oem->controller.ssc_sas_tx_spread_level;
			if (oem->controller.ssc_sas_tx_type == 0) {
				switch (test) {
				case 0:
				case 2:
				case 3:
					break;
				default:
					return -EINVAL;
				}
			} else if (oem->controller.ssc_sas_tx_type == 1) {
				switch (test) {
				case 0:
				case 3:
				case 6:
					break;
				default:
					return -EINVAL;
				}
			}
		}
	}

	return 0;
}

static u8 max_spin_up(struct isci_host *ihost)
{
	if (ihost->user_parameters.max_concurr_spinup)
		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
	else
		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
}

static void power_control_timeout(unsigned long data)
{
	struct sci_timer *tmr = (struct sci_timer *)data;
	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
	struct isci_phy *iphy;
	unsigned long flags;
	u8 i;

	spin_lock_irqsave(&ihost->scic_lock, flags);

	if (tmr->cancel)
		goto done;

	ihost->power_control.phys_granted_power = 0;

	if (ihost->power_control.phys_waiting == 0) {
		ihost->power_control.timer_started = false;
		goto done;
	}

	for (i = 0; i < SCI_MAX_PHYS; i++) {

		if (ihost->power_control.phys_waiting == 0)
			break;

		iphy = ihost->power_control.requesters[i];
		if (iphy == NULL)
			continue;

		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
			break;

		ihost->power_control.requesters[i] = NULL;
		ihost->power_control.phys_waiting--;
		ihost->power_control.phys_granted_power++;
		sci_phy_consume_power_handler(iphy);

		if (iphy->protocol == SAS_PROTOCOL_SSP) {
			u8 j;

			for (j = 0; j < SCI_MAX_PHYS; j++) {
				struct isci_phy *requester = ihost->power_control.requesters[j];

				/*
				 * Search the power_control queue to see if there are other phys
				 * attached to the same remote device. If found, take all of
				 * them out of await_sas_power state.
				 */
				if (requester != NULL && requester != iphy) {
					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
							  iphy->frame_rcvd.iaf.sas_addr,
							  sizeof(requester->frame_rcvd.iaf.sas_addr));

					if (other == 0) {
						ihost->power_control.requesters[j] = NULL;
						ihost->power_control.phys_waiting--;
						sci_phy_consume_power_handler(requester);
					}
				}
			}
		}
	}

	/*
	 * It doesn't matter if the power list is empty, we need to start the
	 * timer in case another phy becomes ready.
	 */
	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
	ihost->power_control.timer_started = true;

done:
	spin_unlock_irqrestore(&ihost->scic_lock, flags);
}

void sci_controller_power_control_queue_insert(struct isci_host *ihost,
					       struct isci_phy *iphy)
{
	BUG_ON(iphy == NULL);

	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
		ihost->power_control.phys_granted_power++;
		sci_phy_consume_power_handler(iphy);

		/*
		 * stop and start the power_control timer. When the timer fires, the
		 * no_of_phys_granted_power will be set to 0
		 */
		if (ihost->power_control.timer_started)
			sci_del_timer(&ihost->power_control.timer);

		sci_mod_timer(&ihost->power_control.timer,
				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
		ihost->power_control.timer_started = true;

	} else {
		/*
		 * There are phys, attached to the same sas address as this phy, are
		 * already in READY state, this phy don't need wait.
		 */
		u8 i;
		struct isci_phy *current_phy;

		for (i = 0; i < SCI_MAX_PHYS; i++) {
			u8 other;
			current_phy = &ihost->phys[i];

			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
				       iphy->frame_rcvd.iaf.sas_addr,
				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));

			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
			    current_phy->protocol == SAS_PROTOCOL_SSP &&
			    other == 0) {
				sci_phy_consume_power_handler(iphy);
				break;
			}
		}

		if (i == SCI_MAX_PHYS) {
			/* Add the phy in the waiting list */
			ihost->power_control.requesters[iphy->phy_index] = iphy;
			ihost->power_control.phys_waiting++;
		}
	}
}

void sci_controller_power_control_queue_remove(struct isci_host *ihost,
					       struct isci_phy *iphy)
{
	BUG_ON(iphy == NULL);

	if (ihost->power_control.requesters[iphy->phy_index])
		ihost->power_control.phys_waiting--;

	ihost->power_control.requesters[iphy->phy_index] = NULL;
}

static int is_long_cable(int phy, unsigned char selection_byte)
{
	return !!(selection_byte & (1 << phy));
}

static int is_medium_cable(int phy, unsigned char selection_byte)
{
	return !!(selection_byte & (1 << (phy + 4)));
}

static enum cable_selections decode_selection_byte(
	int phy,
	unsigned char selection_byte)
{
	return ((selection_byte & (1 << phy)) ? 1 : 0)
		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
}

static unsigned char *to_cable_select(struct isci_host *ihost)
{
	if (is_cable_select_overridden())
		return ((unsigned char *)&cable_selection_override)
			+ ihost->id;
	else
		return &ihost->oem_parameters.controller.cable_selection_mask;
}

enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
{
	return decode_selection_byte(phy, *to_cable_select(ihost));
}

char *lookup_cable_names(enum cable_selections selection)
{
	static char *cable_names[] = {
		[short_cable]     = "short",
		[long_cable]      = "long",
		[medium_cable]    = "medium",
		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
	};
	return (selection <= undefined_cable) ? cable_names[selection]
					      : cable_names[undefined_cable];
}

#define AFE_REGISTER_WRITE_DELAY 10

static void sci_controller_afe_initialization(struct isci_host *ihost)
{
	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
	const struct sci_oem_params *oem = &ihost->oem_parameters;
	struct pci_dev *pdev = ihost->pdev;
	u32 afe_status;
	u32 phy_id;
	unsigned char cable_selection_mask = *to_cable_select(ihost);

	/* Clear DFX Status registers */
	writel(0x0081000f, &afe->afe_dfx_master_control0);
	udelay(AFE_REGISTER_WRITE_DELAY);

	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
		 * Timer, PM Stagger Timer
		 */
		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	/* Configure bias currents to normal */
	if (is_a2(pdev))
		writel(0x00005A00, &afe->afe_bias_control);
	else if (is_b0(pdev) || is_c0(pdev))
		writel(0x00005F00, &afe->afe_bias_control);
	else if (is_c1(pdev))
		writel(0x00005500, &afe->afe_bias_control);

	udelay(AFE_REGISTER_WRITE_DELAY);

	/* Enable PLL */
	if (is_a2(pdev))
		writel(0x80040908, &afe->afe_pll_control0);
	else if (is_b0(pdev) || is_c0(pdev))
		writel(0x80040A08, &afe->afe_pll_control0);
	else if (is_c1(pdev)) {
		writel(0x80000B08, &afe->afe_pll_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);
		writel(0x00000B08, &afe->afe_pll_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);
		writel(0x80000B08, &afe->afe_pll_control0);
	}

	udelay(AFE_REGISTER_WRITE_DELAY);

	/* Wait for the PLL to lock */
	do {
		afe_status = readl(&afe->afe_common_block_status);
		udelay(AFE_REGISTER_WRITE_DELAY);
	} while ((afe_status & 0x00001000) == 0);

	if (is_a2(pdev)) {
		/* Shorten SAS SNW lock time (RxLock timer value from 76
		 * us to 50 us)
		 */
		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
		struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
		int cable_length_long =
			is_long_cable(phy_id, cable_selection_mask);
		int cable_length_medium =
			is_medium_cable(phy_id, cable_selection_mask);

		if (is_a2(pdev)) {
			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
			writel(0x00004512, &xcvr->afe_xcvr_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(0x0050100F, &xcvr->afe_xcvr_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);
		} else if (is_b0(pdev)) {
			/* Configure transmitter SSC parameters */
			writel(0x00030000, &xcvr->afe_tx_ssc_control);
			udelay(AFE_REGISTER_WRITE_DELAY);
		} else if (is_c0(pdev)) {
			/* Configure transmitter SSC parameters */
			writel(0x00010202, &xcvr->afe_tx_ssc_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
			writel(0x00014500, &xcvr->afe_xcvr_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);
		} else if (is_c1(pdev)) {
			/* Configure transmitter SSC parameters */
			writel(0x00010202, &xcvr->afe_tx_ssc_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

			/* All defaults, except the Receive Word
			 * Alignament/Comma Detect Enable....(0xe800)
			 */
			writel(0x0001C500, &xcvr->afe_xcvr_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);
		}

		/* Power up TX and RX out from power down (PWRDNTX and
		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
		 */
		if (is_a2(pdev))
			writel(0x000003F0, &xcvr->afe_channel_control);
		else if (is_b0(pdev)) {
			writel(0x000003D7, &xcvr->afe_channel_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(0x000003D4, &xcvr->afe_channel_control);
		} else if (is_c0(pdev)) {
			writel(0x000001E7, &xcvr->afe_channel_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(0x000001E4, &xcvr->afe_channel_control);
		} else if (is_c1(pdev)) {
			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
			       &xcvr->afe_channel_control);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
			       &xcvr->afe_channel_control);
		}
		udelay(AFE_REGISTER_WRITE_DELAY);

		if (is_a2(pdev)) {
			/* Enable TX equalization (0xe824) */
			writel(0x00040000, &xcvr->afe_tx_control);
			udelay(AFE_REGISTER_WRITE_DELAY);
		}

		if (is_a2(pdev) || is_b0(pdev))
			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
			 * Enabled) ....(0xe800)
			 */
			writel(0x00004100, &xcvr->afe_xcvr_control0);
		else if (is_c0(pdev))
			writel(0x00014100, &xcvr->afe_xcvr_control0);
		else if (is_c1(pdev))
			writel(0x0001C100, &xcvr->afe_xcvr_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);

		/* Leave DFE/FFE on */
		if (is_a2(pdev))
			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
		else if (is_b0(pdev)) {
			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);
			/* Enable TX equalization (0xe824) */
			writel(0x00040000, &xcvr->afe_tx_control);
		} else if (is_c0(pdev)) {
			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);

			/* Enable TX equalization (0xe824) */
			writel(0x00040000, &xcvr->afe_tx_control);
		} else if (is_c1(pdev)) {
			writel(cable_length_long ? 0x01500C0C :
			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
			       &xcvr->afe_xcvr_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
			udelay(AFE_REGISTER_WRITE_DELAY);

			writel(cable_length_long ? 0x33091C1F :
			       cable_length_medium ? 0x3315181F : 0x2B17161F,
			       &xcvr->afe_rx_ssc_control0);
			udelay(AFE_REGISTER_WRITE_DELAY);

			/* Enable TX equalization (0xe824) */
			writel(0x00040000, &xcvr->afe_tx_control);
		}

		udelay(AFE_REGISTER_WRITE_DELAY);

		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
		udelay(AFE_REGISTER_WRITE_DELAY);

		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
		udelay(AFE_REGISTER_WRITE_DELAY);

		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
		udelay(AFE_REGISTER_WRITE_DELAY);

		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
		udelay(AFE_REGISTER_WRITE_DELAY);
	}

	/* Transfer control to the PEs */
	writel(0x00010f00, &afe->afe_dfx_master_control0);
	udelay(AFE_REGISTER_WRITE_DELAY);
}

static void sci_controller_initialize_power_control(struct isci_host *ihost)
{
	sci_init_timer(&ihost->power_control.timer, power_control_timeout);

	memset(ihost->power_control.requesters, 0,
	       sizeof(ihost->power_control.requesters));

	ihost->power_control.phys_waiting = 0;
	ihost->power_control.phys_granted_power = 0;
}

static enum sci_status sci_controller_initialize(struct isci_host *ihost)
{
	struct sci_base_state_machine *sm = &ihost->sm;
	enum sci_status result = SCI_FAILURE;
	unsigned long i, state, val;

	if (ihost->sm.current_state_id != SCIC_RESET) {
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
		return SCI_FAILURE_INVALID_STATE;
	}

	sci_change_state(sm, SCIC_INITIALIZING);

	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);

	ihost->next_phy_to_start = 0;
	ihost->phy_startup_timer_pending = false;

	sci_controller_initialize_power_control(ihost);

	/*
	 * There is nothing to do here for B0 since we do not have to
	 * program the AFE registers.
	 * / @todo The AFE settings are supposed to be correct for the B0 but
	 * /       presently they seem to be wrong. */
	sci_controller_afe_initialization(ihost);


	/* Take the hardware out of reset */
	writel(0, &ihost->smu_registers->soft_reset_control);

	/*
	 * / @todo Provide meaningfull error code for hardware failure
	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
	for (i = 100; i >= 1; i--) {
		u32 status;

		/* Loop until the hardware reports success */
		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
		status = readl(&ihost->smu_registers->control_status);

		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
			break;
	}
	if (i == 0)
		goto out;

	/*
	 * Determine what are the actaul device capacities that the
	 * hardware will support */
	val = readl(&ihost->smu_registers->device_context_capacity);

	/* Record the smaller of the two capacity values */
	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);

	/*
	 * Make all PEs that are unassigned match up with the
	 * logical ports
	 */
	for (i = 0; i < ihost->logical_port_entries; i++) {
		struct scu_port_task_scheduler_group_registers __iomem
			*ptsg = &ihost->scu_registers->peg0.ptsg;

		writel(i, &ptsg->protocol_engine[i]);
	}

	/* Initialize hardware PCI Relaxed ordering in DMA engines */
	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
	writel(val, &ihost->scu_registers->sdma.pdma_configuration);

	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
	writel(val, &ihost->scu_registers->sdma.cdma_configuration);

	/*
	 * Initialize the PHYs before the PORTs because the PHY registers
	 * are accessed during the port initialization.
	 */
	for (i = 0; i < SCI_MAX_PHYS; i++) {
		result = sci_phy_initialize(&ihost->phys[i],
					    &ihost->scu_registers->peg0.pe[i].tl,
					    &ihost->scu_registers->peg0.pe[i].ll);
		if (result != SCI_SUCCESS)
			goto out;
	}

	for (i = 0; i < ihost->logical_port_entries; i++) {
		struct isci_port *iport = &ihost->ports[i];

		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
	}

	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);

 out:
	/* Advance the controller state machine */
	if (result == SCI_SUCCESS)
		state = SCIC_INITIALIZED;
	else
		state = SCIC_FAILED;
	sci_change_state(sm, state);

	return result;
}

static int sci_controller_dma_alloc(struct isci_host *ihost)
{
	struct device *dev = &ihost->pdev->dev;
	size_t size;
	int i;

	/* detect re-initialization */
	if (ihost->completion_queue)
		return 0;

	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
						      GFP_KERNEL);
	if (!ihost->completion_queue)
		return -ENOMEM;

	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
							       GFP_KERNEL);

	if (!ihost->remote_node_context_table)
		return -ENOMEM;

	size = ihost->task_context_entries * sizeof(struct scu_task_context),
	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
							GFP_KERNEL);
	if (!ihost->task_context_table)
		return -ENOMEM;

	size = SCI_UFI_TOTAL_SIZE;
	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
	if (!ihost->ufi_buf)
		return -ENOMEM;

	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
		struct isci_request *ireq;
		dma_addr_t dma;

		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
		if (!ireq)
			return -ENOMEM;

		ireq->tc = &ihost->task_context_table[i];
		ireq->owning_controller = ihost;
		ireq->request_daddr = dma;
		ireq->isci_host = ihost;
		ihost->reqs[i] = ireq;
	}

	return 0;
}

static int sci_controller_mem_init(struct isci_host *ihost)
{
	int err = sci_controller_dma_alloc(ihost);

	if (err)
		return err;

	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);

	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);

	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);

	sci_unsolicited_frame_control_construct(ihost);

	/*
	 * Inform the silicon as to the location of the UF headers and
	 * address table.
	 */
	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
		&ihost->scu_registers->sdma.uf_header_base_address_lower);
	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
		&ihost->scu_registers->sdma.uf_header_base_address_upper);

	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
		&ihost->scu_registers->sdma.uf_address_table_lower);
	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
		&ihost->scu_registers->sdma.uf_address_table_upper);

	return 0;
}

/**
 * isci_host_init - (re-)initialize hardware and internal (private) state
 * @ihost: host to init
 *
 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
 * one-time initialization objects like locks and waitqueues, are
 * not touched (they are initialized in isci_host_alloc)
 */
int isci_host_init(struct isci_host *ihost)
{
	int i, err;
	enum sci_status status;

	spin_lock_irq(&ihost->scic_lock);
	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
	spin_unlock_irq(&ihost->scic_lock);
	if (status != SCI_SUCCESS) {
		dev_err(&ihost->pdev->dev,
			"%s: sci_controller_construct failed - status = %x\n",
			__func__,
			status);
		return -ENODEV;
	}

	spin_lock_irq(&ihost->scic_lock);
	status = sci_controller_initialize(ihost);
	spin_unlock_irq(&ihost->scic_lock);
	if (status != SCI_SUCCESS) {
		dev_warn(&ihost->pdev->dev,
			 "%s: sci_controller_initialize failed -"
			 " status = 0x%x\n",
			 __func__, status);
		return -ENODEV;
	}

	err = sci_controller_mem_init(ihost);
	if (err)
		return err;

	/* enable sgpio */
	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
	for (i = 0; i < isci_gpio_count(ihost); i++)
		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);

	return 0;
}

void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
			    struct isci_phy *iphy)
{
	switch (ihost->sm.current_state_id) {
	case SCIC_STARTING:
		sci_del_timer(&ihost->phy_timer);
		ihost->phy_startup_timer_pending = false;
		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
						  iport, iphy);
		sci_controller_start_next_phy(ihost);
		break;
	case SCIC_READY:
		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
						  iport, iphy);
		break;
	default:
		dev_dbg(&ihost->pdev->dev,
			"%s: SCIC Controller linkup event from phy %d in "
			"unexpected state %d\n", __func__, iphy->phy_index,
			ihost->sm.current_state_id);
	}
}

void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
			      struct isci_phy *iphy)
{
	switch (ihost->sm.current_state_id) {
	case SCIC_STARTING:
	case SCIC_READY:
		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
						   iport, iphy);
		break;
	default:
		dev_dbg(&ihost->pdev->dev,
			"%s: SCIC Controller linkdown event from phy %d in "
			"unexpected state %d\n",
			__func__,
			iphy->phy_index,
			ihost->sm.current_state_id);
	}
}

bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
{
	u32 index;

	for (index = 0; index < ihost->remote_node_entries; index++) {
		if ((ihost->device_table[index] != NULL) &&
		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
			return true;
	}

	return false;
}

void sci_controller_remote_device_stopped(struct isci_host *ihost,
					  struct isci_remote_device *idev)
{
	if (ihost->sm.current_state_id != SCIC_STOPPING) {
		dev_dbg(&ihost->pdev->dev,
			"SCIC Controller 0x%p remote device stopped event "
			"from device 0x%p in unexpected state %d\n",
			ihost, idev,
			ihost->sm.current_state_id);
		return;
	}

	if (!sci_controller_has_remote_devices_stopping(ihost))
		isci_host_stop_complete(ihost);
}

void sci_controller_post_request(struct isci_host *ihost, u32 request)
{
	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
		__func__, ihost->id, request);

	writel(request, &ihost->smu_registers->post_context_port);
}

struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
{
	u16 task_index;
	u16 task_sequence;

	task_index = ISCI_TAG_TCI(io_tag);

	if (task_index < ihost->task_context_entries) {
		struct isci_request *ireq = ihost->reqs[task_index];

		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
			task_sequence = ISCI_TAG_SEQ(io_tag);

			if (task_sequence == ihost->io_request_sequence[task_index])
				return ireq;
		}
	}

	return NULL;
}

/**
 * This method allocates remote node index and the reserves the remote node
 *    context space for use. This method can fail if there are no more remote
 *    node index available.
 * @scic: This is the controller object which contains the set of
 *    free remote node ids
 * @sci_dev: This is the device object which is requesting the a remote node
 *    id
 * @node_id: This is the remote node id that is assinged to the device if one
 *    is available
 *
 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
 * node index available.
 */
enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
							    struct isci_remote_device *idev,
							    u16 *node_id)
{
	u16 node_index;
	u32 remote_node_count = sci_remote_device_node_count(idev);

	node_index = sci_remote_node_table_allocate_remote_node(
		&ihost->available_remote_nodes, remote_node_count
		);

	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
		ihost->device_table[node_index] = idev;

		*node_id = node_index;

		return SCI_SUCCESS;
	}

	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}

void sci_controller_free_remote_node_context(struct isci_host *ihost,
					     struct isci_remote_device *idev,
					     u16 node_id)
{
	u32 remote_node_count = sci_remote_device_node_count(idev);

	if (ihost->device_table[node_id] == idev) {
		ihost->device_table[node_id] = NULL;

		sci_remote_node_table_release_remote_node_index(
			&ihost->available_remote_nodes, remote_node_count, node_id
			);
	}
}

void sci_controller_copy_sata_response(void *response_buffer,
				       void *frame_header,
				       void *frame_buffer)
{
	/* XXX type safety? */
	memcpy(response_buffer, frame_header, sizeof(u32));

	memcpy(response_buffer + sizeof(u32),
	       frame_buffer,
	       sizeof(struct dev_to_host_fis) - sizeof(u32));
}

void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
{
	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
		writel(ihost->uf_control.get,
			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
}

void isci_tci_free(struct isci_host *ihost, u16 tci)
{
	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);

	ihost->tci_pool[tail] = tci;
	ihost->tci_tail = tail + 1;
}

static u16 isci_tci_alloc(struct isci_host *ihost)
{
	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
	u16 tci = ihost->tci_pool[head];

	ihost->tci_head = head + 1;
	return tci;
}

static u16 isci_tci_space(struct isci_host *ihost)
{
	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}

u16 isci_alloc_tag(struct isci_host *ihost)
{
	if (isci_tci_space(ihost)) {
		u16 tci = isci_tci_alloc(ihost);
		u8 seq = ihost->io_request_sequence[tci];

		return ISCI_TAG(seq, tci);
	}

	return SCI_CONTROLLER_INVALID_IO_TAG;
}

enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
{
	u16 tci = ISCI_TAG_TCI(io_tag);
	u16 seq = ISCI_TAG_SEQ(io_tag);

	/* prevent tail from passing head */
	if (isci_tci_active(ihost) == 0)
		return SCI_FAILURE_INVALID_IO_TAG;

	if (seq == ihost->io_request_sequence[tci]) {
		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);

		isci_tci_free(ihost, tci);

		return SCI_SUCCESS;
	}
	return SCI_FAILURE_INVALID_IO_TAG;
}

enum sci_status sci_controller_start_io(struct isci_host *ihost,
					struct isci_remote_device *idev,
					struct isci_request *ireq)
{
	enum sci_status status;

	if (ihost->sm.current_state_id != SCIC_READY) {
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
		return SCI_FAILURE_INVALID_STATE;
	}

	status = sci_remote_device_start_io(ihost, idev, ireq);
	if (status != SCI_SUCCESS)
		return status;

	set_bit(IREQ_ACTIVE, &ireq->flags);
	sci_controller_post_request(ihost, ireq->post_context);
	return SCI_SUCCESS;
}

enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
						 struct isci_remote_device *idev,
						 struct isci_request *ireq)
{
	/* terminate an ongoing (i.e. started) core IO request.  This does not
	 * abort the IO request at the target, but rather removes the IO
	 * request from the host controller.
	 */
	enum sci_status status;

	if (ihost->sm.current_state_id != SCIC_READY) {
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
		return SCI_FAILURE_INVALID_STATE;
	}
	status = sci_io_request_terminate(ireq);

	dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
		__func__, status, ireq, ireq->flags);

	if ((status == SCI_SUCCESS) &&
	    !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
	    !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
		/* Utilize the original post context command and or in the
		 * POST_TC_ABORT request sub-type.
		 */
		sci_controller_post_request(
			ihost, ireq->post_context |
				SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
	}
	return status;
}

/**
 * sci_controller_complete_io() - This method will perform core specific
 *    completion operations for an IO request.  After this method is invoked,
 *    the user should consider the IO request as invalid until it is properly
 *    reused (i.e. re-constructed).
 * @ihost: The handle to the controller object for which to complete the
 *    IO request.
 * @idev: The handle to the remote device object for which to complete
 *    the IO request.
 * @ireq: the handle to the io request object to complete.
 */
enum sci_status sci_controller_complete_io(struct isci_host *ihost,
					   struct isci_remote_device *idev,
					   struct isci_request *ireq)
{
	enum sci_status status;
	u16 index;

	switch (ihost->sm.current_state_id) {
	case SCIC_STOPPING:
		/* XXX: Implement this function */
		return SCI_FAILURE;
	case SCIC_READY:
		status = sci_remote_device_complete_io(ihost, idev, ireq);
		if (status != SCI_SUCCESS)
			return status;

		index = ISCI_TAG_TCI(ireq->io_tag);
		clear_bit(IREQ_ACTIVE, &ireq->flags);
		return SCI_SUCCESS;
	default:
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
		return SCI_FAILURE_INVALID_STATE;
	}

}

enum sci_status sci_controller_continue_io(struct isci_request *ireq)
{
	struct isci_host *ihost = ireq->owning_controller;

	if (ihost->sm.current_state_id != SCIC_READY) {
		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
			 __func__, ihost->sm.current_state_id);
		return SCI_FAILURE_INVALID_STATE;
	}

	set_bit(IREQ_ACTIVE, &ireq->flags);
	sci_controller_post_request(ihost, ireq->post_context);
	return SCI_SUCCESS;
}

/**
 * sci_controller_start_task() - This method is called by the SCIC user to
 *    send/start a framework task management request.
 * @controller: the handle to the controller object for which to start the task
 *    management request.
 * @remote_device: the handle to the remote device object for which to start
 *    the task management request.
 * @task_request: the handle to the task request object to start.
 */
enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
					       struct isci_remote_device *idev,
					       struct isci_request *ireq)
{
	enum sci_status status;

	if (ihost->sm.current_state_id != SCIC_READY) {
		dev_warn(&ihost->pdev->dev,
			 "%s: SCIC Controller starting task from invalid "
			 "state\n",
			 __func__);
		return SCI_TASK_FAILURE_INVALID_STATE;
	}

	status = sci_remote_device_start_task(ihost, idev, ireq);
	switch (status) {
	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
		set_bit(IREQ_ACTIVE, &ireq->flags);

		/*
		 * We will let framework know this task request started successfully,
		 * although core is still woring on starting the request (to post tc when
		 * RNC is resumed.)
		 */
		return SCI_SUCCESS;
	case SCI_SUCCESS:
		set_bit(IREQ_ACTIVE, &ireq->flags);
		sci_controller_post_request(ihost, ireq->post_context);
		break;
	default:
		break;
	}

	return status;
}

static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
{
	int d;

	/* no support for TX_GP_CFG */
	if (reg_index == 0)
		return -EINVAL;

	for (d = 0; d < isci_gpio_count(ihost); d++) {
		u32 val = 0x444; /* all ODx.n clear */
		int i;

		for (i = 0; i < 3; i++) {
			int bit = (i << 2) + 2;

			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
						       write_data, reg_index,
						       reg_count);
			if (bit < 0)
				break;

			/* if od is set, clear the 'invert' bit */
			val &= ~(bit << ((i << 2) + 2));
		}

		if (i < 3)
			break;
		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
	}

	/* unless reg_index is > 1, we should always be able to write at
	 * least one register
	 */
	return d > 0;
}

int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
		    u8 reg_count, u8 *write_data)
{
	struct isci_host *ihost = sas_ha->lldd_ha;
	int written;

	switch (reg_type) {
	case SAS_GPIO_REG_TX_GP:
		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
		break;
	default:
		written = -EINVAL;
	}

	return written;
}